更全的杂志信息网

有关天体物理论文怎么发表

发布时间:2024-07-07 21:13:09

有关天体物理论文怎么发表

SCI论文是基础学科科研成果体现的一种形式,也是理科博士生科研量化指标的一项硬性规定,一般高校理科博士生毕业的条件是一篇SCI加两篇核心期刊,或者两篇SCI。许多博士生延期毕业基本上都是论文不够,所以SCI论文对于大部分理科博士研究生来说,是三年甚至四年中非常头疼的一件事。 那么,怎么写SCI论文,怎样投稿,本人就我近一年内的一些体会写一点感受。我分为基础准备、调研、研究和运算、整理、投稿等五个阶段分别做简要介绍。 一、基础准备:要完成一篇SCI论文,基础准备必不可少。首先,你要有该研究方向必备的理论知识,否则原版的文献你根本看不懂,人家做的报告你根本就听不懂。这方面我准备得比较充分,研一一学年和研二上学期我选修了大量的一些专业基础课程,并对一些自己感兴趣的文献做了相应的了解。对参考书上和文献上相应的公式,我都逐一认真地一一推演。当然,在看文献的过程中你还要去查找相关的文献,因为有些公式是从其它文献中引用而来,如果不查你根本就不可能推得出来。可以说,在研究生阶段,查阅文献和相关信息是一种最基本的能力。 二、调研:导师给了你一个课题后,一般会有一到两篇最核心的参考文献。首先你应该精读它们,如果做的是第一个课题,最好将人家的结果重现一下,用以验证一下你的基本,另外也可以增强你的自信心。当然,在精读这一到两篇文献的同时,你可能也要去查阅文中引用的相关文献,一般到你真正深入调研时,可能你阅读的相关文献已经有二十篇以上了。 在调研的同时,你还要明确你的这个工作到底是解决一个什么问题?是一个新问题还是老问题,如果是老问题则必须用新方法或新模型,你期待的结果能够得到一个什么样的结论? 总之,你的工作必须是原创的(当然,review除外,但我估计还没有哪一个博士生牛到可以写review)。 三、研究和运算:研究目的明确后,下面就应该是研究的方法或模型了。我们专业主要是先建立物理模型,然后是大型计算,我们一般先建立基本的物理模型,然后用FORTRAN进行程序计算,因为有相当的偏微分方程是没有解析解的,只能通过数值计算获得数值解。所以这一阶段其实是最枯燥的。我们一般用SSH或XWIN32连到系里工作站上,在工作站进行计算,结果如果不满意再调整模型输入参数,我的第三个课题计算过程大约花了半年多的时间。数据出来后,用ORIGIN或IDL画图,再与观测对比,如果符合得很好,即能自圆其说的话,你就快OK了。当然,这一过程极其艰难,中间还要不时与老板讨论,对模型进行一个小的调整或修正。 其它专业我不知道,反正我们专业如果你的计算结果与观测符合得很好,那就说明你的模型至少可以解释这一现象,再牛的referee也不会拒你的稿子。 四、整理:一旦你的结果很好时,老板就会告诉你,把你的工作整理一下吧。成文时最好规范一些,最好不要用WORD,太土了,都是做科研究的人那能用平常人用的软件呢,呵呵。现在科技文献编辑一般都是LaTex软件,这个软件学起来并不难,最大的特点是生成的PDF文件极其漂亮。每一个SCI杂志都有LaTex模板,你只要将相应的地方换掉就可以了。可能在插图和编辑公式表格时麻烦一点,一般大约两三天即可熟悉它。我们专业文献一般分abstract,introduction, model,results, discussion, summary and conclusion, acknowledge, references, etc. 其中比较难写的是introduction 和discussion, summary and conclusion,中国人一般写这两部分都没有西方人写得那么简明。