更全的杂志信息网

发表kdd论文

发布时间:2024-07-08 21:17:42

发表kdd论文

担任985高校博导的25岁博士有多厉害

担任985高校博导的25岁博士有多厉害,冯磊自2021年入职时仅25岁,是重庆大学计算机学院目前年龄最小的引进人才,担任985高校博导的25岁博士有多厉害。

“90后”目前已渐成为中国学术圈的生力军,而“95后”的青年学者也开始跃上学术舞台。

记者注意到,重庆大学计算机学院“95后”弘深青年学者冯磊再度引起社会舆论关注。重庆大学计算机学院7月间消息透露,冯磊撰写的论文《Pointwise Binary Classification with Pairwise Confidence Comparisons》在第38届国际机器学习会议(The 38th International Conference on Machine Learning)(CCF A类)上发表。

重庆大学计算机学院介绍,这是机器学习领域公认的顶级国际学术会议,在学术界享有极高的声誉,计算机学院首次以第一单位在该会议上发表学术论文,实现了零的突破。

该论文的`第一作者与通讯作者均为冯磊,合作者来自日本东京大学、日本理化学研究所先进智能研究中心、新加坡南洋理工大学、澳洲昆士兰大学、中国香港浸会大学等著名高校或研究机构。

重庆大学方面提供的个人信息显示,冯磊,男,出生于1995年4月,博士毕业(直博并提前毕业)于新加坡南洋理工大学,目前为重庆大学计算机学院弘深青年学者引进人才、博导,兼任日本理化学研究所先进智能研究中心(RIEKN Center for Advanced Intelligence Project)客座科学家(Visiting Scientist)。

冯磊自2021年1月起加入计算机学院工作至今,入职时仅25岁,这是重庆大学计算机学院目前年龄最小的引进人才,也是学院有史以来首次直接给应届博士毕业生正高/博导岗位。

冯磊的主要研究方向为机器学习、数据挖掘、人工智能。近三年来,已在ICML、NeurIPS、KDD、CVPR、AAAI、IJCAI等国际顶级(CCF A类)会议与中科院一区期刊上以第一作者或通讯作者发表论文十余篇。研究成果在弱监督学习领域做出了许多重要的贡献。

在学术服务方面,冯磊担任IJCAI 2021高级程序委员会委员(senior program committee member),ICML 2021专家审稿人(expert reviewer),以及其他国际顶级(CCF A类)会议(包括NeurIPS、KDD、CVPR、ICCV、AAAI)的程序委员会委员/审稿人,并受邀担任多个国际知名期刊(包括JMLR、IEEE TPAMI、IEEE TIP、IEEE TNNLS、MLJ)审稿人。

另外,在重庆大学计算机学院官网冯磊的个人页面,冯磊专门标注了一段文字:本课题组研究经费充足,与国内外著名高校和研究机构有紧密的合作,欢迎青年老师和有意从事学术研究的博士后博士生硕士生加入(或访问)本课题组。招收弘深青年教师(特别资助:37-40万元/年,重点资助:27-30万元/年)。

冯磊还特别注明注意事项:2022年秋季入学的博士硕士研究生招生名额已满,谢谢各位同学的热情,请勿再邮件联系我了。同时,他向大家强烈推荐了其他几位导师。

重庆大学是教育部直属的全国重点大学,国家“211工程”和“985工程”重点建设的高水平研究型综合性大学,国家“世界一流大学建设高校(A类)”。

2021年1月,出生于1995年4月的冯磊,被重庆大学计算机学院,直接作为弘深青年学者人才引进,并聘任为博导、教授,其主要研究方向为机器学习、数据挖掘、人工智能。

冯磊入职时仅25岁,这是重大计算机学院目前年龄最小的引进人才,也是该学院有史以来首次直接给应届博士毕业生正高/博导岗位。

个人主页:

入职半年,冯磊撰写的论文《Pointwise Binary Classification with Pairwise Confidence Comparisons》在第38届国际机器学习会议(The 38th International Conference on Machine Learning)(CCF A类)上发表。这是机器学习领域公认的顶级国际学术会议,在学术界享有极高的声誉,这也是重庆大学计算机学院首次以第一单位在该会议上发表学术论文,实现了零的突破。

