更全的杂志信息网

矩阵的三角分解毕业论文

发布时间:2024-07-07 23:01:03

矩阵的三角分解毕业论文

Ax=B,改写成Ly=B,Ux=y的方程组。就相当于将A=LU分解成了两个矩阵。称为矩阵A的三角分解,或LU分解。如果L为单位下三角阵,则叫Doolittle分解,若U为单位上三角阵,则叫Crout分解。只要A的各顺序主子式不为零,则A可唯一分解成一个单位下三角阵L与一个上三角阵U的乘积。•设Ax=b,A=LU,则Ax=LUx=b于是令Ux=y,则Ly=b这样原来方程能化为两个简单方程组

矩阵的三角分解分好几种,有最简单的,主元的和正交的。第一和第三最常用。第三个最重要,不知道第三个分解枉学线代!简单的三角分解 A=LU L:lower下三角 U:upper上三角 这个只有形状上的要求。实际就是把一个矩阵A上三角化的过程,你会发现那个过程(可以理解为作用在该方阵A上的算子),也是个三角阵,所以有SA=U 两边乘上S的逆便有A=LU正交分解 A=QR Q为正交阵 R为上三角,好像是这样。实际上就是Gram-Schmidt正交化方法的过程

迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。一般可以做如下定义:对于给定的线性方程组x=Bx+f(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式x(k+1)=Bx(k)+f(括号中为上标,代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。如果k趋向无穷大时limx(k)存在,记为x*,称此迭代法收敛。显然x*就是此方程组的解,否则称为迭代法发散。跟迭代法相对应的是直接法(或者称为一次解法),即一次性的快速解决问题,例如通过开方解决方程x +3= 4。一般如果可能,直接解法总是优先考虑的。但当遇到复杂问题时,特别是在未知量很多,方程为非线性时,我们无法找到直接解法(例如五次以及更高次的代数方程没有解析解,参见阿贝耳定理),这时候或许可以通过迭代法寻求方程(组)的近似解。最常见的迭代法是牛顿法。其他还包括最速下降法、共轭迭代法、变尺度迭代法、最小二乘法、线性规划、非线性规划、单纯型法、惩罚函数法、斜率投影法、遗传算法、模拟退火等等。利用迭代算法解决问题,需要做好以下三个方面的工作:确定迭代变量在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。建立迭代关系式所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以顺推或倒推的方法来完成。对迭代过程进行控制在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。举例例 1 :一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只?分析:这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,……根据这个规律,可以归纳出下面的递推公式:u n = u(n - 1)× 2 (n ≥ 2)对应 u n 和 u(n - 1),定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:y=x*2x=y让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下:clsx=1for i=2 to 12y=x*2x=ynext iprint yend例 2 :阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 220,220个。试问,开始的时候往容器内放了多少个阿米巴?请编程序算出。分析:根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴2^ 20 个”,即阿米巴分裂 15 次以后得到的个数是 2^20。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2^20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1)因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式:x=x/2 (x 的初值为第 15 次分裂之后的个数 2^20)让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下:clsx=2^20for i=1 to 15x=x/2next iprint xendps:java中幂的算法是(2,20);返回double,稍微注意一下例 3 :验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1。如此经过有限次运算后,总可以得到自然数 1。人们把谷角静夫的这一发现叫做“谷角猜想”。要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。分析:定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1。用 QBASIC 语言把它描述出来就是:if n 为偶数 thenn=n/2elsen=n*3+1end if这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为:n=1。参考程序如下:clsinput "Please input n=";ndo until n=1if n mod 2=0 thenrem 如果 n 为偶数,则调用迭代公式 n=n/2n=n/2print "—";n;elsen=n*3+1print "—";n;end ifloopend迭代法开平方:#include<>#include<>void main(){double a,x0,x1;printf("Input a:\n");scanf("%lf",&a);//为什么在中不能写成“scanf("%f",&a);”?if(a<0)printf("Error!\n");else{x0=a/2;x1=(x0+a/x0)/2;do{x0=x1;x1=(x0+a/x0)/2;}while(fabs(x0-x1)>=1e-6);}printf("Result:\n");printf("sqrt(%g)=%g\n",a,x1);}求平方根的迭代公式:x1=1/2*(x0+a/x0)。算法:1.先自定一个初值x0,作为a的平方根值,在我们的程序中取a/2作为a的初值;利用迭代公式求出一个x1。此值与真正的a的平方根值相比,误差很大。⒉把新求得的x1代入x0中,准备用此新的x0再去求出一个新的x1.⒊利用迭代公式再求出一个新的x1的值,也就是用新的x0又求出一个新的平方根值x1,此值将更趋近于真正的平方根值。⒋比较前后两次求得的平方根值x0和x1,如果它们的差值小于我们指定的值,即达到我们要求的精度,则认为x1就是a的平方根值,去执行步骤5;否则执行步骤2,即循环进行迭代。迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:⑴ 选一个方程的近似根,赋给变量x0;⑵ 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;⑶ 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤⑵的计算。若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:【算法】迭代法求方程的根{ x0=初始近似根;do {x1=x0;x0=g(x1); /*按特定的方程计算新的近似根*/} while (fabs(x0-x1)>Epsilon);printf(“方程的近似根是%f\n”,x0);}迭代算法也常用于求方程组的根,令X=(x0,x1,…,xn-1)设方程组为:xi=gi(X) (I=0,1,…,n-1)则求方程组根的迭代算法可描述如下:【算法】迭代法求方程组的根{ for (i=0;ix=初始近似根;do {for (i=0;iy=x;for (i=0;ix=gi(X);for (delta=;iif (fabs(y-x)>delta) delta=fabs(y-x);} while (delta>Epsilon);for (i=0;iprintf(“变量x[%d]的近似根是 %f”,I,x);printf(“\n”);}具体使用迭代法求根时应注意以下两种可能发生的情况:⑴ 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;⑵ 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。