更全的杂志信息网

耗散粒子动力学发表论文

发布时间:2024-06-30 04:00:20

耗散粒子动力学发表论文

我也要。谢谢

耗散粒子动力学 是对于具有动态和流变性质的简单及复杂的流体的一种计算模拟方法,它是一个随机的模拟技术。首先由Hoogerbrugge和Koelman设计提出,去解决分子动力学(MD)所无法解决的流体的时间和空间尺度问题。之后被Espanol公式化,并做了细微的修改,以保证适当的热平衡态。

制造工程基础 (课号30120233, 本科生)生产实习与社会实践 (课号40120613, 本科生)机械系统课程设计 (课号40120522, 本科生) 精密与超精密加工生命科学精密微操作 在精密超精密加工方面,研制出带宽为200Hz和10kHz的两种快速刀具伺服系统(Fast Tool Servo,FTS),解决了快速刀具伺服机构行程和频响之间的矛盾,以及FTS精密运动控制问题,并分别应用于精密非圆车削和非轴对称微结构表面的超精密车削中。将变速加工引入非圆车削,从理论上揭示了变速加工提高非圆车削稳定性和精度的机理,建立了实际应用变速加工的有效方法。通过理论建模与有限元分析,阐明了超精密非轴对称车削成形机理。此外,结合国家国防重大需求,深入开展碳纤维复合材料/钛合金叠层构件高效精密制孔机理与工艺研究,从理论上揭示叠层构件精密成形机理和刀具磨损机制,探索实现新型制孔工艺,满足军工重点型号工程应用需求。在生命科学精密微操作方面,作为项目负责人,承担了863重点项目“生命科学微量样品自动化操作设备”。提出原位冷冻研磨离心的蛋白质提取方法,解决了现有方法效率和蛋白回收率低的问题;建立了狭缝针接触分样的动力学模型,从理论上揭示了狭缝针微阵列制备的机理,研制成功生物样品微阵列制备系统,并在军事医学科学院、南京大学等多家单位进行示范应用。在国家自然科学基金资助下,以细胞显微注射为背景,首次利用耗散粒子动力学方法,建立了综合细胞骨架与细胞膜特性的细胞微结构模型,并与美国麻省理工学院力生物学实验室合作,深入研究细胞力学特性和损伤机理,以提高显微注射操作效率和细胞成活率。 清华大学教学成果二等奖:传承求实作风,践行求真理念,培育求新思维——机械工程及自动化专业生产实习探索与实践(2010)清华大学教学成果二等奖:机械大类培养模式下制造工程基础平台课的创建与实践(2010)北京市教学成果一等奖:机器人创新设计实践教学研究-探究课、SRT、科技竞赛相衔接的教学模式探索(2009)清华大学实验技术成果一等奖:MOS仿人足球机器人实践教学平台(2008)国家教委科技进步二等奖:基于大行程微位移机构的智能中凸变椭圆活塞数控车削系统(1997)国家教委科技进步二等奖:集成化智能化计算机辅助工艺设计系统(1996) 1. 主要科研项目:[1]2012-2015,面向微注射的细胞力学建模表征与参数优化,国家自然科学基金项[2]2012-2014,数字化装配技术研究,企业资助项目[3]2012-2014,碳纤维复合材料/钛合金叠层构件精密制孔机理与工艺研究,摩擦学国家重点实验项目[4]2012-2013,手机摄像头自动对焦装置的研究与开发,企业资助[5]2009-2011, 生命科学微量样品自动化操作设备, 国家863重点项目.[6]2009-2011, 微结构表面的超精密车削机理与精度提高技术, 摩擦学国家重点实验室自由探索项目.[7]2008-2011, 面向生命科学的机器人微纳理论与技术研究, 摩擦学国家重点实验室重点项目.[8]2007-2009, 电磁驱动超高频响直线式微进给系统, 国家自然科学基金项目.[9]2007-2009, 军民两用智能移动机器人, 企业资助.[10]2007-2008, 高精度装夹技术及应用, 包头市科委项目.[11]2006-2008, 超声引导肝肿瘤微波消融治疗机器人系统的开发, 北京市科委十一五重大项目.[12]2002-2004, 利用变速加工提高非圆车削精度的机理和方法研究, 国家自然科学青年基金项目.[13]2002-2003, 中型柔性组合夹具元件设计及其软件开发, 企业资助.[14]2001-2002, 中国三江航天集团下属八厂CIMS初步设计, 企业资助.[15]2001-2002, 中国三江航天集团车间合理化, 企业资助.[16]1998-2000, 采用信息元法面向并行工程CAPP框架系统, 国家863项目.[17]1999-2000, 基于异地PDM的分布式产品数据管理技术, 国家863重点项目.[18]1997-1999, 基于重复控制的直线伺服单元研究, 国家自然科学基金项目.[19]1993-1995, 金刚石微粉砂轮超精密磨削, 国家自然科学基金项目.[20]1989-1992, 高频响大行程微进给机构研究, 国家自然科学基金重大项目子项. 2. 主要论文[1]Dan Wu, Ken Chen. Frequency domain analysis of nonlinear active disturbance rejection control via the describing function method. IEEE Transactions on Industrial Electronics, 2013. (online, doi:10.1109/TIE.2012.2203777)[2]Fei Liu, Dan Wu, Roger D. Kamm, Ken Chen. Analysis of nanoprobe penetration through a lipid bilayer. Biochimica et Biophysica Acta (BBA) – Biomembranes. (Available online 20 March 2013)[3]Fei Liu, Dan Wu, Ken Chen. The Simplest Creeping Gait for a Quadruped Robot. