更全的杂志信息网

石墨设备发表论文

发布时间:2024-07-07 22:29:47

石墨设备发表论文

这是因为他是一个非常有才华的人,而且他在写作这方面也非常的优秀,而且他也是一个非常低调的人,看待很多事物都非常的透彻。

首先曹原的天赋是毋庸置疑的,并且他付出了一般人付出不了的时间在研究某一个方面。1996年,曹原出生于四川成都。在小时候他就喜欢捣鼓各种奇奇怪怪的东西。曹原在两年内就完成了他的初中和高中课程。 2010年正是他14岁时,被选如最杰出的“严济慈物理人才班”,这里的课程主要是培养学生扎实的物理基础。即使在天才青年班,曹原依然十分优秀。他经常会问一些奇怪的问题,并与教授讨论。18岁时获得了中国科学技术大学的本科学位,之后前往美国的麻省理工学院进行深造。2018年,22岁的曹原因发现石墨烯超导角度轰动国际学界,开辟了凝聚态物理研究的新领域,成为Nature杂志创刊149年来以第一作者身份发表论文的最年轻中国学者。2018年,曹原曾一天连发2篇Nature。2020年5月7日,他再次一天连发2篇Nature。 本次在Nature杂志上发论文已经是曹原的第五篇了。

世界上还有很多未知的领域,等待着人们去探索,但是往往普通人是发现不了这些的,一般都是科学家进行研究之后得出的结论,有时候甚至是猜想。所以要在未知的领域探索出一星半点是很难的。曹原从小开始就喜欢拆东西然后看里面的构造,甚至自己搭建了一个化学实验室,在里面做各种实验。这些都离不开他的好奇心,好奇心驱使着他学习更多的知识,当他学习到更深层次的知识就发现原来自己知道的只是冰山一角。

在普通人眼里,科研毫无疑问是枯燥的。2017年,曹原再做实验过程中偶然发现石墨烯具备非常规的超导电性,这让他很惊讶,这个发现勾起了他浓厚的兴趣。 之后的日子里,曹原为了这个“不起眼”的现象花费了不计其数个日夜,难以想象他要做多少次实验,查多少次资料。除了热爱真的找不出一个词来形容这么令人敬佩的行为。

最近,苏州大学材料与化学化工学部的汪胜教授发表了一篇题为“钯纳米粒子修饰纳米多孔碳作为高效的氢气传感器”的论文。在这项研究中,汪胜教授和他的团队使用钯纳米粒子修饰纳米多孔碳,并将其用于制造高效的氢气传感器。这种传感器可以快速且准确地检测到氢气,具有高灵敏度和较低的检测限值。与传统的氢气传感器相比,这种传感器具有更快的响应时间和更高的稳定性。据研究人员介绍,这种高效的氢气传感器具有广泛的潜在应用,例如工业生产中的氢气检测、水处理、化学反应等领域。此外,在环境保护和能源领域中,这种传感器也有很好的发展前景。汪胜教授的研究成果得到了国内外同行的高度评价,有望为氢气传感器的研发和应用提供重要的参考和指导。

