更全的杂志信息网

单细胞转录组投稿期刊

发布时间:2024-07-04 10:08:06

单细胞转录组投稿期刊

对于多细胞生物而言,细胞存在固有的异质性。随着单细胞测序技术的迅速发展,极大地丰富了我们对于细胞异质性和细胞功能的理解。近年来,随着植物原生质体制备等难题的逐步突破,植物单细胞测序愈发火爆,仅2021年上半年就已发文十几篇,其中不乏Cell、Nature Communications等期刊,广泛应用于拟南芥、水稻、玉米、番茄、杨树等物种。因此,植物单细胞测序的应用潜力不言而喻。那植物单细胞测序到底能如何大展身手呢? 一、构建细胞图谱 植物组织是由不同形态且具有特定功能的细胞构成,不同细胞类型,其基因表达模式也存在差异。通过单细胞转录组测序,构建植物细胞图谱,使我们能深入了解植物组织中细胞类型的组成,获取每个细胞独特的转录本信息,从而鉴别细胞身份和功能。例如,2021年4月,中国科学院分子植物科学卓越创新中心的研究人员在期刊Nature Communications上发表的文章中,以5日龄野生型水稻(ZH11)幼苗胚根(靠近根尖1cm,约90个幼苗)为材料制备原生质体进行单细胞转录组测序。以获得的27,469个高质量单细胞转录组数据构建了水稻胚根细胞图谱,通过细胞聚类及注释分析,利用UMAP可视化,将这些细胞划分为21个不同的细胞类群,涵盖水稻根表皮、外皮层、厚壁组织、皮层、内皮层、中柱鞘、分生组织、维管组织等细胞类群。由此表明,水稻根尖是由高度异质的细胞组成的。 二、鉴定稀有细胞类群 基于液滴法的高通量单细胞测序使得捕获植物发育过程中各个时段的细胞成为可能,因此,通过绘制植物单细胞转录图谱,不仅可以鉴定植物组织中的主要细胞类型,还可以鉴定出植物组织中稀有的细胞类群。通过稀有细胞类群的鉴定,有利于深入挖掘其在植物发育分化过程行使的重要功能。例如,2019年2月,德国图宾根大学的研究人员在国际学术期刊Developmental Cell上发表的文章中,以6日龄拟南芥幼苗根尖(距离根尖1cm)为材料进行了单细胞转录组测序,通过特异性QC(静止中心)Marker基因鉴定出拟南芥根组织中稀有细胞群体QC细胞,并且发现,在亚簇C11.1中36个细胞至少表达了一半的QC基因,这与单细胞测序的采样深度以及大部分QC基因的相对低表达相一致。通过QC细胞和分生组织未分化细胞进行转录组比较,确定了254个优先在QC中表达的基因。QC细胞的鉴定,为深入研究这一罕见细胞类型的生物学功能提供了更多可能。 三、挖掘新Marker基因 在多细胞生物中,细胞类型以及细胞特异性功能的产生在很大程度上源于细胞中不同基因的差异表达。在单细胞转录组数据分析过程中,主要通过差异分析鉴定出某个细胞亚群的特征性基因,再结合Marker基因鉴定细胞类型。因此,新Marker基因的挖掘有助于深入阐明细胞异质性, 并且对于识别植物发育过程中未知细胞类型的细胞群体是非常关键的。例如,2020年6月,河南大学的研究人员在Molecular Plant期刊上发表的文章中,以5日龄拟南芥幼苗子叶为材料进行了单细胞转录组测序,利用几个已知的参与调控气孔谱系细胞发育的Marker基因对鉴定的细胞类型进行验证,发现FAMA、TMM、HIC和SCRM在特定细胞类型中特异性表达,而其他标记基因在特定的细胞类型中没有特异性表达,因此,为了探究气孔谱系细胞发育的潜在调控因子,分析了不同细胞类群中的基因表达谱,在每个细胞群中鉴定了高表达的标记基因即新Marker基因,并且进一步发现,这些Marker基因中部分可能参与调控气孔谱系细胞的发育。 四、研究细胞发育动态 拟时序分析是指根据细胞之间表达模式的相似性对单细胞沿着轨迹进行排序,以此推断出发育过程中细胞的分化轨迹或细胞亚型的演化过程。通过绘制植物细胞间的发育分化轨迹来重塑细胞随着时间的变化过程,可以深入挖掘随着细胞状态的变化其细胞类型的改变,并进一步解析植物细胞分化路径,了解植物细胞的动态发育过程。例如,2021年4月,中国科学院分子植物科学卓越创新中心的研究人员在Nature Communications国际学术期刊上发表的文章中,以5日龄水稻胚根(距离根尖1cm,n=90)为材料制备原生质体进行单细胞测序,在该研究中,研究人员不仅揭示了水稻根单细胞异质性,还重建了水稻根表皮细胞(epidermal cell)和地上组织(ground tissue)细胞的连续发育分化轨迹,明确了在根尖干细胞分化过程中基因表达与基因染色质可及性的相关性,同时,结合拟南芥根尖和水稻根尖的转录组图谱和标记基因分析,揭示了单子叶植物水稻和双子叶植物拟南芥在根尖细胞类型上的进化保守性。 五、基因调控网络分析 组织内细胞异质性的基础是细胞转录状态的差异,转录状态的特异性又是由转录因子主导的基因调控网络决定并维持稳定的。对于植物发育的调控机制研究,从不同细胞类型的转录因子调控网络开始分析,有助于深入理解细胞发育的生物学功能。例如,2020年6月,河南大学的研究人员在Molecular Plant期刊上发表文章中,对来自5日龄拟南芥幼苗子叶中的12,844个单细胞进行了RNA测序,成功构建了拟南芥气孔谱系细胞的基因表达谱。在该研究中,研究人员为了发现参与调节气孔谱系细胞早期发育的潜在转录因子,对不同细胞类型中高表达的转录因子进行了研究,通过构建转录调控网络,揭示了从拟分生组织母细胞(MMCs)到保卫母细胞(GMCs)这一特定气孔发育阶段中转录因子的调控网络,研究结果表明TML1、BPC1、BPC6、SCRM、PIF5和WRKY33可能是调控MMCs、EMs、LMs和GMCs靶基因表达的核心转录因子。 六、非生物胁迫响应机制研究 非生物胁迫属于植物生长发育过程中的重要环境影响因素。