递归递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。斐波那契数列为:0、1、1、2、3、……,即:fib(0)=0;fib⑴=1;fib(n)=fib(n-1)+fib(n-2) (当n>1时)。写成递归函数有:int fib(int n){ if (n==0) return 0;if (n==1) return 1;if (n>1) return fib(n-1)+fib(n-2);}递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib⑴和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib⑴和fib(0)后,返回得到fib⑵的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。【问题】 组合问题问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为:⑴5、4、3 ⑵5、4、2 ⑶5、4、1⑷5、3、2 ⑸5、3、1 ⑹5、2、1⑺4、3、2 ⑻4、3、1 ⑼4、2、1⑽3、2、1分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。【程序】# include# define MAXN 100int a[MAXN];void comb(int m,int k){ int i,j;for (i=m;i>=k;i--){ a[k]=i;if (k>1)comb(i-1,k-1);else{ for (j=a[0];j>0;j--)printf(“%4d”,a[j]);printf(“\n”);}}}void main(){ a[0]=3;comb(5,3);}【问题】 背包问题问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。对于第i件物品的选择考虑有两种可能:⑴ 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。⑵ 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。按以上思想写出递归算法如下:try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv){ /*考虑物品i包含在当前方案中的可能性*/if(包含物品i是可以接受的){ 将物品i包含在当前方案中;if (itry(i+1,tw+物品i的重量,tv);else/*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/以当前方案作为临时最佳方案保存;恢复物品i不包含状态;}/*考虑物品i不包含在当前方案中的可能性*/if (不包含物品i仅是可男考虑的)if (itry(i+1,tw,tv-物品i的价值);else/*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/以当前方案作为临时最佳方案保存;}为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表:物品 0 1 2 3重量 5 3 2 1价值 4 4 3 1并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。按上述算法编写函数和程序如下:【程序】# include# define N 100double limitW,totV,maxV;int option[N],cop[N];struct { double weight;double value;}a[N];int n;void find(int i,double tw,double tv){ int k;/*考虑物品i包含在当前方案中的可能性*/if (tw+<=limitW){ cop=1;if (ielse{ for (k=0;koption[k]=cop[k];maxv=tv;}cop=0;}/*考虑物品i不包含在当前方案中的可能性*/if (>maxV)if (ielse{ for (k=0;koption[k]=cop[k];maxv=;}}void main(){ int k;double w,v;printf(“输入物品种数\n”);scanf((“%d”,&n);printf(“输入各物品的重量和价值\n”);for (totv=;k{ scanf(“%1f%1f”,&w,&v);a[k].weight=w;a[k].value=v;totV+=V;}printf(“输入限制重量\n”);scanf(“%1f”,&limitV);maxv=;for (k=0;k find(0,);for (k=0;kif (option[k]) printf(“%4d”,k+1);printf(“\n总价值为%.2f\n”,maxv);}作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。【程序】# include# define N 100double limitW;int cop[N];struct ele { double weight;double value;} a[N];int k,n;struct { int ;double tw;double tv;}twv[N];void next(int i,double tw,double tv){ twv.=1;twv tw=tw;twv tv=tv;}double find(struct ele *a,int n){ int i,k,f;double maxv,tw,tv,totv;maxv=0;for (totv=;ktotv+=a[k].value;next(0,);i=0;While (i>=0){ f=twv.;tw=twv tw;tv=twv tv;switch(f){ case 1: twv.++;if (tw+<=limitW)if (i{ next(i+1,tw+);i++;}else{ maxv=tv;for (k=0;kcop[k]=twv[k].!=0;}break;case 0: i--;break;default: twv.=0;if (>maxv)if (i{ next(i+1,tw,);i++;}else{ maxv=;for (k=0;kcop[k]=twv[k].!=0;}break;}}return maxv;}void main(){ double maxv;printf(“输入物品种数\n”);scanf((“%d”,&n);printf(“输入限制重量\n”);scanf(“%1f”,&limitW);printf(“输入各物品的重量和价值\n”);for (k=0;kscanf(“%1f%1f”,&a[k].weight,&a[k].value);maxv=find(a,n);printf(“\n选中的物品为\n”);for (k=0;kif (option[k]) printf(“%4d”,k+1);printf(“\n总价值为%.2f\n”,maxv);}编辑本段递归的基本概念和特点程序调用自身的编程技巧称为递归(recursion)。一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。注意:⑴ 递归就是在过程或函数里调用自身;⑵ 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。