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 2013. (online,doi: 10.1177/0954406212444987)[4]Dan Wu, Libin Song, Ken Chen,Fei Liu. Modelling and hydrostatic analysis of contact printing microarrays by quill pins. International Journal of Mechanical Sciences, 2012, 54(1): 206-212. (SCI: 881AS)[5]Dan Wu, Shunyan Zhou, Xiaodan Xie. Design and control of an electromagnetic fast tool servo with high bandwidth. IET Electric Power Applications, 2011, 5(2):217-223. (SCI: 752DC)[6]Dan Wu, Ken Chen. Chatter suppression in fast tool servo-assisted turning by spindle speed variation. International Journal of Machine Tools & Manufacture, 2010, 50(12): 1038-1047. (SCI: 683BW)[7]Dan Wu, Xiaodan Xie, Shunyan Zhou. Design of a normal stress electromagnetic fast linear actuator. IEEE Transactions on Magnetics, 2010, 46(4):1007-1014. (SCI: 572TG)[8]Dan Wu, Ken Chen. Design and Analysis of Precision Active Disturbance Rejection Control for Noncircular Turning Process. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2746-2753. (SCI: 466XD).[9]Dan Wu, Tong Zhao, Ken Chen, Xiankui Wang. Application of active disturbance rejection control to variable spindle speed noncircular turning process. International Journal of Machine Tools & Manufacture, 2009, 49(5):419-423. (SCI: 430BI).[10]Dan Wu, Ken Chen, Xiankui Wang. An investigation of practical application of variable spindle speed machining to noncircular turning process. International Journal of Advanced Manufacturing Technology, 2009, 44(11):1094-1105. (SCI: 495HO)[11]Dan Wu, Ken Chen, Xiankui Wang. Tracking control and active disturbance rejection with application to noncircular machining. International Journal of Machine Tools & Manufacture. 2007, 47(15): 2207-2217. (SCI: 233DB).[12]Danpu Zhao, Jing Xu, Dan Wu, Ken Chen, Chengrong Li. Gait definition and successive gait-transition method based on energy consumption for a quadruped. Chinese Journal of Mechanical Engineering, 2012, 25(1):29-37. (SCI: 879QG)[13]Dan Wu, Xiankui Wang, Tong Zhao, Weilong Lv. Application of active disturbance rejection to tracking control of a fast tool servo system. Proceedings of the IEEE International Conference on Control Applications, Toronto, Canada, 2005: 547-552. (EI: 2006259952183).[14]Dan Wu, Xiankui Wang, Ken Chen, Wangmin Yi. Analysis and improvement for machining stability in noncircular turning. Proceedings of ASPE 19th Annual Meeting, Orlando, USA, 2004.[15]Dan Wu, Xiankui Wang, Tong Zhao. Profile Precision Analysis and Enhancement for Noncircular Turning. Proceedings of the Second International Conference on Precision Engineering and Nano Technology, Changsha, China, 2002: 265-270.[16]Dan Wu, Xiankui Wang, Zhizhong Li. oncurrent Process Planning for Machined Parts. Tsinghua Science and Technology, 2002, 7(5): 481-487.[17]Dan Wu, Xiankui Wang, Zhiqiang Wei. Research on Key Techniques of Distributed Product Data Management. Proceedings of 5th International Conference on Progress of Machining Technology, Beijing, China, 2000: 847-852.[18]Dan Wu, Xiankui Wang. Software Stiffness in Linear Motor Micro-feed System. Proceedings of the Sixth International Manufacturing Conference with China, Hongkong, 1993:449-451.