冯磊简介

冯磊,重庆大学弘深青年学者引进人才(教授、博导),兼任日本理化学研究所先进智能研究中心(RIKEN Center for Advanced Intelligence Project)Visiting Scientist。博士毕业于新加坡南洋理工大学(Nanyang Technological University, Singapore),在提前毕业的情况下,获得南洋理工大学计算机科学与工程学院杰出博士学位论文奖第二名(NTU SCSE Outstanding PhD Thesis Award Runner-Up)。中国计算机学会(CCF)会员,中国人工智能学会(CAAI)会员,国际人工智能促进学会(AAAI)会员,美国计算机学会(ACM)会员,中国人工智能学会机器学习专委会通讯委员。担任IJCAI 2021与AAAI 2022高级程序委员会委员(senior program committee member),ICML 2021 专家审稿人(expert reviewer),以及其他国际顶级(CCF A类)会议(包括NeurIPS、KDD、CVPR、ICCV、AAAI)的程序委员会委员/审稿人,并受邀担任多个国际顶级期刊(包括JMLR、IEEE-TPAMI、IEEE-TIP、IEEE-TNNLS、MLJ)审稿人。

主要研究方向为机器学习、数据挖掘、人工智能。已在International Conference on Machine Learning (ICML),Annual Conference on Neural Information Processing Systems (NeurIPS), ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), International Conference on Computer Vision (ICCV), AAAI Conference on Artificial Intelligence (AAAI), International Joint Conference on Artificial Intelligence (IJCAI)等国际顶级(CCF A类)会议与中科院一区期刊上发表论文近二十篇。

冯磊还入选了2021福布斯中国30 Under 30 科学和医疗健康领域榜单。

重庆大学是教育部直属的全国重点大学,国家“211工程”和“985工程”重点建设的高水平研究型综合性大学,国家“世界一流大学建设高校(A类)”。

学校创办于1929年,在20世纪40年代就发展为拥有文、理、工、商、法、医6个学院的国立综合性大学。经过1952年全国院系调整,成为国家高教部(高教部1958年并入教育部)直属的、以工科为主的多科性大学。1960年被确定为全国重点大学。改革开放以来,学校大力发展人文社科类学科专业,促进了多学科协调发展,逐步发展为综合性研究型大学。1998年,学校成为国家“211工程”重点建设高校。2000年5月,原重庆大学、重庆建筑大学、重庆建筑高等专科学校三校合并组建成新的重庆大学。2001年,学校成为“985工程”重点建设高校。2004年,学校被确定为中管高校。2017年9月,学校入选国家“世界一流大学建设高校(A类)”。

学校学科门类齐全,涵盖理、工、经、管、法、文、史、哲、医、教育、艺术11个学科门类。设7个学部35个学院,以及附属肿瘤医院、附属三峡医院、附属中心医院。教职工5300余人,在校学生47000余人,其中研究生20000余人,本科生26000余人,来华留学生1700余人。校园占地面积5200余亩,有A校区、B校区、C校区和虎溪校区。