矩阵对角化的毕业论文

交给我处理。

一种吧!设所求矩阵为A,求出它的全部特征值,求(A-£E)x=0的基础解系,再两两正交单位化,得正交矩阵P,再求P-1AP=PTAP=^

我觉得应该是相似对角化吧,具体的步骤是:1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值你看行不?这就是我知道的,呵呵

课程论文选题参考1.《高等代数》课程学习感悟2.《高等代数》中的。。。。思想3.《高等代数》中的。。。。方法4.高等代数与解析几何的关联性5.高等代数有关理论的等价命题6.高等代数有关理论的几何描述7.高等代数有关理论的应用实例8.高等代数知识在有关课程学习中的应用9.数学软件在高等代数学习中的应用10.应用高等代数知识的数学建模案例11.高等代数理论在金融中的应用12.反例在高等代数中的应用13.行列式理论的应用性研究14.一些特殊行列式的应用15.行列式计算方法综述16.范德蒙行列式的一些应用17.线性方程组的应用;18.线性方程组的推广——从向量到矩阵19.关于向量组的极大无关组20.向量组线性相关与线性无关的判别方法21.线性方程组求解方法综述 22.求解线性方程组的直接法与迭代法23.向量的应用24.矩阵多项式的性质及应用25.矩阵可逆的若干判别方法26.矩阵秩的不等式的讨论(应用)27.关于矩阵的伴随矩阵28.矩阵运算在经济中的应用29.关于分块矩阵30.分块矩阵的初等变换及应用31.矩阵初等变换及应用32.矩阵变换的几何特征33.二次型正定性及应用34.二次型的化简及应用35.化二次型为标准型的方法36.矩阵对角化的应用37.矩阵标准形的思想及应用38.矩阵在各种变换下的不变量及其应用39.线性变换的应用40.特征值与特征向量的应用41.关于线性变换的若干问题42.关于欧氏空间的若干问题43.矩阵等价、合同、相似的关联性及应用44.线性变换的命题与矩阵命题的相互转换问题45.线性空间与欧氏空间46.初等行变换在向量空间Pn中的应用47.哈密顿-凯莱定理及其应用48.施密特正交化方法的几何意义及其应用49.不变子空间与若当标准型之间的关系50.多项式不可约的判别方法及应用51.二次型的矩阵性质与应用52.分块矩阵及其应用53.欧氏空间中的正交变换及其几何应用54.对称矩阵的性质与应用55.求两个子空间的交与和的维数和一个基的方法56.关于n维欧氏空间子空间的正交补57.求若当标准形的几种方法58.相似矩阵的若干应用59.矩阵相似的若干判定方法60.正交矩阵的若干性质61.实对称矩阵正定性的若干等价条件62.欧氏空间中正交问题的探讨63.矩阵特征根及其在解题中的应用64.矩阵的特征值与特征向量的应用65.行列式在代数与几何中的简单应用66.欧氏空间内积不等式的应用67.求标准正交基的若干方法研究68.高等代数理论在经济学中的应用69.矩阵中的最小二乘法70.常见线性空间与欧式空间的基与标准正交基的求法

