更全的杂志信息网

国外量子纠缠论文发表

发布时间:2024-07-05 21:44:55

国外量子纠缠论文发表

战略、思想,我军牛,战术、装备,鬼佬强

麻省理工学院计算机科学与人工智能实验室(CSAIL)的一个研究小组创建了一种新的量子计算编程语言,名为 Twist。Twist 的设计目标是让开发者更容易识别哪些数据是纠缠在一起的,从而创建错误更少、更容易调试的量子计算程序。

Twist 项目地址:

Twist 的基础在于识别量子纠缠。量子纠缠是一种物理现象,指的是量子计算机内两块数据的状态联结在一起。“当你操作处于纠缠状态的一块数据时也可能会影响另一块。你可以用这种特性来实现强大的量子算法,但它也让你写的程序很难直观推理,并容易引入微妙的错误。”上面这段话来自麻省理工学院 CSAIL 计算机科学博士生、Twist 论文的主要作者 Charles Yuan,这篇论文发表在《ACM 编程语言》杂志上。

Charles Yuan 说:“Twist 提供了一些特性,让开发者可以确定哪些数据是纠缠的,哪些不是。”“在程序中加入关于纠缠的信息后,你就可以检查量子算法的实现是否正确。”

该语言的特性之一是一个类型系统,使开发者能够指定他们程序中的哪些表达式和数据片断是纯粹的。据 Yuan 说,一个纯粹的数据片断是没有纠缠的,因此不存在可能由纠缠造成的错误和不直观的效果。Twist 还加入了纯度断言运算符来确认一个表达式不存在与任何其他数据的纠缠关系,与之搭配的还有静态分析和运行时检查,可以用来验证这些断言。

为了评估这种语言,该团队用 Twist 为一组著名的量子算法编写了一些程序,并在量子模拟器上执行了它们。“我们的实验表明,运行这些运行时检查的开销不超过运行基本程序的 3.5%,我们认为这是相当低的数字,相比语言给你的安全保证来说是一个很好的权衡,”Charles Yuan 说。

该团队还在一些程序中引入了一些小错误,并发现 Twist 可以检测到这些错误并拒绝错误的程序。“我们希望,当人们使用我们的语言或为他们的特定用例设计新的量子语言时,他们可以考察一下我们的工作,并认可纯度这个想法和将纠缠作为一种特性的设计,因为这将给他们带来更多信心,让他们确认自己的程序是正确的,而不必运行大量昂贵的模拟和测试,”Charles Yuan 说。

当许多研究人员专注于开发高效和优化的量子硬件时,Twist 旨在填补量子软件的空白。麻省理工学院副教授、Twist 论文的共同作者 Michael Carbin 说:“与我们看到的机器学习和其他高性能计算应用类似的是——在硬件发展的每一个新阶段,我们都会得到一个新的系统和很多潜在的新能力——如果我们能充分利用硬件能力,也许就能获得许多不可思议的机会。但几乎每次都是软件上的问题让人们难以利用硬件能力,也很难在不同的软件系统中部署和广泛使用这些硬件。”“我们正在做的工作是奠定一些基础,并试图找出一些可能提升这些类型设备可编程性的核心抽象。”

然而,该团队在构建 Twist 时面临的挑战之一是缺乏一个关于量子程序特征的标准。“多年来,人们已经开发了一些核心算法来解决个别复杂的任务,如整数因式分解等,但我们如何为它建立一个完整的软件生态系统却依旧是个问号,”Charles Yuan 说。“有了 Twist,我们就能够围绕我们对要在量子计算机上执行的任务的最佳共识来构建语言,并让编程语言对这些任务尽可能具有表达力。”

谈到局限,Twist 只能告诉你一个数据是否与其他数据纠缠在一起,但不能告诉你它们是如何纠缠在一起的。”袁说:“它们纠缠的具体方式将决定一个量子算法是否正确,但数据纠缠的方式有无数种。”给出这种更精细的细节是一个真正的挑战,这也是我们未来需要做的事情。”