近日,电子 科技 大学材料与能源学院夏川教授以第一作者和共同通讯作者身份在国际著名期刊Nature Chemistry (《自然–化学》)上发表题为“General synthesis of single-atom catalysts with high metal loading using graphene quantum dots”的研究论文。该研究开发了一套高载量过渡金属单原子材料的普适性合成策略,实现了高达 40 wt.% 或 3.8 at.% 的高过渡金属原子负载,比目前报道的单原子负载量提升了几倍甚至数十倍。 该工作由电子 科技 大学、加拿大光源和美国莱斯大学三个单位共同合作完成。材料与能源学院的夏川教授为论文第一作者和通讯作者,美国莱斯大学的汪淏田教授和加拿大光源的胡永峰教授为论文通讯作者。该合作团队在电催化材料研究和电化学反应器设计领域建立了坚实的基础,并取得了丰硕的研究成果。 过渡金属单原子材料具有极高的原子利用率、独特的电子结构以及明晰且可调的配位结构,在各种电催化过程中展现出优异的活性。但常规单原子材料中金属原子密度较低(通常小于5 wt.%或1 at.%),大大限制了其整体催化性能及工业应用前景,因此发展出高载量过渡金属单原子材料普适性合成策略至关重要。现有“自上而下”和“自下而上”工艺对提高合成单原子材料的金属负载量有很大的局限(图1, a-b)。以碳材料负载的单原子为例,现有的“自上而下”方法通过在碳材料载体表面制造缺陷,然后通过缺陷稳定单原子。然而,无法精确调控缺陷尺寸导致缺陷位点的数目极大地受到限制,而且当金属负载量提高时,容易在大尺寸的缺陷位处形成团簇。“自下而上”方法则使用金属和有机物前驱体(如金属有机框架、金属-卟啉分子、金属-有机小分子)热解碳化的方式获得负载金属单原子的碳材料。在金属负载量过大时,金属原子之间将因为没有足够的隔离空间而导致热解过程中团簇或者颗粒的产生。 鉴于此,该团队发展了区别于现有“自上而下”和“自下而上”工艺的单原子催化材料制备方法(图1c),以突破单原子负载量的限制。该团队创新性地使用比表面大、热稳定性高的石墨烯量子点作为碳基底,对其进行-NH2基团修饰,使其对金属离子具有高配位活性。引入金属离子后可得到以金属离子作为节点、功能化石墨烯量子点作为结构单元的交联网络,最后热解即可得到高载量的金属单原子材料。相较于传统“自上而下”和“自下而上”的单原子催化剂合成方法,该研究报道的方法既保证了高含量金属离子初始锚定时的高分散性又能有效抑制后续热解过程基底烧结重构引起的金属原子团聚。 XAFS、HADDF-STEM等多种表征手段证明,由该法制得的负载型金属单原子催化材料在保证金属原子单分散的同时还能实现远超现有文献报道水平的金属载量。借助该方法,该团队成功制备出质量分数高达41.6%(原子分数为3.84%)的Ir单原子催化材料(图2),该负载量相较于文献报道的Ir单原子最高载量提升了数倍。 另外,该合成策略还具有普适性,能够用于制备其他贵金属或非贵金属的高载量金属单原子催化材料。例如,在碳基底材料上,Pt单原子的负载量最高可达32.3 wt.%,Ni单原子负载量可达15 wt.%(图3)。 夏川,电子 科技 大学材料与能源学院教授,国家青年人才。研究方向为基于新能源的电催化、电合成、电化学生物合成,致力于实现碳平衡的能量与物质循环。在“液体燃料与基础化学品现场合成”这一特色方向开展了深入、系统的研究,在反应器与催化剂设计领域均取得丰硕成果,共发表学术论文50余篇,授权美国专利3项,H因子34,引用5200余次。近五年来,以第一作者/通讯作者身份在Science、Nat. Energy、Nat. Catal.、Nat. Chem.等国内外高水平期刊共发表论文20余篇,其中ESI高被引论文9篇,热点论文2篇。

石墨烯制备期刊投稿

可以试试RSC advances、jmc,如果文章有新意,建议投carbon

最近,苏州大学材料与化学化工学部的汪胜研究团队在Advanced Materials和Biomaterials Science上分别发表了两篇论文。这些论文的主题集中在新型纳米材料在生物医学领域的应用。在Advanced Materials上发表的论文中,研究团队设计了一种基于层状双氧水钙钛矿纳米晶体的纳米药物载体。他们发现,这种载体可以有效地抑制癌细胞的增殖和扩散,并对正常细胞没有毒性。在Biomaterials Science上发表的论文中,研究团队探索了一种基于羟基磷灰石的生物活性材料,并将其应用于骨修复。他们发现,这种材料可以促进骨细胞的增殖和分化,从而加速骨的再生和修复。这些研究成果有望为生物医学领域提供新的治疗方法和技术,具有重要的应用价值。

最近,苏州大学材料与化学化工学部的汪胜教授团队在高水平期刊《Nature Communications》上发表了题为“Hybrid nanogenerator for simultaneously harvesting sun and rain energy”的一篇论文。该研究团队成功地设计并制备了一种新型的混合纳米发电机,可以同时从太阳和雨水中收集能量。该混合纳米发电机采用了多层结构,包括由半导体纳米线、珍珠岩和碳纤维布组成的柔性基板和由钛酸锶、银、氧化锌和聚丙烯腈等复合材料制成的光电极。在实验中,该混合纳米发电机可以同时输出太阳能和雨能电能,达到了不错的能量转换效率。这项研究的成果具有重要的应用价值,可以在实现清洁能源方面发挥重要作用。该研究还证明了科学家们通过将不同技术结合在一起,可以开发出更加高效的能源转换装置。