矩阵分解及其应用毕业论文

随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系

这个概念经常在机器学习的文章中看到,但由于接触不久,所以一直都是一知半解,没有好好了解过。     首先从字面上理解,“协同”需要一个“集体“,“过滤”就应该是晒选的意思,那么协同过滤总的来说就是通过“集体”来“筛选”,以评分推荐系统为例子,这里的“协同”我个人理解就是集合”众多人的评价”,这里的“评价”,就是“对集体都接触过的事物进行打分”,这样大概就能通过一些共同的事物反应出用户不同的”价值观“,然后通过这样的价值观来”筛选“出价值观高度相似的人,再相互推荐共同都喜爱的东西。那么这样的推荐就很有可能是大家都需要的。     经过资料洗礼过后,得知cf现在的两大方向,一种是以记忆为基础(Memory-base),另一种是基于模型(Model-based Collaborative Filtering)。     普及的比较多的前者,它基于关注的目标,又分为基于用户的协同过滤和基于项目的协同过滤,上面举的一个简单的评分推荐系统的例子就可以说是基于用户的协同过滤,它是通过用户对共同物品的“主观价值”来筛选相似用户,再互补评分高的商品,从而达到推荐商品的目的;那么基于项目的意思就是通过这个用户集体对商品集的评价,在物品的角度上去寻找相似度高的物品,达到推荐商品的效果。虽然针对的目标不通,但以我个人理解,大体上都是依赖这个用户集营造的“价值观”,只不过区别在于,基于用户的CF是“关心”各个用户的“主观价值”上的“区别”,而基于项目的CF则是要基于这整个用户集对项目集的“普世价值观”,来甄别出“物品”上的差异。不知道这么比喻恰不恰当哈,“普世”我这边理解就是“大多数”,是一种整体趋势的意思。价值观比较“抽象”的话,再直接点这里的“价值观”就相当于物理中的“参考系”。     但是以上两种方法在面对,不是每个用户对大多数商品都做出过评价(数据稀疏)时就无能为力,所以基于这个问题就引导出了基于模型(Model-based )的CF,我在最近的论文中接触到的就是一个“矩阵分解”的协同过滤,它能够基于现有的数据得到一个模型,再用此模型进行推荐。那么是如何做到的呢?接下来看看矩阵分解。     假设我先在有一个关于用户对音乐评分的矩阵如下图:    只有上述的数据是很难使用户相互推荐音乐的,因为可以看出用户本身听过的歌就不够多,那么如何使数据更加“饱满”呢?这时正是需要矩阵分解的时候,矩阵分解算法的数学理论基础是矩阵的行列变换。行列变换中又有以下规则,我们知道矩阵A进行行变换相当于A左乘一个矩阵,矩阵A进行列变换等价于矩阵A右乘一个矩阵,因此矩阵A可以表示为A=PEQ=PQ(E是标准阵)。     形象的表示如下图:    矩阵分解的目的就是把一个稀疏的用户评分矩阵分解成用户因子矩阵和项目因子矩阵相乘的形式R=U(转置)*I,我们的目的就是最后再让两个因子矩阵反乘回去得到饱满的用户评分矩阵。那么这个用户,项目因子是个什么东西呢?我们接着上面的音乐评分的形式说,一首歌可能包含多种音乐风格,我们可以量化风格,体现各种风格在一首歌中的比重,那么这里的“潜在因子”我们就可以当作“音乐风格”,K个因子就可以看作K种风格。譬如下图:    可以说,这些因子就是我们的模型中的重要参数,个人理解分解出来的这两个因子矩阵就可以说是基于模型的CF中的,“模型”的了,其实我觉得可以类比线性模型中的参数,我们的回归模型最终重要的不就是公式中的各项参数吗,这两个因子矩阵其实就是我们这个模型中的重要参数,参数知道了模型也就求出来了。如果不了解线性模型可以参考吴恩达大大的机器学习课程,里面介绍的很详细,不像我这边一知半哈。     那么这些个值具体是怎么得出来的呢?过程和求线性回归也很像,接下来就是相关的简单推倒,首先,我们假设,真实的用户评分和我们预测评分的差遵循高斯分布 R用是评分矩阵   U是用户因子矩阵,V是项目因子矩阵 接下来就是极大似然估计,使,在现有数据下概率最大化     类比求线性模型,就能够了解思想很相似,所以应该同样是运用了似然估计的思想,要使值最大,式子两边同时取对数,可以看到,如果要使概率最大,那么公式的第一项就要最小,是不是想到了什么,没错接下来就可以看到最小二乘法的式子。    线性模型我们遇到这个情况一般怎么做,没错,就是梯度下降。首先求偏导数最后就是梯度下降的矩阵因子更新公式:    接下来迭代到自己设置的阈值收敛就能得到局部最优解了。     下面是我根据上述矩阵分解的思想随机的模拟实践,可以自行感受一下准度,可能写搓了点~ 注释:以上诸多图片材料来自网上多篇博客文章 还有方便实用sklearn的中文API文档

我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业

好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!