该团队现在正在开发另一种语言,它建立在 Twist 的基础上,目标是应对其他量子现象(如相位和叠加)。但他们希望 Twist 将为创造更好的量子程序铺平道路。

Charles Yuan 说:“对于一位试图实现量子算法的开发者来说,他们需要语言中内置的工具来告诉他们程序中正在发生一些由纠缠引发的事情。”如果我们能够构建一系列核心语言原则和特性,让开发者可以推理纠缠现象,我们就可以减轻纠缠带来的认知负担,并让开发者写出更符合直觉的程序。”

原文链接:

作者 | 陈欢欢

近日,光量子计算和大尺度光量子信息处理两项成果双双入选中国科学院“率先行动”计划第一阶段59项重大 科技 成果及标志性进展。

8月16日,世界首颗量子科学实验卫星“墨子号”迎来4岁生日。在距离地球500公里的轨道上,这颗超期服役2年的“老”卫星仍然捷报频传。

6月15日,中国科学院院士、中国科学技术大学教授潘建伟领衔的合作团队在《自然》发表论文,在国际上首次实现了基于纠缠的无中继千公里级量子保密通信。这也是“墨子号”4年间产生的第5篇《自然》《科学》论文。

随着一项项科学实验的成功,卫星量子通信的应用前景日益清晰。

战略布局占先机

7月23日,美国能源部公布报告,规划了美国“量子互联网”战略蓝图。欧盟早在2016年也提出过“欧洲量子技术旗舰计划”,打算用10年建成量子互联网。

可喜的是,我国在这一领域,相关基础研究和工程技术水平都处于国际引领地位。

今年3月,我国科学家刚刚创造了光纤量子通信509公里的新纪录。同时,“墨子号”保持着星地之间1200公里量子通信的世界纪录。“墨子号”和“京沪干线”的成功实施,构建了国际首个天地一体的广域量子通信网络雏形。

之所以能“起个大早、赶个早集”,得益于潘建伟的战略眼光与布局。

量子 科技 研究主要集中在量子通信、量子计算和量子精密测量等领域,有多光子纠缠、光量子计算、超冷原子量子模拟、光晶格量子模拟、量子中继器等诸多方向。

这么多学科方向,一个人不可能包打天下。从单枪匹马到带领一支近百人的团队,潘建伟用了10多年时间。

本世纪初,量子 科技 在中国还颇为冷门。潘建伟也面临着学科方向不被理解、申请经费四处碰壁的困境。

在人手紧缺的情况下,他却果断地把优秀学生纷纷送走。德国海德堡大学、奥地利因斯布鲁克大学、美国斯坦福大学、英国剑桥大学、瑞士日内瓦大学……这些量子科学和技术顶尖团队所在地,都留下了潘建伟弟子学习的身影。

如今,各研究室独当一面的负责人正是当年那些漂流四海的年轻人。

“墨子号”量子纠缠源分系统主任设计师印娟的成长路线却略有不同。

2002年,大二结束的暑假,印娟来到潘建伟实验室,成为实验室第一位女生,从此再没有离开。

2017年,“墨子号”千公里级星地双向量子纠缠分发实验成功,以封面论文的形式发表在《科学》,印娟成为团队里第一个同时拥有《自然》和《科学》第一作者身份的科学家。

善于布局,也安心等待。这样的一支团队,一出手就是“大”成果不足为奇。

敢想敢干出奇迹

“墨子号”科学应用系统主任设计师任继刚,至今仍清楚地记得读博时第一次听潘建伟作报告的情景。“太神奇了,就像听一个科幻故事。”他回忆说。

在场的很多人可能也跟任继刚一样,把量子 科技 当成科幻故事。而作报告的那个人却是认真的。

2003年,潘建伟陷入量子通信研究瓶颈。由于光子在光纤传输时损耗太大,传输100公里只剩下1%的信号到达接收端。而外太空因为几乎真空,光信号损耗非常小,潘建伟破天荒地提出了“上天”这个“大胆且疯狂”的方案。