Introduction中先介绍与你的研究课题相关的其它人的工作,这一部分中一般要引用大量的参考文献。然后简要介绍你的工作要解决的问题及你paper的结构安排。Discussion中主要对你的结果做一些简单的讨论,比如你的结果可能预言一些什么样的现象,你的结果有些什么样的不确定性。summary and conclusion中一般会介绍你的工作的解决了什么样的问题?得到了什么结论?除非你很牛,一般结论不能太肯定,may多用一些会更好。当然,还可以把你的结论与一些大牛对比,如果差不多的话就会更加使得你的paper被accepted 的可能性更大。另外,如果你是第一次用LaTex,插图(请注意只能插ps or eps格式的图)或制表将会花费你大量的时间,不过这不冤枉,等你写第二篇文章时你就会轻车熟路了。 五、投稿:一般第一次投稿最好投母语非英语国家的杂志,我第一paper就投的日本天文学会杂志PASJ (impact factor 2.8),05年九月底投的,十月底收到审稿意见。改了半个多月后于十一月上旬投出,第二稿审稿意见十二月一日左右收到,有一个小地方要求改动一下。第三稿投出去后于十二月二十日收到接收函。在投递修改稿时一定要注意,除了LATEX文件和图表等附件外,还要附一封cover letter(说明函),即对审稿人的意见要进行逐点回答。我的第二篇文章是背着老板做的,投到欧洲的天文学和天体物理学(A&A,impact factor 4.233),第一稿的水平实在不咋地,审稿人认真提出了一些看法(建议大家以后多投欧洲杂志,欧洲人真是很客气)和意见,我改了十天左右就投出去了,并要求编辑进行约一周的快速审稿,审稿人对我进行了批评,认为我这么急于发文章并没有对文章进行认真的修改,我把文章摆了半个月后再花了约半个月认真修改后,审稿人在第三稿审稿意见中很满意,只要我将结论中几句话稍稍修改一下就可以接收了,并表明只要编辑审阅可以了。第二篇文章大约花了四个月,这就是背着导师的代价。第三篇文章是今年3月9日投出的,6月2日接收,这个速度相当快了,投的是我们专业的头号杂志,美国的天体物理学杂志(ApJ, impact factor 6.3)。第四篇文章6月10号投出的,投的英国的皇家天文学会月报(MNRAS, impact factor 5.4)。9月1日接收,前后也是三个月左右。 一篇文章可能被接受的条件:第一:文章的内容要让审稿人surprising一下。第二,你的想法的新颖性也是文章被接收的重要条件,也就是说,你的文章如何从众多的投稿中脱颖而出,这就是一个法宝。也可以说成是想问题的角度不要墨守陈规! 目前我投的四篇文章都没有碰到拒稿的情况,可能我的运气较好。当然,拒稿也是很正常的现象。一般有两种可能:一是你的文章对该杂志并不适合。二是referee认为你的研究没有什么价值,或者没有什么新意。如果是前者,你选择一个合适的杂志重投即可。如果是后者,要么重换选题,要么你确信你的研究有价值,可以向编辑提出更换referee, 我们系就有这种情况,并且文章后来还较快地被接收了。 至于文章的版面费的问题,大部分国外杂志都有,也有少数没有的,如果老板经费多,还是选本专业顶级期刊发,就不管钱的多少了。比如我发的ApJ,版面费一页120美金,还是挺多的。但是我的第二篇和第四篇文章都不需要版面费。另外,博士生期间也有科研经费申请,江苏省每年六月底就有研究生创新项目申请,时间是六月份,大约150人左右。今年我就申请到了3万元的科研基金,好像学校还有配套的3万元,这样的话经费够你用的了,买书,出差,笔记本电脑,发文章等可能都用不完。