通过单细胞转录组测序,探索不同处理条件下植物组织中细胞类型的组成变化,从而解析非生物胁迫反应机制,有利于我们了解单细胞水平上植物细胞和发育生物学的机理。例如,2020年9月,比利时根特大学的研究人员在Science国际顶级期刊上发表的文章中,以6日龄拟南芥幼苗根尖为材料制备原生质体进行单细胞转录组测序,探索低磷酸盐条件下拟南芥根应对该非生物胁迫的响应机制。研究表明,TMO5/LHW靶基因响应显著富集在根毛细胞中。在低磷条件下,TMO5/LHW异源二聚体会诱导维管细胞中可移动细胞分裂素的合成,从而通过改变表皮细胞的长度和细胞命运来增加根毛的密度。其次,缺乏磷酸盐所导致的根毛响应依赖于TMO5和细胞分裂素。该研究揭示了细胞分裂素信号转导将表皮上根毛响应与维管细胞对磷酸盐缺乏的感知联系到了一起。 七、保守性及差异性分析 针对植物同一物种不同亚种间或不同物种间外观形态、生物学性状特征等方面作比较,在种质资源研究中具有重要意义。基于单细胞水平,绘制同一物种不同亚种间的单细胞转录组图谱,通过不同亚种之间的比较,不仅可以揭示不同亚种在发育过程中分化轨迹的差异性和保守性,且有助于深入解析不同亚种在应对外部环境刺激的响应机制。例如,2020年12月,中国农业科学院生物技术研究所的研究人员发表在Molecular Plant上的文章中,以两个重要水稻栽培亚种(Nip和93-11)的3日龄幼苗根尖为材料进行了单细胞转录组测序,分别构建了这两个水稻亚种根尖的转录组图谱,通过拟时序分析发现,水稻根尖表皮的分化是以表皮细胞为起点,沿着假时间主干,一端最终发育为成熟的表皮细胞,一端最终分化为根毛细胞,两个水稻亚种的发育轨迹显示高度一致的拟时间顺序,揭示了不同亚种之间发育轨迹的保守性。功能富集分析发现,两个水稻亚种每种细胞类型的差异表达基因中大多数基因与环境响应有关,而且不同水稻亚种在受到外部环境刺激时响应机制存在差异。 八、重要转录因子功能研究 在植物单细胞测序中,不仅可以基于构建的基因网络鉴定在植物发育分化过程中起着关键作用的核心转录因子,还可以针对已知功能的转录因子进行突变体研究,从而解析该转录因子功能的丧失对植物组织成分以及细胞特性和分化的影响,有助于进一步探究重要转录因子是如何参与植物的组织或器官发育的。例如,在根中,SHORTROOT(SHR)和SCARECROW(SCR)这两个转录调控因子在转录调控复合体中发挥重要作用,而且对干细胞龛的维持和组织模式至关重要。在2020年6月,美国杜克大学的研究人员在bioRxiv发表的文章中,就以这两个转录因子的突变体为材料进行了单细胞转录组测序,绘制了拟南芥shr-2和scr-4突变体细胞图谱,以野生型拟南芥(WT)为对照,探究了SHR或SCR功能的缺失对于组织组成以及细胞的身份和分化的影响,结果发现,相比于WT,shr-2突变体中木质部、韧皮部和中柱鞘细胞的丰度显著减少,在scr-4中也检测到类似的变化,与已报道结果一致。 九、总结与展望 多篇植物单细胞转录组测序文章的发表证实了高通量scRNA-seq 方法在植物研究中的可行性和有效性,预示着植物研究已然进入了单细胞时代。在植物中开展单细胞转录组研究有助于深入理解不同细胞类型在发育过程中的作用以及细胞间的调控网络。但植物单细胞测序的应用方向远不止于此,从单一组织到多组织,单细胞多组学联合分析等亦是趋势。我们相信,在未来,植物单细胞测序遍地开花,时日可待。 参考文献: [1] Zhang T Q, Chen Y, Liu Y, et al. Single-Cell Transcriptome Atlas and Chromatin Accessibility Landscape Reveal Differentiation Trajectories in the Rice Root[J]. Nature Communications, 2021. [2] Denyer T, Ma X, K Lesen S, et al. Spatiotemporal Developmental Trajectories in the Arabidopsis Root Revealed Using High-Throughput Single Cell RNA Sequencing[J]. Developmental Cell, 2019. [3] Liu Z, Zhou Y, Guo J, et al. Global Dynamic Molecular Profiles of Stomatal Lineage Cell Development by Single-Cell RNA Sequencing[J]. Molecular Plant, 2020. [4] Wendrich J R, Yang B J, Vandamme N, et al. Vascular Transcription Factors Guide Plant Epidermal Responses to Limiting Phosphate Conditions[J]. Science, 2020, 370(6518). [5] Liu Q, Liang Z, D Feng, et al. Transcriptional Landscape of Rice Roots at the Single Cell Resolution [J]. Molecular Plant, 2020. [6] Shahan R, Hsu C W, Nolan T M, et al. A Single Cell Arabidopsis Root Atlas Reveals Developmental Trajectories in Wild Type and Cell Identity Mutants. bioRxiv, 2020.