当时,他向博士生彭承志科普量子通信的发展前景,当说到需要通过太空实现长距离传输时,彭承志认为“这是一个遥不可及的梦想”。他问潘建伟:“这个事,是不是挺牛的?”潘建伟想了想,很肯定地回答:“肯定牛,是世界上最牛的,至少是之一。”

带着这样的信念,他们在合肥大蜀山山顶开始了第一个实验,于2005年实现了13公里的量子纠缠分发。这个传输距离超过了大气层的等效厚度,从而证实了远距离自由空间量子通信的可行性。

2009年,团队在青海湖开展百公里量子纠缠分发实验。当时,团队里的3位主力——2007年博士毕业的任继刚、2009年博士毕业的印娟、2010年将要博士毕业的廖胜凯,后来分别成为“墨子号”3个分系统主任设计师。

岛上通信信号极差,几位年轻人没什么消遣,晚上做实验,白天借着搭建的无线网桥开例会。2012年,团队在国际上首次实现百公里量级的自由空间量子隐形传态和纠缠分发。

2017年,利用“墨子号”,他们将量子纠缠分发的距离再提高一个量级,达到1200公里。

从大蜀山的13公里到天地间的上千公里,潘建伟团队一步一个脚印,从无到有地验证了量子通信的可行性。

“率先行动”很给力

中国科学院院士、 科技 部原部长徐冠华曾公开指出,我国对自身科学研究能力不自信,“在 科技 项目的确定过程中,习惯于拒绝支持有争议的项目,排斥没有国外先例的研究”。

当年的潘建伟,面对的就是这样的窘境。

2003年,潘建伟首次提出利用卫星实现自由空间量子通信的构想。这个“前无古人、闻所未闻”的想法立即遭到多方质疑:量子信息科学,欧洲美国都刚刚起步,我们为什么现在要做?

这个“不靠谱”的计划却获得了中国科学院的支持。2011年底,中国科学院空间科学先导专项正式立项“量子科学实验卫星”,自此打开了量子世界的大门。

2014年,中国科学院启动实施“率先行动”计划,给“墨子号”研制团队带来了“集团军”的支持。

当年10月,中国科学院量子信息与量子 科技 前沿卓越创新中心率先成立,2017年5月更名为量子信息与量子 科技 创新研究院。

这使得中国科学技术大学同中国科学院上海技术物理研究所、微小卫星创新研究院、光电技术研究所等都有了更加紧密的合作关系。

中国科学院上海技术物理研究所研究员、量子科学实验卫星工程常务副总师王建宇曾比喻称:星地间量子纠缠分发的难度,就像在太空中往地面的一个存钱罐里扔硬币,而且天空中的“投掷者”相对地面上的“存钱罐”还在高速运动。

在“率先行动”计划的支持下,这样一项看似“不可能的任务”最终顺利完成。“我们的合作体现出了创新研究院的价值,那就是集中力量干大事。”潘建伟说。

中国科学院院长、党组书记白春礼评价称,“墨子号”为中国在国际上抢占了量子 科技 创新制高点,成为了国际同行的标杆,实现了“领跑者”的转变。

天时、地利、人和,量子团队的下一个“惊喜”也许很快就会到来。

《中国科学报》 (2020-09-10 第1版 要闻)

国际期刊 EI这块去试试

国外电子测量技术期刊投稿

在众多的电子测量科技类期刊中,《电子测量技术》以审稿周期2~3周、发表周期1~2个月、信息含量大、报道成果时效性强、覆盖学科广等获得了电子测量、控制及相关学科作者和读者的广泛认可,同时她还获得了包括:北京航空航天大学、天津大学、上海交通大学、哈尔滨工业大学、电子科技大学、东北大学、南京大学、燕山大学、中国科学院电子信息研究所、中国电子科技集团第四十一研究所等十几所著名大学及科研院所的书面认可,被指定为其相关学科的研究生毕业、职称评定的定点刊物。

论文模版没有分那么细的吧,和毕业论文格式基本都一样的!