材料科学啊,一本开源类的刊物

石墨烯制备期刊投稿格式

1.1微机械剥离法石墨烯最早是通过微机械剥离法制得的。2004年,曼彻斯特大学Geim等[1]用胶带从石墨上剥下少量单层石墨烯片,成为石墨烯的发现者,并引发了新一波碳质材料的研究热潮。该法虽然可以获得质量较好的单层和双层石墨烯,能部分满足实验室的研究需要,但产量和效率过低,高质量的石墨烯的规模制备成为人们追求的目标。1.2氧化石墨还原法近年来,人们不断的探索新方法以提高石墨烯的产量,其中氧化还原法由于其稳定性而被广泛采用。这种方法首先制备氧化石墨∞],先将石墨粉分散在强氧化性混合酸中,例如浓硝酸和浓硫酸,然后加入高锰酸钾或氯酸钾强等氧化剂得到氧化石墨,再经过超声处理得到氧化石墨烯,最后通过还原得到石墨烯。然而,氧化过程会导致大量的结构缺陷,这些缺陷即使经1100℃退火也不能完全被消除,仍有许多羟基、环氧基、羰基、羧基的残留。缺陷导致的电子结构变化使石墨烯由导体转为半导体,严重影响石墨烯的电学性能,制约了它的应用。但是含氧基团的存在使石墨烯易于分散在溶剂中,且使石墨烯功能化,易于和很多物质反应,使石墨烯氧化物成为制备石墨烯功能复合材料的基础。1.3石 墨层间化合物途径石墨插层复合物是以天然鳞片石墨为原料,通过在层间插入非碳元素的原子、分子、离子甚至原子团使层间距增大,层间作用力减小,形成层间化合物。有人曾在膨胀石墨中加入插入剂,并利用热振动或酸处理使它部分剥离,从而得到石墨片或石墨烯[6-8]。但该法得到的石墨烯大小不一,尺寸难以控制。如果某种溶剂与单层石墨的相互作用超过石墨层与层之间的范德华力,那么即可通过嵌入溶剂将石墨层剥离开。Li等通过热膨胀使石墨层间距增大,再用发烟硫酸插层进一步增大层间距,最后加入四丁基氢氧化铵,经超声、离心得到稳定分散在有机溶剂中的石墨烯[9]。借鉴分散碳纳米管的方法,在极性有机溶剂中超声处理石墨粉也可以得到多层(<5)的石墨烯。Lotya等通过在水一表面活性剂中超声剥离石墨,得到稳定的石墨烯悬浮液[1…。与氧化石墨法相比,石墨插层化合物途径制得的石墨烯结构缺陷少,质量高,但是有机溶剂和表面活性剂难以完全除去,影响石墨烯的电学性能,而且部分有机溶剂价格昂贵。1.4沉积生长法沉积生长法通过化学气相沉积在绝缘表面(例如SiC)或金属表面(例如Ni)生长石墨烯,是制备高质量石墨烯薄膜的重要手段。有研究者通过对Si的热解吸附,实现了在以si终止的单晶6H—SiC的(0001)面上外延生长石墨烯膜或通过真空石墨化在单晶SiC(0001)表面外延生长石墨烯。Hannon等[11]在SiC表面上外延生长了石墨烯膜,但是由于SiC在高温下易发生表面重构,导致表面结构复杂,难以获得大面积、厚度均一的石墨烯膜。Emtsev等[12]在氩气中通过前位石墨化在si终止的SiC(0001)表面制备出了单层石墨烯薄膜,薄膜的厚度和质量都有所提高。近年来,以金属单晶或薄膜为衬底外延生长石墨烯膜的研究取得很大进展。Sutter等[13]在Ru(0001)表面逐层控制地外延生长了大面积的石墨烯膜,制备过程中,首层石墨烯与金属作用强烈,而从第二层起就可以保持石墨烯固有的电子结构和性质。Coraux等[14]利用低压气相沉积法在Ir(111)表面生长了单层石墨烯膜。采用类似的方法,在Cu箔表面也能制备出大面积、高质量石墨烯膜,而且主要为单层石墨烯。而韩国科学家则在多晶Ni薄膜上外延生长了石墨烯膜[1…,他们先在si-sio§衬底上生长出300nm厚的Ni,然后在1000(C的甲烷气氛中加热

利用氧化还原法制作:

氧化还原法是通过使用硫酸、硝酸等化学试剂及高锰酸钾、双氧水等氧化剂将天然石墨氧化,增大石墨层之间的间距,在石墨层与层之间插入氧化物,制得氧化石墨(Graphite Oxide)。

然后将反应物进行水洗,并对洗净后的固体进行低温干燥,制得氧化石墨粉体。通过物理剥离、高温膨胀等方法对氧化石墨粉体进行剥离,制得氧化石墨烯。

最后通过化学法将氧化石墨烯还原,得到石墨烯(RGO)。这种方法操作简单,产量高,但是产品质量较低。氧化还原法使用硫酸、硝酸等强酸,存在较大的危险性,又须使用大量的水进行清洗,带大较大的环境污染。