4月16日,百奥智汇创始人、科学顾问张泽民教授在北京大学的课题组与合作者在国际顶级学术期刊《Cell》上发表了题为"Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer"的文章,利用单细胞转录组测序技术对结直肠癌患者的肿瘤微环境,特别是浸润髓系细胞类群首次进行了系统性的刻画,同时利用小鼠模型,对anti-CSF1R抑制剂和anti-CD40激动剂两种靶向髓系细胞的免疫治疗策略潜在的作用机理给出了解释。 该研究建立了结合肿瘤患者及小鼠模型的单细胞转录组来研究肿瘤免疫治疗的范例,为人们研究其他疾病中免疫细胞以及开发新的治疗方案提供了思路。对于该研究,上海市免疫学研究所苏冰所长、上海交通大学医学院叶幼琼研究员等相关专家点评道:该工作全面地解析结肠癌的肿瘤微环境细胞图谱,阐明细胞与细胞之间的相互作用,对靶向肿瘤免疫微环境为基础的肿瘤治疗提供了更详细的理论基础,为今后靶定髓系细胞的精准治疗提供助力,具有重要的临床转化意义。 在该研究中,研究者共使用了Smart-seq2、10x 3′ Gene Expression、10x V(D)J + 5′ Gene Expression等 3种单细胞测序技术 ,以及tSNE、UMAP、PCA、RNA velocity、URD、PAGA、STARTRAC、GSVA富集分析、热图、小提琴图、气泡热图、轨迹图、Circos图、火山图、生存分析等 十多种生物信息学分析及展示方法。 值得一提的是, 这些实验技术和分析方法,百奥智汇皆可实现。 下面,百奥我就为大家详细解析,带大家了解这些技术和方法是如何在研究中应用的。 1.10x Genomics和Smart-seq2技术比较 该研究首先评估并比较了10x Genomics和Smart-seq2两种单细胞测序技术的结果。结果显示,与10x scRNA-seq平台相比,Smart-seq2捕获了更多的基因,包括细胞因子,CD分子,配体/受体和转录因子,并且显示出较弱的批次效应 ,从而可以对调节途径进行更深入的分析(图2),而10x平台则获得了更多的分群。因此,作者将两种技术同时使用,从而能够最大化地确定细胞类型或稀有种群的数量,改善细胞聚类的结果,得出更准确的结论。 2.tSNE降维——展示分群、基因表达模式、组织分布等多层信息 该研究使用无监督聚类、PCA、CGA等方法对来自18位CRC患者肿瘤、邻近组织和血液样本的10× 3′ Gene Expression ( 43,817个细胞)和Smart-seq2(10,468)单细胞测序结果进行整合聚类分析,然后用tSNE进行降维展示,分别得到38个和36个群,包括6个内皮细胞群,2个成纤维细胞群,13个髓系细胞群,4个ILC群,18个T细胞群和5个B细胞群等(图3)。对于淋巴细胞,研究通过特异的的免疫球蛋白重链特征基因加以区分(图4)。同时,研究还在tSNE结果中展示了各细胞的组织分布情况(图5)。对于Smart-seq2非免疫细胞的测序结果,该研究利用tSNE将其分为12个亚群,包括4个恶性细胞亚群和8个非恶性细胞亚群(图6)。其中,由推断的拷贝数变异(CNV)定义的恶性细胞表现出高度的基因表达异质性,形成了患者特异性的分群(图7)。 3.热图、气泡热图——展示细胞间基因表达模式的差异 单个tSNE图或组图可展示单个或数个基因在不同细胞群中的表达情况,但在展示多个样本大量基因的全局表达情况时就相对吃力。此时就需要用到热图。而气泡热图则是在热图的基础上加入了基因表达细胞在特定细胞群中占比的信息,从而对细胞群进行更详细的表征。在该研究中,作者用热图展示了10x测序分析得到的38个白细胞群中的差异基因表达差异(图8),以及整合10x和Smart-seq2测序分析得到的48个群的基因表达差异(图9)。研究还分析了13个髓系细胞中的特征基因表达情况(其中9个以气泡热图展示),并据此将它们区分为肥大细胞(hM01),树突状细胞(hM02-04),单核细胞(hM05-07,hM11),组织驻留性巨噬细胞(hM08-10)和 肿瘤相关巨噬细胞(TAMs,hM12-13)。 4.扩散图、RNA velocity、URD、PAGA——推断和展示细胞发育轨迹 为进一步探索 TAMs 的来源,该研究利用扩散图中嵌入的RNA velocity对随机选择的单核细胞和巨噬细胞的发育轨迹进行推断和展示,鉴定出了从表达CD14的单核细胞向FCN1+ 单核样细胞和不同的巨噬细胞群体的强烈定向流动(图11),体现二者在发育上的前后顺序。进一步利用URD和PAGA这两种正交算法分析巨噬细胞的转录轨迹,发现巨噬细胞发育成TAMs(图12,图13)。综合上述轨迹推断结果,研究发现TAM主要来自独特的肿瘤浸润性单核样细胞前体。其中, C1QC+ 和 SPP1+ TAM都从浸润肿瘤的单核细胞样前体形成,而 SPP1+ TAM也可能源自 NLRP3+ RTM(图14)。 5.火山图、富集分析、热图、URD图——多角度展示两类TAMs差异 对于两类在发育轨迹上存在显著差异的TAMs,作者进一步使用热图、火山图、富集分析等方法进行了分析,从多角度揭示了它们的差异。由于细胞的发育轨迹受转录调控网络控制,作者先分析了两类TAMs转录因子的表达差异,结果以热图显示。其中,C1QC+ TAMs显示出MAF/MAFB和FOS/JUNS高表达,而PP1+ TAMs则高表达CEBPB和ZEB2。然后,作者又用火山图展示两类TAMs中显著差异表达的基因。该图包含两个维度,其中纵轴P value体现显著性,横轴fold change展示差异性。 结果显示,C1QC+ TAMs显示出补体C1Q、TREM2、MERTK和CD80等基因的高表达, 而SPP1+ TAMs显示出SPP1、MARCO和VEGFA的特异性表达。随后,作者又使用基因集合变异分析(GSVE)分析了两类TAMs在通路上的差异。GSVE是一种以非监督方式对一个群体评估通路活性差异的基因集富集(GSE)分析方法。 