本文是滴滴发在KDD2020的paper。 文中指出用户响应预测的困难在于模型需要考虑真实物理环境中的历史信息和实时事件信息。 本文提出了使用动态构建的异构图来编码事件的属性和事件发生的周围环境。除此之外,文中提出了一种多层图神经网络模型来学习历史行为和周围环境对于当前事件的影响,生成有效的事件表示来改善相应模型的准确性。 首先文中定义了几个术语:PreView, Request, Cancel_Order, Finish_Order PreView指的是用户确定起点和终点,页面上会显示出路线,服务类型,估计价格。Request指的是用户点击按钮,触发打车事件。Cancel_Order指的是司机到达前用户取消订单。Finish_Order指的是司机将用户送到目的地,用户付钱,完成整个交易流程。 本文的目标是对PreView事件建模,估计用户点击Request按钮的概率。 上图表示一个用户的打车流程。 文中使用名词POI(Point Of Interest)来表示地图上所有可能的上车和下车点。如上图所示,不同的用户行为同时发生在各个不同的POIs. 用户是否会点击Request按钮会由很多因素来决定。一些因素是显式的,可以直接从数据源中获取,比如用户当前位置和上车点位置的距离,天气,时间等;一些因素是隐式的,比如用户对于等待的意愿,用户对于这笔花销的意愿,用户对于路线的满意程度等等,这些特征很难直接获取。 一种解决方案是从历史数据和当前时间的观测中引入一些代替的特征,比如用户行为历史中和交易相关的行为,当前实时物理环境中发生的一些事件等等。 比如用户在当前PreView之前可能已经完成了多个订单,我们可以使用这些历史信息来捕捉用户的潜在特征,比如用户对于服务类型的偏好,用户对于花销的意愿程度等等。 具体的,用户更倾向于对那些和之前已经完成的PreView类似的PreView发起Request。同样的,我们也可以从用户没有完成的PreView中来抽取负特征。 为了计算PreView之间的相似性,文中提出使用从历史数据中学习到的embedding。除此之外,我们希望embedding能够捕捉当时周围环境的供求情况。为了达到这一目的,文中提出利用周边地区同时发生的一些事件。比如周边地区有许多需求没有被满足,那么当前的供求关系是不平衡的。再比如周边地区有许多取消订单,那么路况可能是拥挤的,或者期望等待时间很长。由此可见,一些历史数据和当前正在发生的实时数据都能为预测模型提供信息。 然而,历史数据和实时数据对于当前分析事件的相关程度是不同的,因此引入异构图来表示这些关系。 在动态异构图中embed实时事件的挑战在于: 1)对于每个新发生的事件,需要对于这个时间动态构建一个图,包括收集相关乘客的历史事件,以及周边区域发生的事件。 2)图中的实体和关系是异构的。比如时间有PreView,Request等,事件之间的关系有相同的乘客,相同的起点等。 3)对于我们关注的事件,不同的实体和不同的关系的影响的重要性程度也是不同的。 4)对于大规模实时事件进行建模。 文中并没有采用在训练阶段embed item的做法,而是提出了一种新的框架来实时生成事件的表示,使得能够捕捉用户行为和周围环境的动态变化。 每个实体的embedding以一种基于GNN的inductive的方式生成。(实体包括事件,物品,用户行为等) 整个方法主要包括以下几个步骤: 1)为每个事件构建一个动态异构图。 2)使用文中提出的异构图embedding算法来生成事件的embedding。 3)基于实体的embedding进行实时预测。 文中提出了一个概念叫heterogeneous session(h-session)。比如在一次打车的行为过程中,在PreView事件之后,可能会有Request, Finish_Order, Cancel_Order等,这些事件就属于一个h-session,描述了用户一次完整的打车行为。 构建完异构图后,文中提出了一种新的图学习算法REGNN(Real-time Event Graph Neural Network)来生成事件的embedding。 对于每个需要预测的实时事件,动态创建一个异构图,图中包括了相关h-session中的事件和其他相关的实体。图中的边表示了节点之间各种复杂的关系,包括时间顺序上的关系,空间位置的关系,以及其他的逻辑关系。 上图记录了文中用到的一些符号表示。 定义图G=(VG,EG,OV,RE),节点映射函数VG->OV,边映射函数EG->RE,VG中的每个节点对应OV中的一种类型,EG中的每条边对应RE中的一种类型。当|OV|=1并且|RE|=1时,图为同构图;否则,图为异构图。 问题定义,PreView Conversion Prediction. given PreView事件 PT = (p,o,d,T), T表示时间,o表示起点,d表示终点,p表示用户。