《大科技》《科技传播》是科普杂志,不是学术期刊,科学家有时也会看看,但绝不会引用。论文一般都需要数据,没有不包括数据的论文,即便量子力学论文、宇宙大爆炸论文那也是到处充满数据。可以看得出来,你的文章根本没有数据,只是一番推论,这是不行的。你需要把你的理论得出的结果与已有数据进行对比,看看是否符合(这是基础),然后再用你的理论得出其它人得不到的数据(这是验证),等待实验家去完成实验,采集数据。若别人后来做出的数据支持了你的理论,那就说明你的理论在一定范围是正确的,你才会名声大振。

刊号:CN31-1385/N 出版:上海科学技术出版社《科学》编辑部 地址:上海钦州南路71号 邮编:200235 《空间科学学报》空间科学是当代高科技发展的前沿领域之一,《空间科学学报》是我国空间研究界有影响综合性刊物。所刊载的内容由以空间本身为研究对象的研究成果和与空间环境有关的基础研究,应用研究及技术研究成果构成,报道的主要学科分支包括空间天文学、空间物理学、空间化学与地质学、空间生命科学、微动科学、空间材料科学和空间地球科学等。主要栏目有:理论研究、探测与实验、综述、研究简报,学报动态等等。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-1783/V 国际刊号: ISSN 0254-6124 邮发代号: 2-562 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院空间科学与应用研究中心 中国空间科学学会 编辑单位: 《空间科学学报》编辑部 天体物理学报(英文版)Chinese Journal of Astronomy and Astrophysics简 介: 创刊时为中文期刊,2001年改为英文刊。主要刊登天文学和天体物理学领域的原创性研究论文。主要栏目和报道范围:“研究快报”用来报道天文观测的新结果及新理论;“特约综述”聘请国际知名天文学家就某些热点问题进行专题评述。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-4631/P 国际刊号: ISSN 1009-9271 邮发代号: 2-187 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院北京天文台 编辑单位: CJAA编辑部

《大科技》《科技传播》是科普杂志,不是学术期刊,科学家有时也会看看,但绝不会引用。论文一般都需要数据,没有不包括数据的论文,即便量子力学论文、宇宙大爆炸论文那也是到处充满数据。可以看得出来,你的文章根本没有数据,只是一番推论,这是不行的。你需要把你的理论得出的结果与已有数据进行对比,看看是否符合(这是基础),然后再用你的理论得出其它人得不到的数据(这是验证),等待实验家去完成实验,采集数据。若别人后来做出的数据支持了你的理论,那就说明你的理论在一定范围是正确的,你才会名声大振。做实验不是说你要把宇宙毁灭一遍,就像研究宇宙大爆炸一样,人们也并没有产生新的宇宙,一切都是模拟。