该研究的结果显示,SPP1+ TAMs显示出肿瘤血管生成,ECM受体相互作用、肿瘤脉管系统、大肠腺瘤和转移性肝癌等通路的特异性富集,而C1QC+ TAMs则显示出补体激活以及抗原加工和呈递途径的富集(图17)。此外,SPP1 + TAMs还显示了大肠腺瘤和转移性肝癌通路的特异性富集和相关基因的表达(图17和图18),表明在它们CRC中有促癌/促转移作用。 6.相互作用网络图和Circos图——展示细胞间相互作用、受体配体相互作用 更进一步地,作者在CRC中建立了细胞间相互作用网络图。将该研究中的单细胞测序数据集与GTEx、TCGA的组织整体RNA测序数据集进行整合分析,发现TAM和cDC作为预测网络的核心,与其他细胞类型的联系最多(图19,图20)。其中,C1QC+ TAM和两组cDC主要与其他免疫细胞(尤其是T细胞亚群)相互作用(图20),提示其在抗肿瘤T细胞应答中起调节作用。再进一步的细胞群间的受体——配体相互作用分析显示,在与髓系细胞和T细胞有关的配体-受体对中,CXCL10-CXCR3在C1QC + TAM中富集,暗示了C1QC+ TAM具有募集或激活T细胞的潜在作用。而SPP1+ TAMs中富集的SPP1-ITGAV、SDC2-MMP2、FN1-ITGA5等配体-受体对,则暗示了其在可能与某些整合蛋白相互作用,以促进CRC的肿瘤发生。 7.相似性分析、热图——展示跨物种的细胞群相似性 为了将上述对人髓系细胞异质性的研究发现与临床应用相结合,作者接下来将相同的实验和分析方法用于两种对肿瘤免疫治疗的小鼠模型中,其中Renca对CSF1R阻断抗体敏感,而MC38对CD40激动剂抗体敏感(图21)。 作者使用10x Genomics平台对免疫治疗后小鼠的肿瘤中分离出的免疫细胞进行了单细胞转录组测序,并与人髓系细胞群进行了相似性分析,确定了多个跨物种相对应的髓系种群,包括两种cDC群和两种TAM群(图22)。此外,对小鼠TAM群进行与人类TAM群相同的途径分析发现,小鼠TAM群体也基于它们的血管生成,低氧和T细胞相互作用基因特征而分离(图23)。这些数据表明人类CRC患者和小鼠肿瘤模型之间存在功能相似的TAM群体。 8.细胞丰度、生存分析——体现不同细胞类群的抗药性 进一步的耐药性研究显示,抗CSF1R治疗后F4/80高表达的巨噬细胞优先减少(图24),说明不同的巨噬细胞群体对抗CSF1R治疗的敏感性不同。同时,治疗后小鼠细胞群中mC12和mM14簇几乎完全丢失,TAM簇mM11,mM13和mM15的减少最小(图24),说明TAMs对CSF1R阻断的治疗具有抗性。同时,抗CSF1R的TAM亚群优先表达参与血管生成和免疫抑制的基因,如Vegfa,Cd274和Arg1。为了将在小鼠中的发现与人类CRC相关联,作者使用生存分析比较了具有不同水平C1QC+ TAM和SPP1+ TAM基因特征患者的生存率,发现低C1QC+ TAM、高SPP1 +TAM组合与CRC患者的预后更差相关(图26)。 这些发现表明,抗CSF1R治疗可能不足以耗尽所有具有促进肿瘤生长潜力的巨噬细胞,这一特性可能是其单药疗效差的原因。类似的分析应用于抗CD40治疗则发现,抗CD40治疗能够激活cDC1细胞,CCL22等激活的基因特征与CRC患者的总体生存期呈正相关(图27),这可能部分解释了抗CD40激动剂治疗CRC的机制。 9.STARTRAC——分析T细胞的迁移、克隆扩增和发育转变 众所周知,T细胞在肿瘤免疫治疗中发挥重要作用。为进一步探索抗CD40激动剂治疗CRC的机制,作者基于TCRα和β链序列,应用STARTRAC算法分析抗CD40治疗后T细胞的迁移、克隆扩增和发育转变,以了解抗CD40激动剂治疗对肿瘤浸润性T细胞功能的影响。结果显示,抗CD40激动剂治疗后,Ccl5+ Tem CD8+ T细胞具有比其他CD8+ T细胞亚群更高的迁移指数(图28)。进一步剖析Ccl5+ Tem亚群内的TCR克隆型表明,克隆扩增较高的细胞在肿瘤和肿瘤引流淋巴结之间表现出更多的TCR共享,表明这些细胞在抗CD40处理后具有更强的迁移能力(图29)。同时,Ccl5+ Tem和Cxcr6+ Trm CD8+ T细胞之间的过渡指数在基线时显着高于CD8+ T细胞亚群中其他对的过渡指数,表明某些Cxcr6+ 肿瘤中的Trm细胞可能在某一过程中由浸润的Ccl5+ Tem细胞发育转变而来,这一过程在抗CD40治疗后得到了进一步增强(图30)。 这些数据表明,抗CD40治疗对肿瘤浸润性T细胞的扩增,迁移和发育转变具有独特影响,能够加强Ccl5+ Tem的迁移和克隆扩增能力,及其向Cxcr6+ Trm CD8+ T细胞转变的能力。 10.相关性分析——揭示细胞间存在相互作用 在研究中作者发现,Th1类细胞与成熟和未成熟的cDC1细胞均显示正相关,表明这两类细胞之间存在相互作用。在此基础上,结合该研究中发现的Bhlhe40 + Th1类细胞在抗CD40治疗后的占比以及特异性扩增、Bhlhe40 + CD4 + T细胞能够产生更多IFNγ,以及之前研究发现的表达IFNG的BHLHE40 + Th1样细胞富集于MSI CRC患者人群中且显示出对ICB治疗的良好反应等结果,作者认为抗CD40治疗导致增加的Bhlhe40 + Th1样细胞可能为在该模型中CD40激动剂治疗能够成功与抗PD1协同的机制提供了解释。 总的来说,该研究的思路是: 先通过单细胞转录组、免疫组测序等技术,对CRC患者的肿瘤微环境进行细胞分群、基因差异表达、细胞发育轨迹、细胞间相互作用等多水平、多维度的详细表征,发现了肿瘤浸润髓系细胞类群中两类特殊的细胞类群TAM和cDC可能在CRC的抗肿瘤T细胞应答、肿瘤发生等过程起调节作用。然后利用小鼠模型,将上述发现应用于对anti-CSF1R抑制剂和anti-CD40激动剂两种靶向髓系细胞的免疫治疗策略的潜在作用机理的解释中。 参考文献: Lei Z. et al., Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer.  Cell . 2020.