目标是估计用户p触发事件Request的概率yT,通过embedding一系列历史的动态异构图[G_PT, G_PT-1,..., G_PT-N+1],G_Pt表示事件Pt的动态异构图,t=T-N+1,...,T. G_P中包含了不同类型的事件和物品,embedding模型的目标是学习一个函数 给出一个时间序列信息和(1)中获得的embedding,上层模型的目标是学习一个模型Gθ,其中θ是参数来预测yT。 T为timestamp,Et表示时间t事件的embedding,N表示时间序列的长度。 首先介绍real-time event embedding框架。 考虑对于PreView最相关的属性:乘客,时间戳,起点,终点。 从乘客的角度,可以从其历史行为事件中获得信息。从起点和终点的角度,可以通过综合这两个地点的事件信息获得空间的表示。 整个工作流图如上所示。 •given PreView事件PT=(p,o,d,T),根据下面的流程生成异构图: 1)乘客视角:挑选乘客一周内在时间T之前最近的Np个PreView事件(包括Request, Finish_Order, Cancel_Order)。对于这些事件在图中创建相关的邻居节点,关于乘客p的这个子图记为HetGp,T。 2)起点和终点视角:在同时发生的PreView事件中,挑选在时间戳T之前x分钟内的和PT相同起点的PreView事件,包括它们相关的Request, FInish_Order, Cancel_Order事件。这些事件添加到图中作为起点子图HetGo,T.另一方面,以相同的方式构建终点子图HetGd,T. 3)为了整合历史PreViews的时空信息,用RNN学习历史事件序列的hidden state,以键值对的方式存储它们。因此,事件序列的下一个序列能够快速的预测和更新。 •根据这些事件和当前事件PT之间的关系,添加相关类型的边。比如属于同一个h-session这种关系,或者是各自属于的h-session之前有序列关系等。 •在构造的异构子图上,使用REGNN来生成PT的实时事件embedding。 •最后,生成的事件embedding作为下游预测任务的输入。 上图展示了PreView模型的具体细节。最下面三层是三个GAT,分别对应不同的粒度(GAT within h-session, GAT across h-sessions within the same subgraph, GAT across subgraphs),之后接GRU层,接MLP层,最后给出预测。 PT的动态异构图G_PT由三种子图组成 分别表示乘客子图,起点子图和终点子图。+表示图的join操作,定义为G=G1+G2, G1=(V1,E1), G2=(V2,E2),那么G的节点为V1∪V2,G的边为E1∪E2. 三个子图的构建过程如下: •inside h-session.连接同一session中的事件来构建子图。 •across h-session.为了分析前面的h-session对于目标PreView的影响,添加前面h-session到目标PreView之间的边。然而,不同的h-session起到的影响效果是不同的,因此边的类型也是不同的, PT表示在时间T的PreView,使用最近的N个h-session来构建关于PT的图。 对于三种level,使用了三种不同的embedding模型。 •GATs inside h-session. 上式中○+符号表示concatenate,OV表示一个h-session中不同类型的事件,K表示heads的总数(GAT中的head,即一条边上做几次attention)。h(1)h_s表示做一次GAT之后h-session的隐状态,h(0)h_s表示h-session的初始状态,用PreView事件的节点特征进行初始化。(P,R,F,C分别代表PreView,Request,finish,cancel) •GATs across h-session. 在不同的h-session之间执行attention操作。对于不同子图中的h-session,GAT如下 Np,No,Nd分别表示乘客子图,起点子图,终点子图中不同的时间戳的总数。 需要注意的是t从0开始,即加上了self attention. GATp的操作如下,GATo和GATd类似。 各符号的意义和前面类似。 •GATs across subgraphs. 最终综合三个子图,计算最后的embedding。 具体式子如下, OG表示不同类型的异构子图。其余符号和前面的类似。 利用RNN对用户过去的PreView之间的时序依赖建模。文中使用了GRU ET是在时间T进行global attention得到的最终embedding,也就是(7)中的hgPT. 最终的损失函数