天体物理论文发表

天文学中许多问题的答案都隐藏在深时间的面纱后面。其中一个问题是关于超新星在早期宇宙中所扮演的角色。早期超新星的任务是锻造出在大爆炸中没有锻造的更重的元素。这个过程是如何进行的?早期的恒星爆炸是如何发生的? 三名研究人员转向超级计算机模拟来寻找答案。 他们的研究结果发表在一篇题为“镍-56衰变加热对不稳定超新星的气体动力学”的论文中。论文的主要作者是来自台湾天文学与天体物理研究所的中央研究院的陈克俊。这篇论文发表在《天体物理学杂志》上。 这项工作是关于一种特殊类型的超新星。超新星的能量大约是花园型超新星的100倍,只有太阳质量130到250倍的恒星才会出现。 科学家们对超新星进行了大量的研究。研究人员了解它们是如何工作的,以及它们的类型。他们知道如何制造比氢和氦重的元素,并在爆炸时将这些元素送入宇宙。但是在我们的理解上有一些重要的差距,特别是在早期宇宙中。 这三位研究人员想研究超新星,因为他们认为这可能给他们提供宇宙中第一颗超新星的线索,以及早期元素是如何产生的。在早期宇宙中,恒星往往质量更大,因此可能有更多的超新星。但超新星现在极为罕见。所以他们转向超级计算机模拟。通过他们的模拟,他们模拟超新星的核心,观察爆炸开始300天后爆炸恒星的样子。 超新星的形成有两种方式:核心崩塌和成对不稳定。 在一颗核心塌陷的超新星中,一颗大质量恒星已经到了生命的尽头,燃料也快用完了。随着聚变的减少,聚变的向外压力也随之下降。由于缺乏向外的压力,恒星自身的引力能会向下推动核心。最终,引力能导致核心坍塌,恒星以超新星的形式爆炸。根据恒星的质量,它可以留下一个中子星残骸,或者一个黑洞。 不稳定超新星发生在质量约为130至250倍太阳质量的超大质量恒星中。当电子和它们的反物质对应物正电子在恒星中产生时,就会发生这种情况。这就在恒星的核心产生了不稳定性,并降低了内部辐射压力,而这种压力是支持如此巨大的恒星对抗其自身巨大引力所需要的。不稳定性引发部分坍塌, 从而引发失控的热核爆炸。最终,恒星被一场大爆炸摧毁,没有留下任何残余。该团队专注于对不稳定超新星。作出这一选择的原因之一是对不稳定超新星可能产生大量的镍-56。 镍-56是镍的放射性同位素,在我们对超新星的观测中起着重要作用。镍-56的衰变是产生超新星余辉的原因。如果没有它,超新星就只是一个明亮的闪光,没有余光。 该团队使用日本国家天文台(NAOJ)计算天体物理中心(CfCA)的超级计算机进行模拟。这是一台Cray XC50,2018年开始运行,它是世界上用于天体物理模拟的最快超级计算机。这么强大的超级计算机能否帮助我们了解早期宇宙的一些情况? 据主要作者Chen介绍,整个项目极具挑战性。在一份翻译好的新闻稿中,Chen说:"模拟规模越大,要保持较高的分辨率,整个计算就会变得非常困难,对计算能力的要求也会提高很多,更何况涉及的物理学也很复杂。" 为了应对这些,Chen说,他们最大的优势就是 "精心编写的代码和强大的程序结构"。研究人员三人组有长期模拟超新星的经验,所以他们有条件做这项工作。 这不是第一次模拟超新星。其他研究人员也很想了解它们,并做了自己的模拟。但以往的模拟都是在爆炸后30天内运行,而这次的模拟却运行了300天。其中一个关键原因是镍-56。事实证明,镍-56的作用不仅仅是制造超新星的长寿光芒。它在爆炸中起到了持续的作用。为了彻底了解超新星爆炸,研究小组对三颗不同的原生星进行了模拟。一个超新星需要一个非常巨大的原星,有时超过200个太阳质量。该超新星可以制造大量的镍-56。根据论文,它们可以合成0.1-30个太阳质量的放射性镍-56。除了创造这些光之外,镍-56还能做其他事情。作者在他们的论文中写道,所有这些镍-56 "还可能在喷出物深处驱动重要的动力效应,这些效应能够混合元素并影响这些事件的观测信号。" 研究小组想要探究 "超新星内部的气体运动和能量辐射之间的关系"。他们发现,在镍-56衰变的初始阶段,被加热的气体膨胀,并形成了具有薄壳的结构。 在解释模拟结果之一时,陈建国说:"气体外壳内的温度极高,从计算中我们了解到,应该有~30%的能量用于气体运动,那么剩下的~70%的能量就有可能成为超新星的发光体了。"。早期的模型都忽略了气体动态效应,所以超新星光度结果都被高估了。"

来自欧洲南方天文台(ESO)及其它天文台的天文团队发现了一个距离地球仅1000光年的黑洞。

这是迄今为止被发现的距离我们太阳系最近的黑洞。而且,这个黑洞所处的三星系统能够被肉眼观察到。该团队通过智利拉西拉天文台的MPG/ESO 2.2米口径望远镜跟踪其两颗伴星,从而得到了这个看不见的天体存在的证据。他们表示,这个恒星系统可能仅仅是冰山一角,而未来可能会有更多类似的黑洞被发现。