细胞代谢组学投稿期刊

代谢组学(Metabonomics/Metabolomics)是20世纪90年代末期发展起来的一门新兴学科,是研究关于生物体被扰动后(如基因的改变或环境变化后)其代谢产物(内源性代谢物质)种类、数量及其变化规律的科学。代谢组学着重研究的是生物整体、器官或组织的内源性代谢物质的代谢途径及其所受内在或者外在因素的影响及随时间变化的规律。代谢组学通过揭示内在和外在因素影响下代谢整体的变化轨迹来反映某种病理生理过程中所发生的一系列生物事件。  代谢组处于基因调控网络和蛋白质作用网络的下游,所提供的是生物学的终端信息。如同我们在长江的上游建大坝或对江水改道,这些项目的生态影响会在下游的河道和地域体现出来一样,我们经常说,基因组学和蛋白组学告诉你可能发生什么,而代谢组学则告诉你已经发生了什么.

cell2020是一本由美国细胞出版社出版的杂志,主要关注生物学、医学和生物技术领域的最新研究和发展。该杂志每月出版一次,每期收录有关生物学、医学和生物技术领域的最新研究和发展的文章。

2020年发表的细胞生物学杂志包括:1. Cell:《细胞》(Cell)是一本由美国细胞生物学会出版的期刊,主要发表细胞生物学领域的研究论文。2. Molecular Cell:《分子细胞》(Molecular Cell)是一本由美国细胞生物学会出版的期刊,主要发表分子细胞生物学领域的研究论文。3. Developmental Cell:《发育细胞》(Developmental Cell)是一本由美国细胞生物学会出版的期刊,