[19]Danpu Zhao, Dan Wu, Ken Chen. A Gait generation and Transition Method for Quadruped Walking Machine. High Technology Letters. (Accepted)[20]Danpu Zhao, Dan Wu, , Yi Qiang, et al. The design of bionic joints: a lesson from synovial joints. Proceedings of the 1st International Conference on Bio-Medical Engineering and Informatics, Sanya, China, 2008: 788-792. (EI: 20083811570179).[21]Danpu Zhao, Dan Wu, , Ken Chen. The mechanism and feasibility of self-assembly with capillary force. Key Engineering Materials. 2007, 335: 234-239. (EI: 20071210498649)[22]Xiankui Wang, Dan Wu. Research on the Linear Motor Micro-feed Mechanism. Proceedings of the 11th International Conference on Production Research, Hefei, China, 1991: 1961-1964.[23]Xiankui Wang, Dan Wu, Yuan Zhejun. Experimental Research on the Linear Motor Micro-feed Device with High Frequency Response, Long Travel and High Accuracy. Annals of CIRP, 1991,40(1):379-382.[24]吴丹,周顺燕,谢晓丹. 快速刀具伺服系统的精密自抗扰控制. 第29届中国控制会议论文集. 2010, 6101-6106. 北京:2010.7.29~31. (EI: 20105113503685)[25]吴丹, 谢晓丹, 王先逵. 快速刀具伺服机构的研究进展. 中国机械工程, 2008, 19(11):1379-1385. EI:20082911382698.[26]吴丹,冯平法,刘莉. 创新生产实习模式,提高学生综合素质. 清华大学教育研究, 2008, 29(sup.): 72-79.[27]吴丹, 孙京海, 王先逵. 非轴对称车削成型方法探讨. 清华大学学报(自然科学版),2006, 46(11): 1832-1835. (EI: 20070510399859)[28]吴丹, 王先逵, 赵旦谱, 等. 变速非圆车削关键技术研究. 上海大学学报, 2004, 8(8):1-5.[29]吴丹, 王先逵, 易旺民, 等. 重复控制及其在变速非圆车削中的应用. 中国机械工程, 2004, 15(5):446-449. INSPEC: 8154007.[30]吴丹, 王先逵, 赵彤, 等. 非圆车削中刀具运动实现方法. 清华大学学报: 自然科学版, 2003, 43(11):1472-1475. (EI: 2004148103118)[31]吴丹, 王先逵, 魏志强, 等. 基于协同服务平台的分布式产品数据管理. 清华大学学报, 2002, 42(6): 791-794. (EI: 2002417130770).[32]吴丹, 王先逵, 魏志强, 等. 异地数字化产品定义及管理的关键技术研究. 机械工程学报, 2002, 38(11): 71-74.[33]吴丹, 王先逵, 魏志强. 飞机产品数字化定义技术. 航空制造技术, 2001, (8): 21-25.[34]刘飞,吴丹,陈恳,宋立滨,潘玉龙. 微阵列制备机器人分向前馈误差补偿控制. 清华大学学报,2010. (已录用)[35]潘玉龙,吴丹,宋立滨,刘飞,陈恳. 多孔板微阵列制备机器人系统的设计. 机器人. 2010. (已录用)[36]谢晓丹,王博超,吴丹. 电磁驱动快速刀具伺服机构的电磁场和驱动力. 清华大学学报(自然科学版), 2008, 48(8): 1298-1301. (EI: 20083611520701)[37]吕伟龙, 吴丹, 王先逵, 等. 自抗扰精密跟踪运动控制器的设计. 清华大学学报(自然科学版). 2007, 47(2): 190-193. (EI: 20071610558158)[38]赵旦谱, 吴丹, 陈恳. 毛细力驱动自组装定位原理. 清华大学学报, 2005, 45(11): 1480-1483. (EI: 2006049663742)[39]易旺民, 吴丹, 高杨, 等. 用于非圆车削的离散重复控制算法. 清华大学学报: 自然科学版, 2004, 44(8):1064-1066. (EI: 2004488687128)[40]王先逵, 吴丹, 刘成颖, 等. 制造自动化技术的发展方向. 航空制造技术, 2002, (5): 17-20.[41]王先逵, 吴丹. 制造技术中的模糊逻辑决策研究. 中国机械工程, 2000, 11(2): 157-162.[42]王先逵, 吴丹, 刘成颖. 精密加工和超精密加工技术综述. 中国机械工程, 1999, (5):570-576. 3. 发明专利[1]一种整体式的点样针清洗装置. ZL 200910241631.1, 2011年授权. (排名第1)[2]一种轮足两用机器人腿. ZL 200810057401.5, 2011年授权. (排名第1)[3]管道喷涂机器人及其作业轨迹规划方法. ZL 200910090827.5, 2011年授权. (排名第4)[4]轮足两用式移动机器人. ZL 200810056851.2, 2010年授权. (排名第1)[5]仿生轮足两用式机器人. ZL 200810057399.1, 2010年授权. (排名第1)[6]纸浆模塑制品的复合成形方法. ZL 98126393.3, 2003年授权. (排名第3)[7]高频响大行程高精度微进给装置. ZL 95107471.7, 2000年授权. (排名第2)[8]金刚石微粉砂轮的软弹性修整法. ZL 95105340.X, 2000年授权. (排名第3)