此项研究的共同作者,来自捷克科学院的荣休科学家Petr Hadrava介绍说:"我们意识到,它是第一个肉眼可见、包含黑洞的恒星系统,这令我们都非常诧异。" 此恒星系统位于望远镜座。它与我们距离之近,南半球的人们甚至能在晴朗的黑夜直接观测其中的恒星,无需借助双筒望远镜或者天文望远镜。"这个恒星系统中有着迄今已知的距离地球最近的黑洞。" ESO科学家Thomas Rivinius这样说道。他领导了这项今天的发表在《天体与天体物理报》中的研究。

研究团队最初是在一项关于双星系统的研究中观测到这个命名为HR 6819的恒星系统。但随着对观测资料的分析,最终结果让他们大吃一惊: 在HR 6819中,存在第三个之前没有被发现的天体——一个黑洞。拉西拉天文台MPG/ESO 2.2米口径望远镜给出的观测数据表明,两颗可见恒星中的一颗,以40天为周期,绕着一个不可见的天体旋转;而另一颗的旋转轨道距离它们则更远。ESO德国加兴站的荣休天文学家,也是该研究的共同作者,Dietrich Baade介绍说:“我们不得不进行好几个月的观测,以确定绕轨运行的周期为40天。这些成果之所以能成为现实,多亏了ESO开创性的以需求为重的体系,使得ESO的员工们能够代表有需要的科学家进行观测活动。”

在HR 6819星形系统中,隐藏黑洞是最早发现恒星质量黑洞中的一个,这种黑洞与周围的环境没有强烈的相互作用,因此,显示出真正的黑色。但是,天文团队可以通过研究内部对中恒星轨道,来发现黑洞的存在并计算其质量。智利的Rivinius曾说:“一个质量至少是太阳4倍的看不见的物体,是一个黑洞。”

到目前为止,天文学者在我们的星系中已经发现了几个黑洞,这些黑洞与他们周围的环境有着强烈的相互作用,通过释放出强烈的X射线被人们所发现。但是,科学家猜测,在银河系中会有很多的星系随着生命的终结而变成黑洞。在HR 6819星形系统中发现的这个无声的、不可见的黑洞会提供很多关于隐藏黑洞的线索。Riviniu说“银河系中存在着数百个黑洞,但我们知道的非常少。知道要寻找什么会让我们更容易的发现它们”。Baade补充到,在一个三重系统中发现黑洞表明我们看到了它令人兴奋的“冰山一角”。

天文学家相信他们的发现可以在第二系统上发挥作用。“我们意识到另一个系统LB-1,它可能是三倍的,尽管我们需要更多的观察来证实”Marianne Heida(ESO和该论文的共同作者之一)说。“LB-1系统距离地球还有些远,但从天文角度上说已经很近了,所以这意味着可能存在更多这样类似的系统。通过研究,我们了解这些稀有恒星的形成和演化过程。 它们起始生命超过太阳质量的8倍,并在黑洞之后的超新星爆炸中结束。

有关这个研究更多的信息呈现在“一个肉眼可见的三联星系统,内部有一个非吸积的黑洞”论文中,该论文发表在今天的《天文与天体物理学报》期刊上。

这个团队由欧洲南方天文台、智利圣地亚哥天文学家Th.Rivinius,欧洲南方天文台、德国加兴天文学家D.Badde,布拉格捷克共和国科学院、天文研究所的名誉科学家P.Hadrava,欧洲南方天文台组织德国总部的M.Heida以及位于加利福尼亚威尔逊山的美国佐治亚州立大学的高分辨率天文学中心天文学家R.Klement组成。