代谢组是测定细胞内所有代谢小分子(如TAC里面各种代谢产物)的含量,蛋白质组是测定体内各种蛋白质含量。 相同点大概就是都主要是靠质谱 蛋白质组已经比较成熟,有很好的搜库(鉴定)手段,以及比较好定量手段,如SILAC,TMT等方法,一次一般可以测量几千个蛋白 代谢组(可能不同的机构会有不同,以下仅基于我了解到的数据)各个实验室一般需要建立自己的库,一般也就几百个小分子。一般会把质谱的正负离子模式都扫一下,暂时没有通用的定量方法,所以数据可信度不如蛋白质组高 一般蛋白质组更为常用,代谢组的话需要有特定的研究方向,比如研究脂肪代谢之类的,就针对那些油脂分子 PS:用质谱研究药物代谢和研究组学其实差别很大的,做组学的话如果不是某些特殊情况,你自己不会分析谱图也不是太影响结果,只要看得懂by离子就好了。看LZ的意思,估计是不需要用到蛋白质组了,代谢组我也只是刚开始做,只能说protocol我们用下面这个,具体的分析步骤得看实验室需求。代谢组学有一个很热门的应用,就是用来鉴定微生物的taxonomy。在不少大的生物技术公司和农业公司,除了用16S rRNA和基因组判定taxonomy,还会结合代谢组学的数据。而taxonomy的鉴定在这些大公司的微生物研发产品线里是很重要的一环

投稿转录组期刊

一般来说,raw data经过以下处理之后叫clean data 1,去掉低质量的reads 2,去掉包含接头(adaptor)的reads 3,去掉包含N过多的reads

建议至少提前18个月准备。相比起国内的医药卫生类期刊,大部分SCI期刊审稿周期较慢,而且对文章审查非常严格。影响因子高的期刊或是冷门的研究方向更是如此。常笑医学里有很多关于SCI期刊投稿的干货,对投稿很有帮助的

中文期刊要转录组数据。1、转录组原始数据,转录组原始数据包括递交原始序列。2、转录组有两部分数据要递交,中文期刊先是拼接的转录组序列,一个是递交到tsa上,另一个是fastq的原始测序数据。

身边发过文章的同学一般是提前一到两年的时间开始准备,据说SCI审稿周期挺长的!被同学安利了常笑医学网,网站上有SCI期刊的审稿周期、录用率和出版周期等关键信息,希望对你有帮助!

全转录组投稿期刊

中文期刊要转录组数据。1、转录组原始数据,转录组原始数据包括递交原始序列。2、转录组有两部分数据要递交,中文期刊先是拼接的转录组序列,一个是递交到tsa上,另一个是fastq的原始测序数据。