1905年,在现代科学史中,被称为“爱因斯坦奇迹年”。在人类文明史上发生了一件令人惊讶的事件:一位在瑞士伯尔尼专利局任三级技术员的、在科学界毫无名气的阿尔伯特·爱因斯坦�Albert Einstein(1879—1955),在这一年共写了6篇文章,其中5篇发表于1905年。关于爱因斯坦在1905年到底发表了几篇论文,各书说法不一,有的说是4篇,有的说是5篇。实际上爱因斯坦在1905年“写了”6篇文章,按写作时间它们分别是: (1)“关于光的产生和转化的一个试探性观点”( On a Heuristic Viewpoint Concerning the Production and Transformation of Light) 原文下载地址(英文)(2)“分子大小的新测定方法”;( New method to measure the masses of molecules). (3)“热的分子运动论所要求的静液体中悬浮粒子的运动”;(On the Motion Required by the Molecular Kinetic Theory of Heat of Small Particles Suspended in a Stationary Liquid) (4)“论动体的电动力学”;( On the Electrodynamics of Moving Bodies) (5)“物体的惯性同它所含的能量有关系吗?”;( Does the Inertia of a Body Depend Upon Its Energy Content?) (6)“关于布朗运动理论” (Investigations on Theory of Brownian Motion) 其中有4篇(1、3、4、5)发表在1905年德国的《物理学年鉴》(Annalen der Physik)上,还有一篇(2)是爱因斯坦的博士论文,当年在伯尔尼出版了单行本,这篇论文当然也应该看成是1905年发表的;但是其他国家的物理学家当年不一定知道。后来,这篇文章和第六篇文章刊登在1906年2月的《物理学年鉴》上 网上几乎没有原文