扩展资料

分类

1、单层石墨烯

单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。

2、双层石墨烯

双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛等)堆垛构成的一种二维碳材料。

3、少层石墨烯

少层石墨烯(Few-layer):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。

4、多层石墨烯

参考资料来源:百度百科-石墨烯

化工 材料类的都可以

1. 微机械剥离法氧等离子束先在高定向热解石墨表面,用光刻胶将其粘到玻璃衬底上进行焙烧,再用透明胶反复地从石墨上剥离出石墨薄片,放入丙酮溶液中超声振荡,再将单晶硅片放入丙酮溶剂中,,单层石墨烯会吸附在硅片上,从而成功地制备出单层的石墨烯。优点:该方法简单易行,不需要苛刻的实验条件,得到的石墨烯晶体结构较好,缺陷少,质量高。缺点:是石墨烯的生产效率极低,仅限于实验室的基础研究。2. 外延生长法以单晶6H-SiC 为原料,利用氢气刻蚀处理后,再在高真空下通过电子轰击加热,除去氧化物;热分解去除其中的Si,在单晶(0001)面上分解出石墨烯。优点:该方法制备的石墨烯电导率较高,适用于对电性能要求较高的电子器件。缺点:会产生难以控制的缺陷以及多晶畴结构,大面积制备困难。此外,制备条件苛刻、成本高。3. 石墨插层法以天然鳞片石墨为原料,用碱金属元素为插层剂,通过插层剂与石墨混合反应得到石墨层间化合物。将一个电子输入石墨晶格中,使得石墨晶体容易发生剥离分开。最后通过超声和离心处理得到石墨烯片。优点:制备方法相对简单,制备速度快,效率高缺点:难以得到单层,且加入的插层物质会破坏石墨烯的sp2 杂化结构,使得石墨烯的物理和化学性能受到影响。4. 溶液剥离法溶剂剥离法是将石墨分散于溶剂中,利用超声或高速剪切等作用将溶剂插入石墨层间,进行层层剥离,制备出石墨烯。优点:能得到优质石墨烯。缺点:是产率很低,不适合大规模生产和商业应用。5. 化学气相沉积法(CVD)石墨在较高温度条件下呈气态发生化学反应,退火生成石墨烯沉积在金属基体表面。优点:能够高质量大规模生成石墨烯。缺点:不适合制备大规模石墨烯宏观粉体。此外,通过化学腐蚀分离石墨烯与基底金属,需要消耗大量的酸,会对环境产生巨大的污染,成本高。6. 氧化还原法首先利用强氧化剂处理石墨,形成亲水性的含氧基团,;然后利用超声方法剥离氧化石墨,,使石墨氧化物片迅速剥离得到单层的氧化石墨烯;最后,在高温或者在还原性溶液中对氧化石墨烯进行还原反应,还原除去氧化石墨烯表面的含氧基团,恢复二维结构石墨烯。优点:氧化还原法可以大量、高效地制备出高质量的石墨烯,过程相对简单。