审稿费50元,出版费800元,邮寄期刊运费20元。

中国量子通信论文发表

(原标题:潘建伟团队再突破:下一代量子通信卫星不再怕光,能白天上岗)

升空数月内,“墨子号”量子科学实验卫星就已完成了世界首次星地量子通信实验。不过,要真正实现实用化的覆盖全球的量子通信网络,仅靠单颗“墨子号”还不够,科学家们还要解决一些重要的问题:比如解决“墨子号”怕光问题、构建卫星星座网络,扩展通信时间等。。

中国科学技术大学潘建伟院士。 上海观察 图

“墨子号”十分“怕光”,目前的量子通信实验,都是在晴朗的夜晚中完成的。从三个方面发展关键技术,中国科学技术大学潘建伟团队在青海湖实现了白天远距离(53公里)自由空间里的量子密钥分发,令下一代量子通信卫星有望克服“怕光”的弱点,实现白天上岗。

相关论文发表在7月24日的英国《自然·光子学》期刊(Nature Photonics)上。

论文的第一作者、中科大副研究员廖胜凯告诉澎湃新闻(),在设计“墨子号”的时候,他们就知道了“墨子号”无法白天工作。现在,“墨子号”大约有68%的时间暴露在阳光下,也就是说,只有不到一半的时间能够工作。而轨道越高的卫星如在地球同步轨道的通信卫星,能“躲”在地球阴影里的时间不到1%。

因此,攻克白天远距离自由空间里的量子密钥分发,给有效扩展量子卫星的通信时间,提高实用性,进一步为搭建覆盖全球的量子通信星座打下了坚实的基础。

三方面突破,解决“怕光”问题

那么,“墨子号”到底为什么“怕光”呢?这是因为,白天阳光造成的噪声,比夜晚要高5个数量级。而基于量子不可克隆原理,量子通信信号无法像普通的通信信号一样放大。因而,保持足够高的信噪比,是白天量子通信要攻克的核心问题,廖胜凯介绍道。

另一方面,在星地这样的远距离中,通信链路损耗较大,典型值大于40dB(dB是描述损耗倍数的单位,40dB和20bB差了两个数量级)。此前的白天量子密钥分发实验,最多只能在链路损耗约为20dB的状态下成码。

为了解决信噪比的问题,潘建伟团队从三个方面实现突破。首先,选择最合适波段的光子。阳光背景噪声主要包括太阳光直射部分和经大气分子散射部分,这其中,波长为1550nm的成分较低,大气散射对该波段散射也较小。团队用这个波段的光子,代替了之前的700-900nm波段,并优化了光学系统,将噪声降低超过一个数量级。

其次,团队在探测器方面,利用频率上转换单光子探测技术,在保持单光子高效探测的同时,实现了光谱窄带滤波,降低噪声约两个数量级。

最后,团队发展自由空间光束单模光纤耦合技术。这是自由空间光通信的关键技术之一,能使自由空间光束的能量能最大限度地耦合到接收单模光纤中区。不过,以往实验中的耦合效率极低,难以满足量子通信的需要。这次,团队兼顾高效耦合和空间维度的窄视场滤波,降低噪声约两个数量级。

综合这三项技术,潘建伟团队在青海湖相距53公里的两点间完成了白天阳光背景下的量子密钥分发实验,在全链路衰减48dB(大于星地、星间链路衰减)情况下,误码率保持在1.65%左右,安全密钥成码率达到150bps。

通向量子通信星座的必经一步

目前,“墨子号”位于500公里高的近地轨道上,运行速度较快,而且受阳光、阴雨天气条件的限制,至少需要三天才能完成全球站点覆盖。廖胜凯介绍道,为了搭建全球量子通信网络,必须发射更多低轨或高轨的量子通信卫星,组建星座,尽可能实现在地球上的任意地点,只要天气条件合适,即可实践量子通信。