在kdd发表论文

本文是滴滴发在KDD2020的paper。 文中指出用户响应预测的困难在于模型需要考虑真实物理环境中的历史信息和实时事件信息。 本文提出了使用动态构建的异构图来编码事件的属性和事件发生的周围环境。除此之外,文中提出了一种多层图神经网络模型来学习历史行为和周围环境对于当前事件的影响,生成有效的事件表示来改善相应模型的准确性。 首先文中定义了几个术语:PreView, Request, Cancel_Order, Finish_Order PreView指的是用户确定起点和终点,页面上会显示出路线,服务类型,估计价格。Request指的是用户点击按钮,触发打车事件。Cancel_Order指的是司机到达前用户取消订单。Finish_Order指的是司机将用户送到目的地,用户付钱,完成整个交易流程。 本文的目标是对PreView事件建模,估计用户点击Request按钮的概率。 上图表示一个用户的打车流程。 文中使用名词POI(Point Of Interest)来表示地图上所有可能的上车和下车点。如上图所示,不同的用户行为同时发生在各个不同的POIs. 用户是否会点击Request按钮会由很多因素来决定。一些因素是显式的,可以直接从数据源中获取,比如用户当前位置和上车点位置的距离,天气,时间等;一些因素是隐式的,比如用户对于等待的意愿,用户对于这笔花销的意愿,用户对于路线的满意程度等等,这些特征很难直接获取。 一种解决方案是从历史数据和当前时间的观测中引入一些代替的特征,比如用户行为历史中和交易相关的行为,当前实时物理环境中发生的一些事件等等。 比如用户在当前PreView之前可能已经完成了多个订单,我们可以使用这些历史信息来捕捉用户的潜在特征,比如用户对于服务类型的偏好,用户对于花销的意愿程度等等。 具体的,用户更倾向于对那些和之前已经完成的PreView类似的PreView发起Request。同样的,我们也可以从用户没有完成的PreView中来抽取负特征。 为了计算PreView之间的相似性,文中提出使用从历史数据中学习到的embedding。除此之外,我们希望embedding能够捕捉当时周围环境的供求情况。为了达到这一目的,文中提出利用周边地区同时发生的一些事件。比如周边地区有许多需求没有被满足,那么当前的供求关系是不平衡的。再比如周边地区有许多取消订单,那么路况可能是拥挤的,或者期望等待时间很长。由此可见,一些历史数据和当前正在发生的实时数据都能为预测模型提供信息。 然而,历史数据和实时数据对于当前分析事件的相关程度是不同的,因此引入异构图来表示这些关系。 在动态异构图中embed实时事件的挑战在于: 1)对于每个新发生的事件,需要对于这个时间动态构建一个图,包括收集相关乘客的历史事件,以及周边区域发生的事件。 2)图中的实体和关系是异构的。比如时间有PreView,Request等,事件之间的关系有相同的乘客,相同的起点等。 3)对于我们关注的事件,不同的实体和不同的关系的影响的重要性程度也是不同的。 4)对于大规模实时事件进行建模。 文中并没有采用在训练阶段embed item的做法,而是提出了一种新的框架来实时生成事件的表示,使得能够捕捉用户行为和周围环境的动态变化。 每个实体的embedding以一种基于GNN的inductive的方式生成。(实体包括事件,物品,用户行为等) 整个方法主要包括以下几个步骤: 1)为每个事件构建一个动态异构图。 2)使用文中提出的异构图embedding算法来生成事件的embedding。 3)基于实体的embedding进行实时预测。 文中提出了一个概念叫heterogeneous session(h-session)。比如在一次打车的行为过程中,在PreView事件之后,可能会有Request, Finish_Order, Cancel_Order等,这些事件就属于一个h-session,描述了用户一次完整的打车行为。 构建完异构图后,文中提出了一种新的图学习算法REGNN(Real-time Event Graph Neural Network)来生成事件的embedding。 对于每个需要预测的实时事件,动态创建一个异构图,图中包括了相关h-session中的事件和其他相关的实体。图中的边表示了节点之间各种复杂的关系,包括时间顺序上的关系,空间位置的关系,以及其他的逻辑关系。 上图记录了文中用到的一些符号表示。 定义图G=(VG,EG,OV,RE),节点映射函数VG->OV,边映射函数EG->RE,VG中的每个节点对应OV中的一种类型,EG中的每条边对应RE中的一种类型。当|OV|=1并且|RE|=1时,图为同构图;否则,图为异构图。 问题定义,PreView Conversion Prediction. given PreView事件 PT = (p,o,d,T), T表示时间,o表示起点,d表示终点,p表示用户。