矩阵及特殊矩阵的实例毕业论文

好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:(1)矩阵在经济生活中的应用‍可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。(2)在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。(3)矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。(4)矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

矩阵在许多领域都应用广泛。有些时候用到矩阵是因为其表达方式紧凑,例如在博弈论和经济学中,会用收益矩阵来表示两个博弈对象在各种决策方式下的收益。文本挖掘和索引典汇编的时候,比如在TF-IDF方法中,也会用到文件项矩阵来追踪特定词汇在多个文件中的出现频率。早期的密码技术如希尔密码也用到矩阵。然而,矩阵的线性性质使这类密码相对容易破解。计算机图像处理也会用到矩阵来表示处理对象,并且用放射旋转矩阵来计算对象的变换,实现三维对象在特定二维屏幕上的投影。多项式环上的矩阵在控制论中有重要作用。化学中也有矩阵的应用,特别在使用量子理论讨论分子键和光谱的时候。具体例子有解罗特汉方程时用重叠矩阵和福柯矩阵来得到哈特里-福克方法中的分子轨道。

逆矩阵和广义逆矩阵毕业论文

别的你都可以自己看教材,我就告诉你怎么求Moore-Penrose广义逆先利用消去法得到满秩分解A=FG,其中F列满秩,G行满秩然后A^+=G^+F^+,所以归结为求F^+和G^+对于列满秩矩阵F而言,F^+=(F^*F)^{-1}F^*,这本质上就是最小二乘法类似地,对于行满秩矩阵G而言,G^+=G^*(GG^*)^{-1}

广义逆矩阵的计算方法大致可分为三类:以满秩分解和奇异值分解为基础的直接法,迭代法和其他一些常用于低阶矩阵的非凡方法。以A+的计算为例。若A是一个秩为r的m×n阶非零矩阵,记作(图6),,有满秩分解A=F·G,其中(图7),则(图8),即将广义逆矩阵的计算化为通常逆矩阵的计算。常用LU分解和QR分解等方法实现满秩分解,然后求出A+。若A有奇异值分解A=UDV*,其中U、V为m阶和n阶酉矩阵,(图9)是m×n阶矩阵,∑是r阶对角阵,对角元(图10)是A的r个非零奇异值(AA*的非零特征值的平方根),则A+=VD+U*,其中(图11)是n×m阶矩阵。也可用豪斯霍尔德变换先将 A化为上双对角阵J0=P*AQ,然后再对J0使用QR算法化为矩阵D=G*J0h,于是A=(PG)D(Qh)*,故A+1=(Qh)D+(PG)*。设λ1是AA*的最大非零特征值,若0<α<2/λ1,则计算A+的一个迭代法是x0=αA*,xn+1=(2I-Axn),当n→∞时,xn收敛于A+。格雷维尔逐次递推法也是计算A+的常用方法。设A的第k列为αk(k=1,2,…,n),A1=α1,Ak=(Ak-1,αk)(k=2,3,…,n),则(图12),式中(图13)(图14)。1955年以后,出现了大量的关于广义逆矩阵的理论、应用和计算方法的文献。70年代还出版了一些专著和会议录,指出广义逆矩阵在控制论、系统辨识、规划论、网络理论、测量、统计和计量经济学等方面的应用。

线性方程组:A(mxn)X = b ------ (1)A是m行n列(m>n)的行列式:A'是A的转置矩阵,将(1)变成(A'A)X = A'b - - - - (2)(A'A)是nxn阶方阵,它的逆矩阵称为广义逆矩阵。(A'A)行列式不为零,方程组(2)有唯一解,且与(1)的最小二乘解相对应!此结论的证明也不复杂。

如下:

线性方程组:A(mxn)X = b ------ (1)

A是m行n列(m>n)的行列式:A'是A的转置矩阵,将(1)变成

(A'A)X = A'b - - - - (2)

(A'A)是nxn阶方阵,它的逆矩阵称为广义逆矩阵。

(A'A)行列式不为零,方程组(2)有唯一解,且与(1)的最小二乘解相对应!此结论的证明也不复杂。

思想:

广义逆的思想可追溯到1903年(E.)I.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。

1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2