随着星座中卫星轨道升高,对地面覆盖范围增加,同时卫星被太阳光照射的概率增大,如轨道高度36000km的地球同步轨道卫星被太阳光照射的概率达99.4%。可以说,实现白天自由空间远距离的量子密钥分发,证实了阳光下星地、星间量子通信的可行性,是通向量子通信星座的必经一步。

文章转载于澎湃新闻

这意味着我国在量子通讯领域得到了迅速的发展,处于国际发展的前沿地位,是我国迈向科技强国的一个重要标志。

这对我们今后的信息化建设有着很大的推进作用,我们网络通信会越来越通畅,越来越方便。

北京时间1月7日凌晨,中国科学技术大学潘建伟团队在《自然》杂志上发表了题为“跨越4600公里的天地一体化量子通信网络”的论文,验证了广域量子保密通信技术在实际应用中的条件已初步成熟。

中国科学技术大学教授潘建伟表示:“我们的工作表明,量子通信技术对于大规模的实际应用已经足够成熟。类似地,如果把来自不同国家的国家量子网络合并在一起,并且如果大学,机构和公司聚集在一起以标准化相关协议、硬件等,则可以建立全球量子通信网络。”

目前该天地一体化量子通信网络已经接入包括金融、电力、政务等150多家行业用户。2019年初,国家电网有限公司基于该网络,建立了跨越2600公里的量子密钥分发信道,实现了电力通信数据加密传输,首次从工程上检验了星地量子通信开展实际业务的可行性。

“本工作发展的相关技术也为量子通信系统小型化、低成本、国产化奠定了基础。”中国科学技术大学方面表示,“最近团队成功研制了重量约百公斤的小型地面站,实现了与墨子号的星地量子密钥分发实验,和国际多个地面站的进行了星地量子密钥分发实验,未来有望进一步做到可单人搬运;同时,在保证密钥分发速率的前提下已经成功研制几十公斤的小型化空间量子密钥分发载荷,这些成果也为形成卫星量子通信国际技术标准奠定了基础。”

量子科技是利用量子态对信号变化灵敏度高的特征而产生的新技术!

量子科技主要应用于雷达,磁力仪等对微弱信号敏感的领域!

量子纠缠通信可解决航天黑障电磁波不能通信问题与潜航器保密通信问题以及行星际飞行器信号弱问题!

量子纠缠通信是点对点,无电磁波发射,无延时,无限制距离,可穿透电磁屏敝,无法侦测的优点!在航天与军事领域极重要!

航天飞机要与地面通信必须钻孔安装外部天线,隔热瓦就做不到全履盖!哥伦比亚号空中解体,七名航天员丧生!

如果航天飞机使用量子纠缠通信,就不用钻孔了,隔热瓦就可以全履盖了!航天飞机的安全性就大大的增加了!

量子测控是对量子纠缠原理的新的应用!可以对冥王星轨道飞行器直接测控,也可以对登陆机器人直接测控!是点对点的,无需使用中继设备!

量子计算方面连80286都比不上,量子计算机不能串并联,无法组网,量子数增加会产生高温导致量子态不稳定!

中国nature子刊发表论文数量

2011 年大陆,香港 高校发布在nature 及其子刊的文章数 前十名的单位按排名顺序依次为:中科院(权衡后22.58篇,总共挂名62篇),中国科学技术大学(8.58,总17),北京大学(7.24,总21),清华大学(6.36,总16),香港科技大学(3.86,总5),厦门大学(3.77,总6),上海交通大学(3.73,总21),香港大学(3.58,总12),南京大学(3.01,总11),深圳华大基因科研公司(2.91,总11)。

新中国成立以来我国在Nature、 Science、cell三大期刊共发表2362篇文章,2018年我国在三大期刊发表论文332篇,占这三种期刊当年全部论文总数(2157篇)的15.49%。