动力电池散热期刊投稿

有本期刊叫电气工程,可以投

不要审稿费,版面费在800-1000之间

电化学的SCI的杂志哪个最容易中以下期刊均为电化学分类SCI收录,2013年影响因子,不包括综合性化学期刊,总结不易,还望采纳1、electrochimica acta 3.777偏重的研究方向 电化学(2) 电容器(1) 电化学传感器(1) 纳米电镀(1) 电极材料(1) 电分析(1) 锂电池(1) 纳米材料(1) 电沉积(1) 审稿速度 平均1.44个月的审稿周期 投稿平均命中率为 :60.71% 2、journal of solid state electrochemistry 2.279发表时间过长,算起来从投稿到网上先行发表,大约用了半年时间。 要有创新性,如果已经在较高档次文章的通讯上(如前面的Chem. Commun.)发表了,再将详细的研究论文发在该刊上应该是比较容易了。3、biosensors & bioelectronics 5.437偏重的研究方向 传感器(1) 电化学分析(1) Electrochemestry(1) Biosensor(1) 审稿速度 平均1.6个月的审稿周期 投稿命中率 投稿平均命中率为 :31% 【投稿方式】Online Submission 【投稿费用】免费。彩色图片是否需要花钱不清楚。 【投稿感受】简称为BB,是elsevier旗下的一本月刊杂志,主要刊登生物传感器相关领域的工作,尤以电化学传感器居多,检测对象最喜欢的则是葡萄糖(glucose biosensors),中国人投的比较多。近两年影响因子直线上升,05年3.463,06年4.132,07年已升到5.061。读研以来,我共投过此期刊三次,第一次被拒,后两次均小改后接受。审稿时间一般为两个月左右,投稿后状态变化一般为“Submitted to the journal--> with editor-->under review--required review completed-->Decision”,审稿人一般为两到三个。该期刊对创新性要求不是很高,但最近由于IF升的高估计会提高标准了。文章类型有全文(full paper)和通讯(short communication)两类。文章接受后一般2周内即online,4个月左右后能出卷/页码号。4、electrochemistry communications 4.425偏重的研究方向 锂电池(2) 电化学(2) 多孔材料(1) 纳米电极材料(1) 审稿速度 平均1个月的审稿周期 投稿命中率 投稿平均命中率为 :25% ELECTROCHEM COMMUN是电化学领域的权威期刊。审稿速度快,编辑效率高,一般8-14天有初审意见,如果顺利一个月左右就见刊了。期刊要求短小精悍,强调新颖。电化学期刊的影响因子总体不高,不过这些年有所抬头,本刊的分数也随之迅速增长。该刊作为国际电化学的旗舰期刊,其上的优秀文章领导着电化学领域的发展方向。

粒子群算法发表论文

粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来发展起来的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的"交叉"(Crossover) 和"变异"(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。