人类前额叶背外侧皮质转录组尺度的空间基因表达 Kristen R. Maynard 一些基础内容,放在前面: 空间转录组学: 将基因的表达与组织切片的免疫组化图像进行整合,从而将组织内不同细胞的基因表达信息定位到组织的原始空间位置上去,区分哪些基因在组织内是活跃的,达到直观检测组织中不同部位基因表达的差异。 Visium空间转录组是 把切片在芯片上展开 ,在空间上用条形码来保留切片上每个小点的空间位置信息。 流式细胞仪原理 原位测序原理 10x Visium空间转录组分析思路 发表期刊:bioRxiv 发表时间:2020年2月 发表单位:美国约翰霍普金斯医学院等 该研究使用10x Genomics Visium平台研究了六层的人类背外侧前额叶皮层(DLPFC)中基因表达的空间结构。研究确定了广泛的层富集的表达特征,并细化了与以前层标记的关联。将层表达特征叠加到大规模的单核RNA测序数据上,增强了表达驱动簇的空间标注。通过整合神经精神障碍基因集,显示了精神分裂症和自闭症谱系障碍相关基因的差异层富集表达,突出了空间定义表达的临床相关性。之后,开发了一个数据驱动的框架来定义空间转录组学数据中的非监督簇(unsupervised clusters一种机器学习),该簇可以应用于形态学结构不如皮质层状结构定义明确的其他组织或脑区域。最后为科学界创建了一个Web应用程序,以探索这些原始数据和总结数据,以加快目前的神经科学和空间转录组学研究(​http://research.libd.org/spatialLIBD​)。 (1背景、2目前的方法及缺陷、3全基因组空间转录组学的优势) 背景: 目前的方法以及缺陷:全基因组空间转录组学的优势:3个死亡的,神经正常的成年人脑,每个都在DLPFC位置取4个切片(两组,两组之间相距300微米,组内的两片紧挨着)每一片厚度10微米 取完样本之后,用visium方法建库测序,利用测序数据,将数据分层(大脑灰质的皮层分为6层,下面附带一些白质层,一共7层) 测序完成之后,先做spot的分层,(分层方法:用传统的标志基因,判断spot属于哪个层,同时做t性降维,根据计算结果加入人为注释,把spot分配到各个层中 12个切片一共分配了76个层(8*7+4*5) 对76个层做主成分分析PCA(principal component analysis),(PCA的特点:在千变万化的数据中找到主要矛盾)可以得到分层的信息 对每个层中高表达的基因进行验证和分析,(这些是以往已知的标记基因) 由本次的visium数据,发现新的在特定层高表达的标记基因 评估之前的研究中确定的层高表达表基因是否合适(P-value.Rank percentile), visium技术可以把广域的空间和广谱的基因表达都进行分析,找出的基因就更具有代表性 Hafner基因集在分布上的特殊性(Hafner基因集:Hafner等人做的突触相关的基因集。 无监督unsupervised(PCA方法的前50个主成分做的聚类)、半监督semi-supervised(富集出来的差异表达基因作为指导,对spot做的聚类)、有监督markers(把以往做的标记基因作为监督条件来进行聚类)聚类分析 (A) DLPFC在垂直于软脑膜表面的解剖平面获得组织块,并延伸至灰质交界处。每个块横跨6个皮层和白质。 (B)实验设计简图,包括从三个独立的神经正常的成年供体中获得的两对“空间复制”。每对由两个直接相邻的10个微米系列组织切片组成,第二对位于第一对后300微米处,共12个样本在视觉平台上运行。 (C)标本151673 DLPFC组织块及相应组织学。 (D-F)显示样本151673中SNAP25 (D)、MOBP (E)和PCP4 (F)基因对数转化归一化表达(logcounts)的spot图。这些基因的表达通过描绘灰质/神经元(SNAP25)和白质/少突胶质细胞(MOBP)的边界并定义L5 (PCP4),确认了每个样本的空间方向。12个样品的SNAP25, MOBP, PCP4的spot图见图S1,图S2,图S3。 (A)“pseudo-bulked”统计程序的可视化描述,该程序将每个组织切片中的空间转录组数据从点级(约4000个点)折叠为层级(6层+白质)数据。 (B)对所有切片(‘pseudo-bulked’)表达谱的主成分分析(PCA)。第一主成分分离白质和灰质,第二主成分与层相关联。以MOBP为例,对用于评估各层富集的三种统计模型的可视化描述,包括 (C)“方差分析”模型,测试七层方法是否不同 (D)“浓缩”模型,测试每一层是否不同于所有其他层- WM(橙色)和其他6所示层(浅蓝色) (E)“成对”模型,哪些测试彼此每一层相对的另一层- WM所示(橙色)和L3(浅蓝色),其他层的灰色。 (A-D) 左:基因FABP7 (A, L1>rest, p =5.01e-19)、PVALB (B, L4>rest, p =1.74e-09)、CCK (C, L6>WM, p =4.48e19)、ENC1 (D, L2>WM, p =4.61e-25)的对数转化归一化表达(logcounts)箱式图。 中间:样本151673中基因FABP7 (A)、PVALB (B)、CCK (C)和ENC1 (D)的对数转化归一化表达(logcounts)的spot图。 右图:原位杂交(ISH)图像来自Allen人脑图谱的成年人大脑颞叶皮质(A, D)、DLPFC (B)或视觉皮质(C): et al., 2012)。箱和点图可以使用我们的web应用程序进行重现:。艾伦脑图谱图像的标尺=1.6毫米 (A-D) 左:基因AQP4 (A, L1>rest, p =1.47e-10)、TRABD2A (B,L5>rest, p =4.33e-12)、HPCAL1 (C, L2>rest, p =9.73e-11)、KRT17 (D,L6>rest, p =5.05e-12)的对数转化标准化表达(logcounts)箱式图。 右:样本151673中AQP4 (A)、TRABD2A (B)、HPCAL1 (C)、KRT17 (D)的对数转化归一化表达(logcounts)spot图。 (E)DLPFC皮层条带的多路单分子荧光原位杂交(smFISH)。描述DAPI(核)、AQP4、HPCAL1、TRABD2A、KRT17和脂褐素自身荧光表达的最大强度共聚焦投影。merge图像,无脂褐素自发荧光。【可能是因为脂褐素会自发荧光,所以要merge图像】 (A)空间配准方法概述。 皮尔森相关值的热图评估了我们导出的700个基因的层富集统计数据(y轴)与Hodge等人产生的人类颞叶皮层中snRNA-seq数据的 (B)层富集统计数据之间的关系。 (Hodge等人,2019)(这些数据仅描绘了灰质,x轴上的1-6层)和 (C)细胞类型的统计数据,这些数据由Mathys等人注释 。 来自人类前额叶皮层中的snRNA-seq数据(Mathys等人,2019)(x轴)。  Oli =少突胶质细胞,Ast =星形胶质细胞,Mic =小胶质细胞,Opc =少突胶质前体细胞,Per =周细胞,End =内皮,Ex =兴奋性神经元,In =抑制性神经元。 使用Fisher的精确检验对我们的层富集统计数据与一系列相关的预定义基因集进行了富集分析。  (A)SFARI(Abrahams等人,2013)和Satterstrom等人(Satterstrom等人,2020)的自闭症谱系障碍(ASD)层流富集了102个ASD基因(ASC102)。 根据Gandal等人在PsychENCODE(PE)中的报道,进一步将其分为53个主要为ASD(ASD53)和49个主要为发育迟缓(DDID49)的基因,以及ASD与神经性对照患者大脑中差异表达(DE)的基因 研究(Gandal等人,2018)。 (B)精神分裂症(SCZD)基因,包括来自差异表达(DE)和转录组范围关联研究(TWAS)的基因,这些基因来自大脑的RNA序列数据 与BrainSeq(BS)(Collado-Torres等人,2019)和PE(Gandal等人,2018)研究中的神经型对照相比,患有SCZD的个体与神经型对照相比。  “上”和“下”标签分别表示与神经型对照相比,患有ASD或SCZD的个体中基因的表达水平更高还是更低。 色标表示-log10(p值),其阈值设置为p= 10 -12。重要热图单元内的数字表示富集的比值比(OR) (A)基于细胞结构和选定的基因标记对DLPFC层进行监督注释(如图2 A所示),被用作``ground truth'' 以评估样本151673的数据驱动的聚类结果。 (B)图解说明数据驱动的聚类流水线的示意图,包括:      (i)以无偏见的方式识别基因(HVG或SVG),      (ii)对这些基因进行聚类分析(clustering/cluster analysis)      (iii)通过与ground truth比较来评估聚类性能。  (C)比较使用Spatial DE(对数似然比,LLR)和DE'富集'模型的基因(图S7)鉴定的SVG的基因方式测试统计数据(图S7)(F统计;包括WM) 对于样品151673。颜色表示选定的基因具有层状(红色阴影)和非层状(黄色阴影)表达模式。 (D)使用样本151673中的Spatial DE(与(C)中突出显示的基因相对应)识别的选定层状(上排)和非层状(下排)基因的表达模式。 (E)可视化聚类结果     (i)``无监督''聚类(方法为``HVG_PCA_spatial'',它使用来自scran的高度可变基因(HVG)(Lun等人,2016)),50个主要成分(PC)来降低维度 ,并包含空间坐标作为聚类的特征);      (ii)“半监督”聚类,这些聚类是通过使用DE富集模型确定的层富集基因进行指导的;      (iii)在Zeng等人的已知标记的指导下进行聚类。 (Zeng et al。,2012)(方法详细信息:数据驱动的富层聚类分析和表S10)。  (F)使用手动注释的ground truth layers(如(A)中所示)和adjusted Rand index(ARI),对所有12个样本中所有方法的聚类性能进行评估。 点代表每种方法和样品,结果按聚类方法进行分层(方法详细信息:数据驱动的富层聚类分析和表S10)。 使用适用于每种方法的线性模型(所有方法的总体模型:p = 5.8e-6),P值表示将两个空间坐标作为特征包含在聚类中时ARI得分差异的统计显着性。