发表量子论文

Google在科学杂志《自然》上发表的一篇新文章中正式宣布已实现“量子霸权” ,这离公司最初泄漏该事件的发生刚好一个月,当时,Google的论文被意外地提前发表。不过,Google现在的正式宣布则意味着这项研究的全部细节都会被公开的,科学界可以更广泛地审查Google所说的成就。

谷歌表示,其54比特Sycamore处理器能够在200秒内完成世界上最强大的超级计算机花费10000年所需的随机数计算量,这让目前所有的非量子计算机相形见绌。

而就在今天,另一家超级计算机公司IBM正在对谷歌的说法提出异议。在周一抢先发表的博客文章中,该公司表示,在传统系统上可以在2.5天之内完成相同的任务,而不是Google声称的10000年。 IBM说,在估算其传统超级计算机执行计算所需的时间时,Google“未能充分考虑大量磁盘存储”的开销。

尽管IBM试图淡化Google的成就,但研究界人士对此消息表示欢迎,《纽约时报》引述科学家的话将Google的突破与莱特兄弟1903年的首次飞机飞行相提并论。

距离量子计算开始逐渐被运用,我们可能还需要数年的时间,但是Google的发现最终可以提供证据,证明量子计算的未来已经有了可能。

在200秒时间内,76个光子穿过中国科学技术大学潘建伟团队精心构筑的光学网络,完成了5000万个样本的高斯玻色采样。而同样一道数学题交给世界上最顶尖的超级计算机,需要6亿年。

这个于12月4日揭开面纱的光量子计算模型机名为“九章”,是世界上第二次达到加州理工学院教授普雷斯基尔提出的“量子霸权”(Quantum supremacy)标准的量子计算实验。“量子霸权”亦称为“量子优越性”(Quamtum advantage),即量子计算机在特定问题上超越世界上性能最好的经典计算机。

事实上,中科院院士潘建伟早在9月份的西湖大学公开课演讲上就曾“剧透”过这一成果。他当时表示:“近期已经完成50个光子的高斯玻色采样,按照现在的初步估计和数据分析,应该能够比谷歌的量子优越性大概快100万倍。”

世界上首个宣布实现量子优越性的是美国谷歌公司。2019年,谷歌使用了53个超导量子比特制作了一台名为Sycamore的处理器,运行随机量子线路进行采样,耗时约200秒可进行100万次采样。而最强超算、 美国橡树岭国家实验室Summit计算机得到同样结果需要花上一年,差距约十亿(10的9次方)倍。

而这次,潘建伟团队构筑的“九章”与顶级超算的差距超过了百万亿(10的14次方)倍。

当然,潘建伟团队的光量子计算机和谷歌的超导量子计算机路径不同,任务也各有所长。玻色采样和随机路线采样分别是两者最擅长的问题,而且目前还不具备实际应用意义。

可以说,量子优越性是以量子计算机之长,比超算之短的“表演赛”,并不意味着经典计算机就要被淘汰了。不过,量子优越性确实是关键的里程碑,为未来量子计算机走向实用性问题奠定基础。

实现量子优越性也需许多理论与工程难题,相关知识技术更是具备丰富的潜在价值。那么,玻色采样究竟是一个怎样的问题?潘建伟团队如何取得了此次突破?

相关论文题为《基于光子的量子计算优越性》(Quantum computational advantage using photons)、于北京时间12月4日03:00发表在世界顶级学术期刊《科学》(Science)上。

论文摘要显示,研究团队将50全同单模压缩态输入100模式超低损耗干涉线路,利用100个高效单光子探测器进行高斯玻色采样,输出态空间维度达到了10的30次方,采样速率比最先进的超级计算机要快上10的14次方倍。

什么是玻色采样?

我们知道,在设计建筑、飞机的时候,工程师们需要用计算机来进行各种计算和模拟。而如果我们要研究的是微观世界的“量子建筑”呢?