[1] 张兴华,永磁同步电机的模型参考自适应反步控制,控制与决策,2008,(3):341-345(EI收录)[2] 张兴华,具有参数和负载不确定性的感应电机自适应反步控制,控制与决策,2006,(12):1379-1382(EI收录)[3] 张兴华,基于递阶遗传算法的模糊控制器的规则生成和参数整定,信息与控制,2006,(3):304-308[4] 张兴华,感应电机的无速度传感器逆解耦控制,电工技术学报,2005,(9):55-60 (EI收录)[5] 张兴华,戴先中,感应电机神经网络逆控制的数字实现,仪器仪表学报,2006,(9):1213-1217(EI收录)[6] 张兴华,戴先中,基于逆系统方法的感应电机调速控制系统,控制与决策,2000,(6):708-711(EI收录)[7] 张兴华,戴先中,基于无源性的感应电机转矩与转速控制,电工技术学报,2001,(4):34-38 (EI收录)[8] 张兴华,周刘喜,PID控制器的粒子群多目标优化设计,应用科学学报,2007,(4):392-396[9] 戴先中,张兴华,刘国海等,感应电机的神经网络逆系统线性化解耦控制,中国电机工程学报,2004,(1):112-117(EI收录)[10] 殷铭,张兴华,戴先中,基于模糊神经网络的发酵过程溶解氧预估控制,控制与决策,2000,(5):523-526(EI收录)[11] Dai.X, He.D, Zhang.X, Zhang.T. MIMO system invertibility and decoupling control strategies based on ANN ɑ-order inversion, IEE Proceedings-Control Theory and Application, 2001, 148(2): 125-136 (SCI,EI收录)[12] 张兴华,戴先中等,感应电机的逆系统方法解耦控制,电气传动,2001,(2):28-31[13] 张兴华,基于DSP和IPM的感应电机直接矢量控制系统,电力电子技术,2003,(5):44-47[14] 张兴华,空间矢量脉宽调制恒压频比控制的数字实现,电气传动,2004,(2):12-15[15] 张兴华,基于Simulink/PSB的异步电机变频调速控制系统的建模与仿真,系统仿真学报,2005,(9):2099-2103(EI收录)[16] 张兴华,基于转子电阻自适应估计器的感应电机逆解耦控制,电气传动,2005,(11):36-40[17] 张兴华,牛兴林,林锦国,基于EKF的感应电机无速度传感器逆解耦控制,系统仿真学报,2006,(4):982-985(EI收录)[18] 张兴华,朱筱蓉,林锦国,基于自适应遗传算法的多目标PID优化设计,系统工程与电子技术,2006,(5):744-746(EI收录)[19] 张兴华,空间矢量调制算法的DSP实现,微特电机,2004,(1):37-39[20] 张兴华,矢量控制神经网络线性二次型调节器的设计,电气自动化,2004,(1):19-21[21] 张兴华,一种神经网络辨识的混合学习算法,计算机工程与应用,2004,(28):33-36[22] 张兴华,一类Takagi-Sugeno模糊控制器的自适应遗传优化设计,计算机工程与应用,2004,(34):22-25[23] 张兴华,张冀,永磁同步电机的逆系统解耦控制,微电机,2007,(8): 9-12[24] 张兴华,朱筱蓉,林锦国,基于量子遗传算法的PID控制器参数自整定,计算机工程与应用,2007,(21): 218-220[25] 张兴华,李纬, 周刘喜,一种PID参数整定的粒子群优化算法,计算机工程与应用,2007,(33):227-229[26] 叶成平,张兴华,基于DSP的异步电机的恒压频比控制,中小型电机,2004,(1):28-32[27] 吕俊,张兴华等,基于自适应递阶遗传算法的神经网络优化策略,计算机工程与设计,2005,(2):305-307[28] 夏俭军,张兴华,采用模糊控制的转差频率控制变频调速系统,中小型电机,2005,(6):26-29[29] 戴先中,刘国海,张兴华,恒压频比变频调速系统的神经网络逆控制,中国电机工程学报,2005,(7):109-114(EI收录)[30] 朱筱蓉,张兴华,基于小生境遗传算法的多峰函数全局优化研究,南京工业大学学报,2006,(3):39-42[31] 张兴华,Simulink/PSB在《运动控制系统》实验教学中的应用,实验室研究与探索,2006,(9):1077-1079[32] 张兴华,朱筱蓉,基于改进遗传算法的PID调节器多目标优化设计,计算机工程与应用,2006,(28):208-210[33] 朱筱蓉,张兴华,一种带修复函数的QGA及其在背包问题中的应用,计算机应用,2007,(5):1187-1190[34] 杨剑琳,张兴华,沈捷,Backstepping控制方法在PMSM速度跟踪控制中的应用,微电机,2007,(10):52-54[35] 朱筱蓉,张兴华,基于改进量子遗传算法的连续函数优化研究,计算机工程与设计,2007,(21):5195-5197[36] 张兴华,无刷直流电机的无速度传感器数字控制系统设计,电力自动化设备,2008,(7):25-28 (EI收录)[37] 张兴华,沈捷,电流控制电压源逆变器驱动的感应电机逆解耦控制,电力自动化设备,2008,(8):81-85 (EI收录)[38] 张兴华,感应电机的非线性输出反馈变频调速系统,电机与控制学报,2008,(4):468-472 (EI收录)[39] 张兴华,丁守刚,非均匀气隙永磁同步电机的自适应混沌同步,控制理论与应用,2009,(6)(EI收录)