目标是估计用户p触发事件Request的概率yT,通过embedding一系列历史的动态异构图[G_PT, G_PT-1,..., G_PT-N+1],G_Pt表示事件Pt的动态异构图,t=T-N+1,...,T. G_P中包含了不同类型的事件和物品,embedding模型的目标是学习一个函数 给出一个时间序列信息和(1)中获得的embedding,上层模型的目标是学习一个模型Gθ,其中θ是参数来预测yT。 T为timestamp,Et表示时间t事件的embedding,N表示时间序列的长度。 首先介绍real-time event embedding框架。 考虑对于PreView最相关的属性:乘客,时间戳,起点,终点。 从乘客的角度,可以从其历史行为事件中获得信息。从起点和终点的角度,可以通过综合这两个地点的事件信息获得空间的表示。 整个工作流图如上所示。 •given PreView事件PT=(p,o,d,T),根据下面的流程生成异构图: 1)乘客视角:挑选乘客一周内在时间T之前最近的Np个PreView事件(包括Request, Finish_Order, Cancel_Order)。对于这些事件在图中创建相关的邻居节点,关于乘客p的这个子图记为HetGp,T。 2)起点和终点视角:在同时发生的PreView事件中,挑选在时间戳T之前x分钟内的和PT相同起点的PreView事件,包括它们相关的Request, FInish_Order, Cancel_Order事件。这些事件添加到图中作为起点子图HetGo,T.另一方面,以相同的方式构建终点子图HetGd,T. 3)为了整合历史PreViews的时空信息,用RNN学习历史事件序列的hidden state,以键值对的方式存储它们。因此,事件序列的下一个序列能够快速的预测和更新。 •根据这些事件和当前事件PT之间的关系,添加相关类型的边。比如属于同一个h-session这种关系,或者是各自属于的h-session之前有序列关系等。 •在构造的异构子图上,使用REGNN来生成PT的实时事件embedding。 •最后,生成的事件embedding作为下游预测任务的输入。 上图展示了PreView模型的具体细节。最下面三层是三个GAT,分别对应不同的粒度(GAT within h-session, GAT across h-sessions within the same subgraph, GAT across subgraphs),之后接GRU层,接MLP层,最后给出预测。 PT的动态异构图G_PT由三种子图组成 分别表示乘客子图,起点子图和终点子图。+表示图的join操作,定义为G=G1+G2, G1=(V1,E1), G2=(V2,E2),那么G的节点为V1∪V2,G的边为E1∪E2. 三个子图的构建过程如下: •inside h-session.连接同一session中的事件来构建子图。 •across h-session.为了分析前面的h-session对于目标PreView的影响,添加前面h-session到目标PreView之间的边。然而,不同的h-session起到的影响效果是不同的,因此边的类型也是不同的, PT表示在时间T的PreView,使用最近的N个h-session来构建关于PT的图。 对于三种level,使用了三种不同的embedding模型。 •GATs inside h-session. 上式中○+符号表示concatenate,OV表示一个h-session中不同类型的事件,K表示heads的总数(GAT中的head,即一条边上做几次attention)。h(1)h_s表示做一次GAT之后h-session的隐状态,h(0)h_s表示h-session的初始状态,用PreView事件的节点特征进行初始化。(P,R,F,C分别代表PreView,Request,finish,cancel) •GATs across h-session. 在不同的h-session之间执行attention操作。对于不同子图中的h-session,GAT如下 Np,No,Nd分别表示乘客子图,起点子图,终点子图中不同的时间戳的总数。 需要注意的是t从0开始,即加上了self attention. GATp的操作如下,GATo和GATd类似。 各符号的意义和前面类似。 •GATs across subgraphs. 最终综合三个子图,计算最后的embedding。 具体式子如下, OG表示不同类型的异构子图。其余符号和前面的类似。 利用RNN对用户过去的PreView之间的时序依赖建模。文中使用了GRU ET是在时间T进行global attention得到的最终embedding,也就是(7)中的hgPT. 最终的损失函数