其中微观粒子复杂的变化和相互作用,远远超过了经典计算机的能力范围。最好,是用量子的方式来模拟量子问题。

这就是著名物理学家理查德·费曼在1980年代提出的量子计算机构想:“自然不是经典的,如果你想对自然进行模拟,那么你最好把计算机给量子化。”

大家普遍认为,玻色采样就是这样一个适于量子计算机发挥的任务。它是将非经典光输入线性光学网络后,用单光子探测器来探测输出光子的数量、路径和纠缠态,其结果是高度随机的。

我们可以借助研究随机分布的“高尔顿钉板”实验来理解玻色采样。

一颗直径略小于两颗钉子间距的小圆球在钉板上向下滚落,碰到钉子后皆以1/2的概率向左或向右滚下,接着又碰到下一层钉子。如此继续下去,直到从底板的一个出口滚出为止。把许多同样的小球不断从入口处放下,只要球的数目相当大,它们在底板将堆成近似于正态的密度函数图形,即中间高,两头低,呈左右对称的古钟型。

而在玻色采样问题上,全同光子就是小球,分束器就是钉子,线性光学网络就是钉板。当一束光通过分束器时会被分成两束强度较低的光,一束透射,另一束反射。计算在n个全同玻色子经过网络后,特定一种输出结果的概率(例如输入3个光子后,分别在1号、3号、4号“出口”输出),就是玻色采样问题。

科学家们计算后认为,该问题的经典最优解法随着光子数的增加求解步数呈指数上涨。光量子计算机在中小规模下就可以打败超级计算机。

那么,谷歌超导量子计算所进行的随机线路采样也是一个能充分展现量子优越性的问题,光子玻色采样相较之下有何特别?

潘建伟团队论文引述了一种观点,即改进经典算法后,超算只需要数天就能像Sycamore一样进行100万次随机线路采样。这样的话,如果样本数量足够大,比如到了10的10次方的话,入股有足够的存储空间,量子优势将被逆转。

而光量子计算机在玻色采样上就不存在这种依赖于样本大小的漏洞,因为经典算法针对玻色采样存在一个固定的限制。除此之外,光子进行玻色采样可以在室温下工作,不容易受到干扰。

攻克的关卡

根据实际需要,玻色取样逐渐衍生出了各种变体。潘建伟团队此次采用了一种高斯玻色采样变体,它在一些图形问题和量子化学领域有着潜在的应用。高斯玻色采样使用所有处于压缩态的光子,且允许使用更高的抽运功率,使得其同样在事件发生率上具有指数优势。

尽管这是一个为光量子计算机量身定制的挑战,如何将玻色采样的规模放大到一个计算上有意义的区间仍有许多挑战。

论文提到了研究团队需要攻克的五大“关卡”:

首先,它需要单模压缩态同时具备足够高的压缩参数、光子全同性和采集效率;

其次,它需要大型干涉仪同时具备完全连通性、矩阵随机性、近似完美波包重叠和相位稳定,以及近统一传输速率;

第三,它需要对单模压缩态中的所有光子数状态实现相位控制;

第四,它需要高效探测器采集输出分布;

最后,从巨大的输出态空间获得的稀少样本需要被验证,并且表现要与超级计算机形成比较。

为此,潘建伟光量子计算团队已经进行了多年的“打怪升级”。2013年,他们在国际上首创量子点脉冲共振激发,解决了单光子源的确定性和高品质这两个基本问题;2016年, 产生了国际最高效率的全同单光子源,并于2017年初步应用于构建超越早期经典计算能力的针对波色取样问题的光量子计算原型机,其取样速率比国际上当时的实验提高24000多倍。

2019年,中国科大研究组在实验上同时解决了单光子源所存在的混合偏振和激光背景散射这两个最后的难题:成功研制出了确定性偏振、高纯度、高全同性和高效率的单光子源。在此基础上,他们在国际上首次实现了20光子输入60 60模式干涉线路的玻色取样量子计算,输出态空间维数比国际同行之前的光量子计算实验高百亿倍,逼近量子优越性,完成了临门一脚的预演。

校对:张亮亮

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2