分子动力学模拟投稿期刊

应用物理,物理学的中文国际刊物

分子模拟(Molecular Simulation) 利用计算机以原子水平的分子模型来模拟分子结构与行为,进而模拟分子体系的各种物理、化学性质的方法。它是在实验基础上,通过基本原理,构筑起一套模型和算法,从而计算出合理的分子结构与分子行为。分子模拟不仅可以模拟分子的静态结构,也可以模拟分子体系的动态行为。[1]分子模拟的主要方法有两种:分子蒙特卡洛法和分子动力学法。[1]中文名分子模拟外文名Molecular Simulation快速导航分类 模拟技术 应用分子模拟是指利用理论方法与计算技术,模拟或仿真分子运动的微观行为,广泛的应用于计算化学,计算生物学,材料科学领域,小至单个化学分子,大至复杂生物体系或材料体系都可以是它用来研究的对象。原理优势利用适当的简化条件,将原子间的作用等效为质点系的运动,从而避免了求解繁琐的量子力学方程。原子的运动遵从牛顿第二定律,质点系整体遵从哈密顿原理。与之对应,完全从量子力学出发进行的原子计算称为”第一性原理(ab into)计算“。第一性原理计算虽然精度高,但是计算复杂,难以实现大规模的模拟。而分子模拟则在保证精度的同时,大大扩展了原子的计算机模拟的使用范围。第一性原理计算通常不过几十、几百个原子,而分子模拟甚至可以实现百万甚至千万个原子的运算。[2]分类分子模拟的工作可分为两类:预测型和解释型。预测型工作是对材料进行性能预测、对过程进行优化筛选,进而为实验提供可行性方案设计。解释型工作即通过模拟解释现象、建立理论、探讨机理,从而为实验奠定理论基础。模拟技术这是随着计算机在科研中的应用而发展起来的一门新的科学,是计算机科学与基础科学相结合的产物。在药物研究方面通过分析和计算一系列活性药物分子的三维构象并将其叠合,可以了解某一类药物分子所应具有的药物构象,这一信息给予新药研究很大帮助,药效构象的计算为今后的药效基团方法以及数据库虚拟筛选的方法打下了基础。应用近年来分子模拟技术发展迅速并在多个学科领域得到了广泛的应用。在药物设计领域,可用于研究病毒、药物的作用机理等;在生物科学领域,可用于表征蛋白质的多级结构与性质;在材料学领域,可用于研究结构与力学性能、材料的优化设计等;在化学领域,可用于研究表面催化及机理等;在石油化工领域,可用于分子筛催化剂结构表征、合成设计、吸附扩散,可构建和表征高分子链以及晶态或非晶态本体聚合物的结构,预测包括共混行为、机械性质、扩散、内聚与润湿以及表面粘接等在内的重要性质。9月29日上午,科研处与我院联合邀请王秀秀博士在线上为广大师生作题为“分子动力学模拟及其在生物科学中的应用”的学术讲座。报告会由基础医学院副院长余方流主持。王秀秀博士主要从事以分子动力学模拟技术应用于生物大分子之间相互作用研究。她以“工科技术、理科思维、生物学应用”为主线,深入浅出地分享了博士研究阶段的两个科研案例:一是通过蛋白-蛋白对接、分子动力学模拟以及免疫共沉淀等多重验证,找出了kindlin-2上新的Actin结合位点;二是通过设计比泛素分子量更小的多肽,最终找到了与泛素受体CXCR4结合最紧密且本身最稳定的多肽,为人类肠道辐射防护作用机理研究奠定理论基础。整场报告主题分明,思路清晰,充分展示了分子动力学模拟在生物科学或医学中应用的广阔前景与重要价值。线上学术报告线上师生围绕生物信息学与分子动力学模拟等热点话题与王秀秀进行了积极交流,线上报告互动活跃,精彩纷呈。王秀秀,女,苏州大学放射医学专业博士,师从柴之芳院士,2022年基础医学院新引进应届博士。在读期间,以第一作者在Journal of Materials Chemistry A和Biomolecules发表SCI论文两篇,共同第一作者在Journal of Physics D: Applied Physics发表SCI论文一篇。分子模拟在生物化学中的应用实例王春芳;王靖方;栗琳;魏冬青【期刊名称】《原子与分子物理学报》【年(卷),期】2007(24)2【摘 要】分子模拟是一种描述和模拟分子和分子体系运动状态和性质的方法.随着电子计算机技术的飞速发展,分子模拟进入了一个前所未有的新时代.在此之前,人们只能通过机械模型和纸笔计算进行简单的分子模拟,现在通过利用电子计算机人们可以做更为复杂、更为全面的分子模拟.本文通过两个实例来简单阐述了分子模拟在生物化学中的应用.一则是通过模拟膦酰基氧化腈和丙乙腈的1,3偶极环加成反应过程,用密度泛函理论方法在B3LYP/6-31G(d,p)水平上解释了得到2:1的加成产物的现象,来解释1,3偶极环加成反应得到2:1加成产物的现象.一则是通过结构生物信息学的方法建立H5N1高致病性禽流感病毒蛋白的三维结构,模拟其与一些药物分子的相互作用,研究H5N1的活性中心.【总页数】5页(P316-320)【作 者】王春芳;王靖方;栗琳;魏冬青【作者单位】上海交通大学生命科学与技术学院,上海市,200240;天津师范大学生物信息与药物开发研究所,天津市,300第 2 页074;上海交通大学生命科学与技术学院,上海市,200240;中国科学院上海生命科学院系统生物学重点实验室生物信息中心,上海市,200031;上海交通大学生命科学与技术学院,上海市,200240;北京大学生物化学与分子生物学院,北京市,100871;上海交通大学生命科学与技术学院,上海市,200240【正文语种】中 文【中图分类】O561.1【相关文献】1.分子模拟在生物化学中的应用实例 [J], 吴铭第 3 页2.华东六省一市生物化学与分子生物学学会——2008年学术交流会在江苏省南通市召开(华东六省一市生物化学与分子生物学学会理事长、秘书长联席会议同时召开) [J], 无3.第21届国际生物化学与分子生物学联盟学术大会暨第12届亚洲大洋洲生物化学家与分子生物学家学术大会 [J], 4.中国生物化学与分子生物学会农业生物化学与分子生物学分会成立大会暨第六届全国农业生物化学与分子生物学学术交流会在贵州省贵阳市召开 [J], 5.中国生物化学与分子生物学会中医药生物化学与分子生物学分会中医药普通第 4 页高等教育“十一五”国家级规划教材《生物化学》定稿会在桂林召开 [J],因版权原因,仅展示原文概要,查看原文内容请购买