2021年1月,冯磊加入计算机学院工作,入职时仅25岁,这是计算机学院目前年龄最小的引进人才,也是该学院有史以来首次直接给应届博士毕业生正高/博导岗位。

冯磊的主要研究方向为机器学习、数据挖掘、人工智能。近三年来,已在ICML、NeurIPS、KDD、CVPR、AAAI、IJCAI等国际顶级(CCF A类)会议与中科院一区期刊上以第一作者或通讯作者发表论文十余篇。

在学术服务方面,担任IJCAI 2021高级程序委员会委员,ICML 2021专家审稿人,以及其他国际顶级(CCF A类)会议的程序委员会委员/审稿人,并受邀担任多个国际知名期刊审稿人。

记者注意到,在冯磊的个人页面上,标注他的招生信息:年度招收博士生1名、硕士生3名,招收数学、计算机等专业。但同时特别备注:“2022年秋季入学的博士硕士研究生招生名额已满,谢谢各位同学的热情”。同时,冯磊还向同学们推荐了相关领域的导师。

kdd期刊投稿时间

是外文期刊的,不属于国内的

这个杂志没有吧

能投SIGKDD的一般SCI都能录取了(排除那些乱投的),然后再刷掉90%以上,你可以想下录取率有多低,而且实验要多要全。

数据分析与知识发现是核心期刊,他原名是《现代图书情报技术》,后面改名叫《数据分析与知识发现》了,但是很多其他的网站还没来得及修改

kdd论文发表意味着什么

对学生来说,在学术期刊上发表论文,证明了自己的实力,丰富了自己的科研成果。对日后的评奖学金、评三好生、评先进以及入党都奠定了很好的基础,跟其他同学相比也更有底气呀!想保研的同学发表论文更是多了一道保障。在走入社会,从事文学教育等相关工作时比别人有更大的优势。对老师来说,最大的作用就是评职称了。毕业生留校做助教想要职称等级更高一些,发表文章是最有效也是最方便的方式了发表问题联系我吧

sci论文发表被看作是科研能力水平的最高衡量标尺。

如果作者可以发表sci论文,毫无疑问,可以充分证明个人的科研能力已经达到国际顶尖水平,也正是因此,国内很多科研机构对sci非常重视,是相关人员晋升与考核的重要指标。

本科生发表SCI难的原因:

原因一: 时间不够充裕,机会少,在本科期间,学生能够从事科研相关工作的机会并不多。很多同学,大一大二都在上课,真正能够进入实验室的机会可能只有大三一年,大四又要准备保研、考研、找工作。所以说,首先在时间上,对于本科生来说,并不充裕。

原因二:本科生科研训练不够系统,达不到SCI论文要求其次,SCI文章要求较高,特别是对于文章格式有着严格的要求,如果,不经过系统训练,中稿率并不高。

刊大师:为作者投发学术期刊提供智能化解决方案。 你知道对于打算出国留学的同学来说,发表学术论文有什么好处吗?快点进来看看吧!(侵、私、删)

可以体现自己的学历,文字功底。

2020年kdd会议哪些论文发表

Computational visual media conference是清华大学图形学实验室主办的国际会议,是亚洲图形学学会的三大会议之一(另两个是Pacific Graphics和GMP)。Computational visual media conference会议每年投稿100-240篇,录取25-38篇,论文全部发表在期刊上,包括:CCF A类的IEEE TVCG,CCF B类的Graphical Models和JCST,以及同名的期刊《Computational visual media》,该刊EI收录,Scopus影响因子2.9,高于graphical models.值得投稿!

协同过滤推荐系统是当今众多推荐系统中最流行和最重要的推荐方法之一。

尽管已经被广泛采用,但是现有的基于 cf 的方法,从矩阵分解到新兴的基于图的方法, 在训练数据非常有限的情况下表现不佳 (数据稀疏问题)。

本文首先指出了造成这种不足的根本原因,并指出现有基于 CF 的方法固有的两个缺点,即: 1)用户和物品建模不灵活; 2)高阶相关性建模不足。

在这种情况下,文中提出了一个双通道超图协同过滤(DHCF)框架来解决上述问题。

首先,引入 双通道学习策略 (Dual-Channel),全面利用分治策略,学习用户和物品的表示,使这两种类型的数据可以优雅地相互连接,同时保持其特定属性。

其次, 利用超图结构对用户和具有显式混合高阶相关性的物品进行建模 。提出了跳跃超图卷积(JHConv)方法,实现高阶关系嵌入的显式和有效传播。

推荐系统的核心是一系列的推荐算法,这些算法能够**根据用户的个人特征有效地从爆炸式信息筛选出信息。协同过滤是目前最受欢迎和广泛采用的方法之一。

CF 持有一个基本的假设,当向用户提供推荐时: 那些行为相似的人(例如,经常访问同一个网站)很可能在物品(例如,音乐、视频、网站)上分享相似的偏好。 为了实现这一点,一个典型的基于 CFbased 方法执行一个两步策略: 它首先利用历史交互区分相似的用户和项目; 然后基于上面收集的信息,向特定用户生成推荐。