石墨烯制备期刊投稿经验

1.1微机械剥离法石墨烯最早是通过微机械剥离法制得的。2004年,曼彻斯特大学Geim等[1]用胶带从石墨上剥下少量单层石墨烯片,成为石墨烯的发现者,并引发了新一波碳质材料的研究热潮。该法虽然可以获得质量较好的单层和双层石墨烯,能部分满足实验室的研究需要,但产量和效率过低,高质量的石墨烯的规模制备成为人们追求的目标。1.2氧化石墨还原法近年来,人们不断的探索新方法以提高石墨烯的产量,其中氧化还原法由于其稳定性而被广泛采用。这种方法首先制备氧化石墨∞],先将石墨粉分散在强氧化性混合酸中,例如浓硝酸和浓硫酸,然后加入高锰酸钾或氯酸钾强等氧化剂得到氧化石墨,再经过超声处理得到氧化石墨烯,最后通过还原得到石墨烯。然而,氧化过程会导致大量的结构缺陷,这些缺陷即使经1100℃退火也不能完全被消除,仍有许多羟基、环氧基、羰基、羧基的残留。缺陷导致的电子结构变化使石墨烯由导体转为半导体,严重影响石墨烯的电学性能,制约了它的应用。但是含氧基团的存在使石墨烯易于分散在溶剂中,且使石墨烯功能化,易于和很多物质反应,使石墨烯氧化物成为制备石墨烯功能复合材料的基础。1.3石墨层间化合物途径石墨插层复合物是以天然鳞片石墨为原料,通过在层间插入非碳元素的原子、分子、离子甚至原子团使层间距增大,层间作用力减小,形成层间化合物。有人曾在膨胀石墨中加入插入剂,并利用热振动或酸处理使它部分剥离,从而得到石墨片或石墨烯[6-8]。但该法得到的石墨烯大小不一,尺寸难以控制。如果某种溶剂与单层石墨的相互作用超过石墨层与层之间的范德华力,那么即可通过嵌入溶剂将石墨层剥离开。Li等通过热膨胀使石墨层间距增大,再用发烟硫酸插层进一步增大层间距,最后加入四丁基氢氧化铵,经超声、离心得到稳定分散在有机溶剂中的石墨烯[9]。借鉴分散碳纳米管的方法,在极性有机溶剂中超声处理石墨粉也可以得到多层(<5)的石墨烯。Lotya等通过在水一表面活性剂中超声剥离石墨,得到稳定的石墨烯悬浮液[1…。与氧化石墨法相比,石墨插层化合物途径制得的石墨烯结构缺陷少,质量高,但是有机溶剂和表面活性剂难以完全除去,影响石墨烯的电学性能,而且部分有机溶剂价格昂贵。1.4沉积生长法沉积生长法通过化学气相沉积在绝缘表面(例如SiC)或金属表面(例如Ni)生长石墨烯,是制备高质量石墨烯薄膜的重要手段。有研究者通过对Si的热解吸附,实现了在以si终止的单晶6H—SiC的(0001)面上外延生长石墨烯膜或通过真空石墨化在单晶SiC(0001)表面外延生长石墨烯。Hannon等[11]在SiC表面上外延生长了石墨烯膜,但是由于SiC在高温下易发生表面重构,导致表面结构复杂,难以获得大面积、厚度均一的石墨烯膜。Emtsev等[12]在氩气中通过前位石墨化在si终止的SiC(0001)表面制备出了单层石墨烯薄膜,薄膜的厚度和质量都有所提高。近年来,以金属单晶或薄膜为衬底外延生长石墨烯膜的研究取得很大进展。Sutter等[13]在Ru(0001)表面逐层控制地外延生长了大面积的石墨烯膜,制备过程中,首层石墨烯与金属作用强烈,而从第二层起就可以保持石墨烯固有的电子结构和性质。Coraux等[14]利用低压气相沉积法在Ir(111)表面生长了单层石墨烯膜。采用类似的方法,在Cu箔表面也能制备出大面积、高质量石墨烯膜,而且主要为单层石墨烯。而韩国科学家则在多晶Ni薄膜上外延生长了石墨烯膜[1…,他们先在si-sio§衬底上生长出300nm厚的Ni,然后在1000(C的甲烷气氛中加热后迅速降至室温,生长出6至10层的石墨烯。他们还借助图形化的方法制备出了图形化的石墨烯。所得石墨烯膜具有高强度和高硬度,透光率达到80%,尺寸达到厘米级,为低成本生产大面积的柔性石墨烯电子产品提供了可能。由此可见,沉积法能够生长出大面积、高质量的石墨烯膜,具有其他方法不可比拟的优点,但是条件比较苛刻,过程比较复杂。1.5化学合成的(自下而上)方法近年来,通过有机合成的方法合成石墨烯也获得成功。通过自下而上的有机合成法可以制备具有确定结构而且无缺陷的石墨烯纳米带,并可以进一步对石墨烯纳米带进行功能化修饰。Yang等[16]以1,4一二碘一2,3,5,6-四苯基苯为原料合成出了长度为12nm的石墨烯纳米带。Stride等[17]利用乙醇和钠的溶剂热反应开发了产量达克量级的多孔石墨烯的合成方法,成为低成本、规模化制备石墨烯的途径。以茈酰亚胺为重复单元可制备出长度可控的石墨烯纳米带,酰亚胺基团赋予石墨烯纳米带新颖的结构、特殊的光电性质和潜在的应用价值。从有机小分子出发制备石墨烯,条件比较温和且易于控制,给连续化批量制备石墨烯提供了可能。1.6从碳纳米管出发来制备石墨烯最近,Kosynkin等[181利用硫酸和氧化剂使多壁碳纳米管开链制备了石墨烯纳米带,石墨烯带的宽度取决于碳纳米管的直径,然后用肼还原可恢复其电学性能。该石墨烯带可用作导电或半导体薄膜,有望成为光伏单晶硅的廉价替代物。然而,该法难以准确的将单个石墨烯带置于衬底上,在实验装置方面还存在极大的挑战。与此同时,斯坦福大学的戴宏杰[19]贝Ⅱ利用氩等离子体处理涂覆PMMA的碳纳米管膜使多壁碳纳米管开链形成石墨烯带,所得石墨烯带边缘平滑、宽度分布较窄,而且缺陷少,导电性能得到了优化。最近,他们通过多壁碳纳米管的气相氧化,得到边缘平滑、缺陷少的高质量多层石墨烯纳米带,产量得到较大提高,所得石墨烯具有较高的电导率和迁移率[20]。这些以碳纳米管为出发点的尝试,为制备石墨烯提供了新思路,面临的问题是如何控制石墨烯带的宽度、边缘平滑性和均一性,以满足各种应用的要求。