十五岁发表粒子物理学论文

当今不世出的奇才 Stephen Wolfram 一周前发表了一篇热情洋溢的博客《Finally We May Have a Path to the Fundamental Theory of Physics… and It’s Beautiful》,光看题目就中二值爆表。如果不认识 Wolfram 大神,一定认为这是民科之作。Wolfram 当然不是什么民科(我被动地接触过太多民科了,一般都是朋友的亲戚推翻了相对论或发现了大统一理论后,朋友实在看不下去,把鸿篇巨制转给我,让我“给个说法”)。Wolfram 11岁编撰物理学手册,15岁在期刊发表粒子物理论文,20岁从加州理工大学获得理论物理博士(费曼在他的答辩委员会里)并留校任职,21岁成为当时最年轻的麦克阿瑟天才奖得主。后来决定出圈,创造了符号计算语言 Mathematica(这个名字还是乔布斯给起的),然后又创造计算知识引擎 Wolfram Alpha(真的很好用,我现在遇到积分问题都扔给它)。但他离开学术后一直没有放弃思考物理问题。他的畅销巨著《A New Kind of Science》(扎克伯格最爱)的第九章将 Computational Universe 思想拓展到物理学,从元胞自动机和图形网络出发涌现出时空结构、基本粒子等思想是今天 Wolfram Physics Project 的基础。Wolfram 是我极为敬佩的天才。不是说他在物理学术界做出多少贡献(我相信如果他愿意,他可以成为当代一流的物理学家),而是他对当今物理学范式保留批判思想,思考非常底层的问题。同时,作为一个执行力超强的实干家,他自己造工具,帮助自己实现奇思妙想——且不说这些工具帮助了多少学术圈里外的人。离经叛道的想法让他很孤独。他在《幕后故事》博客里回忆,以前经常和物理学家、非物理学家聊他的想法,后者听不懂,前者出于礼貌最多坚持15分钟。然后他很知趣地打住,礼貌地询问物理学前沿进展,然后对方就很惊奇他自己对前沿进展如此了解。后来,他就放弃沟通,以隐修士的方式自己开发工具,钻研这些基础问题,直到 A New Kind of Science 大卖。再之后,在 Wolfram 暑期学校里遇到几个志同道合的物理学家,激励他推进今天这个项目。我看到很多人喷他,说没有提出任何预测,缺乏严谨推导,故弄玄虚,民科——我想大概是题目触动了 ta 作为物理学家的傲慢。这个态度不好。确实,这项工作称不上是科学工作,因为它没有做出任何可供实验验证的量化预测,而且提出的“成果”都是当今主流理论的低端复刻,没有什么新东西。这也远不是完成了的项目,充斥着大量含混不清却引人深思的灵感。但是,旁友,你玩过 John Conway(RIP)的生命游戏吗?你为简单规则涌现出的奇妙模式震惊过吗?你有过那种道生万物的神迹体验吗?不要忘了那种纯真的快乐啊旁友,你会在这个项目里重温它。把它看成一个思想实验,一个游戏(物理学又何尝不是?)。Keep simple。这篇博客几个小时就读完了,读完你发现一大堆 hand waving 的语句,啊我推出了狭义相对论,啊我推出了爱因斯坦-希尔伯特方程,啊我推出了量子力学黑洞辐射 AdS/CFT…… 你会一头雾水,然后关了骂民科。但仔细读技术文档,你会发现很多自圆其说的、subtle 的解释(尽管还是有很多 hand waving),你的牵强感会越来越弱,会体会到他的中二。注意:不要指望看这篇文章能理解这个项目的全部思想,因为我不想复述全文内容,也懒得把图一张张贴过来,只贴没图讲不明白的。你首先得读这篇博客,然后按文中链接读448页技术文档的相应内容,然后可能继续被引向 A New Kind of Science 第九章。如果你足够刨根问底,你最终会被引向 Jonathan Gorard 的两篇 paper。链接都扔在文末了。哦对了,如果你不是 Wolfram 这样的神童,最好还要有物理学位。我会把我在阅读过程中最困惑的、嗑最长时间的地方尝试解释清楚,因为你很可能也在这里卡住。如果读完还有不明白的,可以留言,我尽量解答。在了解这项工作之前,你要理解这两个概念:1,Computation not as a methodology, but as a paradigm.2,Computational irreducibility.啥意思?物理学大概是还原论最成功的学科。牛顿把苹果和星体用同一个公式统一起来后,粒子宇宙图景就成了万物理论的标准语言。一切物体都由粒子构成,一切现象都归结为粒子的运动与粒子间的相互作用。我们只要把基本粒子找到,摸清楚基本作用力,万事大吉,剩下的就是计算和集邮。近代物理学革命后,作为几何理论的广义相对论一枝独秀,与延续粒子霸权的量子力学各领风骚;上世纪80-90年代,人们逐渐认识到 more is different,作为构建理论的凝聚态物理异军突起。不论如何,计算,一直都是工具,始终扮演着承载公式运算的忠实的仆人。但是,Wolfram 发现,计算,承载着创造。那些从简单规则演化出的奇特模式,与其说是由规则本身决定的,不如说是大量的计算催生出的——玩过生命游戏你就知道,无法把某种模式归咎于某条特殊的演化规则。更神奇的是,在看似完全不同的规则下,常常演化出非常相似的模式。作为范式的计算,让秩序与规律涌现出来。涌现,涌现,涌现。一套简单的演化规则,一个随意的初始条件,开始计算,计……算……,生成的网络在不同的时空尺度涌现出物理时空结构、因果律、协变性、量子力学、粒子、运动、能量动量……

父亲杨武之是芝加哥大学的数学博士,回国后曾任清华大学与西南联合大学数学系主任多年。1942年杨振宁毕业于昆明的国立西南联合大学,1944年在该校研究生毕业。此后他于1945年考取公费留学赴美,就读于芝加哥大学,取得博士学位。1949年,杨振宁进入普林斯顿高等研究院进行博士后研究工作,开始同李政道合作。当时的院长奥本海默说,他最喜欢看到的景象,就是杨、李走在普林斯顿草地上。1966年以后,他长期执教于纽约州立大学石溪分校,创立并主持该校的理论物理研究所。他也是美国科学院院士、英国皇家学会会员、中国科学院外籍院士、香港中文大学博文讲座教授。

重力G(N)G=mgm:质量g:9.8N/kg或者10N/kg密度ρ(kg/m3)ρ=m/vm:质量V:体积合力F合(N)方向相同:F合=F1+F2方向相反:F合=F1-F2方向相反时,F1>F2浮力F浮(N)F浮=G物-G视G视:物体在液体的重力浮力F浮(N)F浮=G物此公式只适用物体漂浮或悬浮浮力F浮(N)F浮=G排=m排g=ρ液gV排G排:排开液体的重力m排:排开液体的质量ρ液:液体的密度V排:排开液体的体积(即浸入液体中的体积)杠杆的平衡条件F1L1=F2L2F1:动力L1:动力臂F2:阻力L2:阻力臂定滑轮F=G物S=hF:绳子自由端受到的拉力G物:物体的重力S:绳子自由端移动的距离h:物体升高的距离动滑轮F=(G物+G轮)/2S=2hG物:物体的重力G轮:动滑轮的重力滑轮组F=(G物+G轮)S=nhn:通过动滑轮绳子的段数机械功W(J)W=FsF:力s:在力的方向上移动的距离有用功W有=G物h总功W总W总=Fs适用滑轮组竖直放置时机械效率η=W有/W总×100%

我也需要谢谢了

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2