现有的 CF 方法可以分为三类。

虽然 CF 方法已经研究了多年,但仍然存在局限性,特别是在训练的先验知识非常有限的情况下。为了理解这些缺陷,深入挖掘现有 CF 方法的内在机制得到以下局限性:

基于这些生成的连接组,即超边,可以分别为用户和物品构造两个超图,即两个通道的表示。本文提出了一种新的跳跃超图卷积算法(JHConv) ,该算法通过聚合邻域的嵌入并引入先验信息,有效地在超图上进行信息传播。(与传统的基于图的方法对比,用户超图和项目超图,可以更灵活地进行复杂的数据关联建模,并与不同类型的数据结合。)

超图定义为 ,V表示图节点, 表示超边集合,超图邻接矩阵 描述节点与超边的关系

在高层次上,DHCF 首先通过一个双通道超图框架学习用户和物品的两组嵌入,在此框架上,DHCF 通过计算用户和物品嵌入查找表的内积,进一步计算出用户-项目偏好矩阵。基于这样的偏好矩阵,DHCF 估计用户对某个商品感兴趣的可能性。

总体分为三步:

构建用户和物品嵌入矩阵:

为了在预定义的混合高阶关系上聚合相邻消息,执行以下高阶消息传递:

为了提取有区别的信息,我们对用户和物品定义为

综上所述,上述两个过程构成了一个集成的DHCF 层,允许对用户和物品进行明确的建模和编码,并通过强大的嵌入功能进一步更新和生成更精确的嵌入超图结构。这种精细嵌入可以进一步应用于推荐系统中的各种下游任务。

与 传统 HGNNConv 相比,JHConv 允许模型同时考虑其原始特征和聚合相关表示,在另一方面,这样的 resnet结构的跳跃连接使模型能够避免由于集成了许多其他连接而导致的信息稀释。

引入高阶关联来实现构建超边,根据自定义的规则分别对用户和物品进行高阶关联提取

定义1: 物品的 k 阶可达邻居。在用户-物品交互图,更具体地说是二部图中,如果在 itemi 和 itemj 之间存在一个相邻顶点序列(即一条路) ,且该路径中的用户数小于 k,itemi (itemj)是 itemi (itemi)的 k 阶可达邻居。

定义2: 物品的 k阶可达用户。在物品-用户二部图中,如果用户 j 和物品 k 之间存在直接交互作用,则用户 j 是 itemi 的 k 阶可达邻居,而物品 k 是 itemi 的 k 阶可达邻居。

对于 itemi,其 k 阶可达用户集称为 。从数学上讲,超图可以定义在一个集簇上,其中每个集代表一个超边。因此,这里可以通过物品的 k 阶可达用户集构建超边。

然后在用户 k 阶可达规则的基础上构造高阶超边组,该超边组可表示为:

假设通过K阶可达规则,构造a个超边组,最后的超图需要将这a个超边组做融合,见上面的总体框架中的描述。

同理,按照相似的K阶可达的规则,对物品进行分析,构成物品的超边(N个用户,M个物品)

在实验中,每个用户观察到的交互中的10% 被随机选择用于训练,其余的数据用于测试。这样的设置增加了 CF 任务的难度,因为模型只能获取非常有限的观察到的交互。此外,由于数据的高度稀疏性,它可以很好地评价模型从有限的隐式数据集中挖掘有用信息的能力。对于所有四个数据集,每个用户至少有两个用于训练的交互。

这篇工作基于超图结构,提出了一种新的CF框架,与基于图神经网络的CF相比,超图结构更符合实际情况;此外,双通道的思路也值得借鉴,之前也分析的一篇双通道BPR的论文。近年来,基于图神经网络的推荐已经成为研究主流,而其中超图相关的工作少之又少,最近看到的另一篇是SIGIR2020上的一篇Next Item Recommendation with Sequential Hypergraphs,在超图神经网络上并没多大的改进,重点仍然在于如何用这种结构去解决存在的问题。

如果觉得有用,欢迎点赞关注赞赏,若对推荐感兴趣欢迎评论区/私信交流~~~

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2