石墨是由一层层蜂窝状有序排列的平面碳原子构成的晶体。当把石墨片通过物理或化学方法剥成单层之后,这种只有一个单原子层的石墨薄片称为单碳层石墨烯。

主要的物理方法有:机械剥离法、液相或气相直接剥离法;化学方法有:表面析出生长法、氧化石墨还原法、化学气相沉积法、化学合成法。不要看石墨烯薄,它的硬度甚至比钢铁要高几百倍!

因为薄,所以石墨烯具有良好的透光性,以肉眼来看,完全可以说它是透明的。同时,由于石墨烯具有良好的强度、柔韧度、导电导热性能,为复合材料、纺织领域、电子信息、节能环保、生物医药、化工、航空航天等很多领域带来了巨大的改变。

但是,并不是只有单层石墨烯才叫石墨烯。按层数:它可分为单层石墨烯、双层石墨烯、少层石墨烯和多层石墨烯。按被功能化形式:它可分为氧化石墨烯、氢化石墨烯、氟化石墨烯等。按外在形态:它可分为片、膜、量子点、纳米带或三维状石墨烯等。

石墨烯是目前为止导热系数最高的材料,具有非常好的热传导性能,所以它被大量运用在全新的采暖行业。和常规发热膜一样,石墨烯需要通电才能发热,当在石墨烯发热膜两端电极通电的情况下,电热膜中的碳分子在电阻中产生声子、离子和电子,由产生的碳分子团之间相互摩擦、碰撞(也称布朗运动)而产生热能,热能又通过控制远红外线以平面方式均匀地辐射出来。

石墨烯通电后,有效电热能总转换率达99%以上,同时加上特殊的超导性,保证发热性能的稳定。但是与常规金属丝发热膜不同的地方在于,发热稳定安全,而且散发出来的红外线被称为“生命光线”。

综上所述,石墨烯材料良好的导电导热性能非常适合应用于新型采暖行业,让采暖过程更加舒适,便捷。

1. 微机械剥离法氧等离子束先在高定向热解石墨表面,用光刻胶将其粘到玻璃衬底上进行焙烧,再用透明胶反复地从石墨上剥离出石墨薄片,放入丙酮溶液中超声振荡,再将单晶硅片放入丙酮溶剂中,,单层石墨烯会吸附在硅片上,从而成功地制备出单层的石墨烯。优点:该方法简单易行,不需要苛刻的实验条件,得到的石墨烯晶体结构较好,缺陷少,质量高。缺点:是石墨烯的生产效率极低,仅限于实验室的基础研究。2. 外延生长法以单晶6H-SiC 为原料,利用氢气刻蚀处理后,再在高真空下通过电子轰击加热,除去氧化物;热分解去除其中的Si,在单晶(0001)面上分解出石墨烯。优点:该方法制备的石墨烯电导率较高,适用于对电性能要求较高的电子器件。缺点:会产生难以控制的缺陷以及多晶畴结构,大面积制备困难。此外,制备条件苛刻、成本高。3. 石墨插层法以天然鳞片石墨为原料,用碱金属元素为插层剂,通过插层剂与石墨混合反应得到石墨层间化合物。将一个电子输入石墨晶格中,使得石墨晶体容易发生剥离分开。最后通过超声和离心处理得到石墨烯片。优点:制备方法相对简单,制备速度快,效率高缺点:难以得到单层,且加入的插层物质会破坏石墨烯的sp2 杂化结构,使得石墨烯的物理和化学性能受到影响。4. 溶液剥离法溶剂剥离法是将石墨分散于溶剂中,利用超声或高速剪切等作用将溶剂插入石墨层间,进行层层剥离,制备出石墨烯。优点:能得到优质石墨烯。缺点:是产率很低,不适合大规模生产和商业应用。5. 化学气相沉积法(CVD)石墨在较高温度条件下呈气态发生化学反应,退火生成石墨烯沉积在金属基体表面。优点:能够高质量大规模生成石墨烯。缺点:不适合制备大规模石墨烯宏观粉体。此外,通过化学腐蚀分离石墨烯与基底金属,需要消耗大量的酸,会对环境产生巨大的污染,成本高。6. 氧化还原法首先利用强氧化剂处理石墨,形成亲水性的含氧基团,;然后利用超声方法剥离氧化石墨,,使石墨氧化物片迅速剥离得到单层的氧化石墨烯;最后,在高温或者在还原性溶液中对氧化石墨烯进行还原反应,还原除去氧化石墨烯表面的含氧基团,恢复二维结构石墨烯。优点:氧化还原法可以大量、高效地制备出高质量的石墨烯,过程相对简单。