转录组cscd期刊投稿

【期刊发表经验分享】《地理科学》南北双核+CSCD核心期刊 《地理科学》是地理学领域 国内三大顶级期刊之一(《地理学报》、 《地理研究》、《地理科学》),致力于 地理学研究的精品成果刊载。 因此期刊从 初审、外审、校对刊载等环节都相对严 格。初审十分关注研究成果的前瞻性、创 新性及学术规范性问题,研究成果在质量 上(研究深度)达不到期刊的定位标准, 一般很难进入外审环节。 外审一般会选则 2-3位外审专家审阅,审稿周期一般基于 外审专家的审稿速度而定,快的几天甚至 几周就结束,慢的有的等3-4个月,这个 时候需要主动联系编辑部工作人员,编辑 部人员很nice,会帮您催一下外审专家或 者更换外审专家。 针对审稿,一般如果外审专家中 有以为提出退稿,稿件一般会在外审后之 间退掉,但是这个期刊的好处是都会把外 审意见详细告诉作者以供作者参考修改 (不收取审稿费)。 对于创新度较高但问 题较大的稿件有可能经过修改后再审,这 个时候需要认真对待外审专家的每一条意 见,争取做到一一修改回复。 针对质量尚 可的稿件,则经过相关修改后可进入编辑 排版状态。我个人感觉编辑部编校人员是 一个值得我们科研人员好好学习的群体, 他们对于语言的严谨性,逻辑的合理性, 学术的规范性等方面经验都相当丰富,建 议每一位投稿者在该过程中一定要好好吸 收她们提供给我们的宝贵经验,这是提升 我们写作水平很好的学习机会。 稿件出版周期一般在 8-12 个月之 间。

CSCD期刊的定义:

cscd指的是中国科学引文数据库,主要负责收录我国数学、物理、化学、天文学、地学、生物学、农林科学、医药卫生、工程技术和环境科学等领域的核心期刊,国内有七大核心期刊体系,其中cscd就是其中的一种。

CSCD扩展版定义:

CSCD中C库代表核心,E库为扩展版。

核心期刊与CSCD的区别:

1、在本质定义上:

核心期刊是某学科的主要期刊。一般是指所含专业情报信息量大,质量高,能够代表专业学科发展水平并受到本学科读者重视的专业期刊。

CSCD一般指中国科学引文数据库,收录我国数学、物理、化学、天文学、地学、生物学、农林科学、医药卫生、工程技术和环境科学等领域出版的中英文科技核心期刊和优秀期刊。

2、在范围上:

核心期刊中会有部分被收录到CSCD中,并且CSCD中,并不全是核心期刊,因此,二者只是有交集。

扩展资料

注意事项:

1、刊物选择:一般发表核心期刊都是要求发到专刊上面,所以投稿的时候一定要选对,如发的是教育类的,教育类专刊CN刊号一定要带有G4的标志。

2、格式字数:不同的刊物对格式字数等要求都不同,字数只能多不能少,如图教育探索征稿要求。

3、科学性:文章一定要有科学依据,真实的数据真实存在的。

4、可读性:可读通过数据图表等有一定的启发,专业术语语言规范性都有要求。

参考资料来源:百度百科-核心期刊

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2