石墨烯制备期刊投稿要求

《Carbon》是SCI收录期刊收录的刊物,影响因子是7.41。

《Carbon》杂志是一个国际多学科论坛,旨在交流碳材料和碳纳米材料领域的科学进展。期刊报道了与碳的形成、结构、性质、行为和技术应用相关的重要新发现,碳是一类主要由元素碳组成的有序或无序固相。

这些材料可以是合成材料,也可以是天然材料,包括但不限于氧化石墨烯和氧化石墨烯、碳纳米管、碳纤维和丝、石墨、多孔碳、热解碳、玻璃碳、炭黑、金刚石和类金刚石碳、富勒烯和炭。如果碳成分是论文科学内容的一个主要焦点,则将考虑有关复合材料的论文。

如果有机物质是此类碳材料的前体,则可考虑使用有关有机物质的论文。碳材料的相关应用领域包括但不限于电子和光子器件、结构和热应用、智能材料和系统、储能和转换、催化、环境保护以及生物和医学。 碳出版综合研究文章、致编辑的信函,并邀请该领域的主要专家进行评论。

选择具有较高科学价值、传授重要新知识、对国际碳材料界具有高度兴趣的论文。该杂志欢迎大量和纳米级碳材料的手稿,特别对帮助定义和发展适用于所有碳的基础科学的手稿感兴趣,包括现有和新兴材料。

CARBON简介

CARBON杂志属于工程技术行业,“材料科学:综合”子行业的优秀级杂志。 投稿难度评价:中等偏上杂志,要求也较高,此区杂志很多,但是投中,并不容易 审稿速度:一般,3-6周级别/热度:暗红评语:杂志级别不错,但是比较冷门,关注人数偏少。

说明:指数是根据中国科研工作者(含医学临床,基础,生物,化学等学科)对SCI杂志的认知度,熟悉程度,以及投稿的量等众多指标综合评定而成。当然,具体的,您还可以结合“投稿经验分享系统”,进行综合判断,这更是大家的实战经验,更值得分享和参考。

注意,上述热门指数采用专利技术,由计算机系统自动计算,并给出建议,存在不准确的可能,仅供您投稿选择杂志时参考。

以上内容参考:Carbon(SCI收录期刊) - 百度百科

1.1微机械剥离法石墨烯最早是通过微机械剥离法制得的。2004年,曼彻斯特大学Geim等[1]用胶带从石墨上剥下少量单层石墨烯片,成为石墨烯的发现者,并引发了新一波碳质材料的研究热潮。该法虽然可以获得质量较好的单层和双层石墨烯,能部分满足实验室的研究需要,但产量和效率过低,高质量的石墨烯的规模制备成为人们追求的目标。1.2氧化石墨还原法近年来,人们不断的探索新方法以提高石墨烯的产量,其中氧化还原法由于其稳定性而被广泛采用。这种方法首先制备氧化石墨∞],先将石墨粉分散在强氧化性混合酸中,例如浓硝酸和浓硫酸,然后加入高锰酸钾或氯酸钾强等氧化剂得到氧化石墨,再经过超声处理得到氧化石墨烯,最后通过还原得到石墨烯。然而,氧化过程会导致大量的结构缺陷,这些缺陷即使经1100℃退火也不能完全被消除,仍有许多羟基、环氧基、羰基、羧基的残留。缺陷导致的电子结构变化使石墨烯由导体转为半导体,严重影响石墨烯的电学性能,制约了它的应用。但是含氧基团的存在使石墨烯易于分散在溶剂中,且使石墨烯功能化,易于和很多物质反应,使石墨烯氧化物成为制备石墨烯功能复合材料的基础。1.3石墨层间化合物途径石墨插层复合物是以天然鳞片石墨为原料,通过在层间插入非碳元素的原子、分子、离子甚至原子团使层间距增大,层间作用力减小,形成层间化合物。有人曾在膨胀石墨中加入插入剂,并利用热振动或酸处理使它部分剥离,从而得到石墨片或石墨烯[6-8]。但该法得到的石墨烯大小不一,尺寸难以控制。如果某种溶剂与单层石墨的相互作用超过石墨层与层之间的范德华力,那么即可通过嵌入溶剂将石墨层剥离开。Li等通过热膨胀使石墨层间距增大,再用发烟硫酸插层进一步增大层间距,最后加入四丁基氢氧化铵,经超声、离心得到稳定分散在有机溶剂中的石墨烯[9]。借鉴分散碳纳米管的方法,在极性有机溶剂中超声处理石墨粉也可以得到多层(<5)的石墨烯。Lotya等通过在水一表面活性剂中超声剥离石墨,得到稳定的石墨烯悬浮液[1…。与氧化石墨法相比,石墨插层化合物途径制得的石墨烯结构缺陷少,质量高,但是有机溶剂和表面活性剂难以完全除去,影响石墨烯的电学性能,而且部分有机溶剂价格昂贵。1.4沉积生长法沉积生长法通过化学气相沉积在绝缘表面(例如SiC)或金属表面(例如Ni)生长石墨烯,是制备高质量石墨烯薄膜的重要手段。有研究者通过对Si的热解吸附,实现了在以si终止的单晶6H—SiC的(0001)面上外延生长石墨烯膜或通过真空石墨化在单晶SiC(0001)表面外延生长石墨烯。Hannon等[11]在SiC表面上外延生长了石墨烯膜,但是由于SiC在高温下易发生表面重构,导致表面结构复杂,难以获得大面积、厚度均一的石墨烯膜。Emtsev等[12]在氩气中通过前位石墨化在si终止的SiC(0001)表面制备出了单层石墨烯薄膜,薄膜的厚度和质量都有所提高。近年来,以金属单晶或薄膜为衬底外延生长石墨烯膜的研究取得很大进展。Sutter等[13]在Ru(0001)表面逐层控制地外延生长了大面积的石墨烯膜,制备过程中,首层石墨烯与金属作用强烈,而从第二层起就可以保持石墨烯固有的电子结构和性质。Coraux等[14]利用低压气相沉积法在Ir(111)表面生长了单层石墨烯膜。采用类似的方法,在Cu箔表面也能制备出大面积、高质量石墨烯膜,而且主要为单层石墨烯。而韩国科学家则在多晶Ni薄膜上外延生长了石墨烯膜[1…,他们先在si-sio§衬底上生长出300nm厚的Ni,然后在1000(C的甲烷气氛中加热后迅速降至室温,生长出6至10层的石墨烯。他们还借助图形化的方法制备出了图形化的石墨烯。所得石墨烯膜具有高强度和高硬度,透光率达到80%,尺寸达到厘米级,为低成本生产大面积的柔性石墨烯电子产品提供了可能。由此可见,沉积法能够生长出大面积、高质量的石墨烯膜,具有其他方法不可比拟的优点,但是条件比较苛刻,过程比较复杂。1.5化学合成的(自下而上)方法近年来,通过有机合成的方法合成石墨烯也获得成功。通过自下而上的有机合成法可以制备具有确定结构而且无缺陷的石墨烯纳米带,并可以进一步对石墨烯纳米带进行功能化修饰。Yang等[16]以1,4一二碘一2,3,5,6-四苯基苯为原料合成出了长度为12nm的石墨烯纳米带。Stride等[17]利用乙醇和钠的溶剂热反应开发了产量达克量级的多孔石墨烯的合成方法,成为低成本、规模化制备石墨烯的途径。以茈酰亚胺为重复单元可制备出长度可控的石墨烯纳米带,酰亚胺基团赋予石墨烯纳米带新颖的结构、特殊的光电性质和潜在的应用价值。从有机小分子出发制备石墨烯,条件比较温和且易于控制,给连续化批量制备石墨烯提供了可能。1.6从碳纳米管出发来制备石墨烯最近,Kosynkin等[181利用硫酸和氧化剂使多壁碳纳米管开链制备了石墨烯纳米带,石墨烯带的宽度取决于碳纳米管的直径,然后用肼还原可恢复其电学性能。该石墨烯带可用作导电或半导体薄膜,有望成为光伏单晶硅的廉价替代物。然而,该法难以准确的将单个石墨烯带置于衬底上,在实验装置方面还存在极大的挑战。与此同时,斯坦福大学的戴宏杰[19]贝Ⅱ利用氩等离子体处理涂覆PMMA的碳纳米管膜使多壁碳纳米管开链形成石墨烯带,所得石墨烯带边缘平滑、宽度分布较窄,而且缺陷少,导电性能得到了优化。最近,他们通过多壁碳纳米管的气相氧化,得到边缘平滑、缺陷少的高质量多层石墨烯纳米带,产量得到较大提高,所得石墨烯具有较高的电导率和迁移率[20]。这些以碳纳米管为出发点的尝试,为制备石墨烯提供了新思路,面临的问题是如何控制石墨烯带的宽度、边缘平滑性和均一性,以满足各种应用的要求。

化工 材料类的都可以

可以试试RSC advances、jmc,如果文章有新意,建议投carbon

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2