作者们将论文献给欧洲南方天文台天文学家斯坦·斯特福(1955-2014),来表达对他的怀念,“在悲伤和感激中感谢他对这份工作永不疲倦的警觉性”。

欧洲南方天文台ESO是欧洲最重要的政府间天文学组织,也是迄今为止世界最多产底面天文台。它是由16个国家:奥地利、比利时、捷克共和国、丹麦、法国、芬兰、德国、爱尔兰、意大利、荷兰、波兰、葡萄牙、西班牙、瑞典、瑞士和英国,以及东道国智利和作为战略伙伴的澳大利亚。ESO实施了一项雄心勃勃的计划,旨在设计、建造和运行一系列强大的地面观测设施,以使天文学家能够做出重要的科学发现。

ESO也在促进和组织天文研究合作方面发挥着主导的作用。ESO在智利开放了三个奇特的世界级观测地:拉西拉天文台、帕瑞纳天文台和拉诺德查南托天文台。ESO在帕瑞纳天文台启用了甚大望远镜(VLT)和世界上最先进的甚大望远镜干涉仪(VLTI),以及两台巡天望远镜:维斯塔天文望远镜(VISTA)和VLT巡天望远镜。

VISTA是使用可见光和红外线勘测的天文望远镜。在帕瑞纳天文台还拥有和运营切伦科夫望远镜阵列的南半球阵列,这是世界上最大、最敏感的伽马射线天文台。ESO也是当今世界最大的两个天文项目,查南托的APEX亚毫米波望远镜和阿塔卡玛毫米波阵列望远镜(ALMA)的主要合作伙伴。并且在靠近帕瑞纳的Cerro armazone,ESO正在建造一架39米高的巨型望远镜,它将成为“世界上最大的眼睛”。

作者 :eso

FY :Astronomical volunteer team

转载还请取得授权,并注意保持完整性和注明出处

发表天体物理论文的

2018年,宇宙很忙。

太阳系里,火星、月球、太阳和种种行星都在忙着迎接人类的使者;太阳系外,新的太阳、超级地球、系外行星越来越多地出现在人类的视野。

人类宇宙 探索 的深入和升级,让我们距离“我们是否孤独地存在于宇宙中”这一终极问题的答案越来越近。

种种宇宙拼图引向生命谜题的答案,带给人们不断的惊喜、无限的想象。

首次发现银河系外行星

2018年2月,《天体物理学快报》发表论文,美国科学家宣布借助“微引力透镜”效应,首次发现了银河系外行星存在的迹象。这批行星数量约有2000颗,远在38亿光年之外,质量大于月球、小于木星。

人类发现的太阳系外行星已经数以千计,但都位于银河系内。这是人类首次发现位于银河系之外的行星。其他星系离银河系至少几百万光年,以目前技术水平无法直接观测其中的行星。研究人员提出,微引力透镜效应可作为寻找银河系外行星的一种手段。

首次发现太阳系外彗星

2018年2月21日,《皇家天文学会月刊》上发表研究成果,天文学家发现太阳系外的彗星,在距离地球800光年的另一颗“太阳” KIC 3542116的轨道上,发现了六颗彗星的尘埃尾巴。研究团队称这是人类首次发现外星系彗星。而这次的发现中,公民科学家再次扮演了重要角色。

这次的研究发现再次展示了公民科学家在当今的宇宙 探索 中所扮演的重要角色,仅用计算机算法去从太空望远镜的数据中筛选有用的东西,是不可能的,还需要人类的眼睛去识别。如今众多公民科学家在做着庞大的数据筛选工作,很多新的发现都是由公民科学家最初筛选出的。

谷歌在2018年开放了用于搜索系外行星的AI代码,公布于开源网站Github上,太空爱好者足不出户,在家就可以开始猎星了。

超级地球频繁现身

2018年3月,《天体物理学》杂志发表论文,科学家又发现 15 颗全新系外行星,其中一颗可能是表面存在液态水的超级地球,这些行星都围绕着太阳系附近的红矮星运转。

这些红矮星中最明亮的一颗,K2-155,距地球200光年,有三颗“超级地球”围绕,其中一颗K2-155d可能处于宜居带,它的半径约为地球的1.6倍。科学家通过三维全球气候模拟而推测K2-155d表面可能存在液态水,但是并不能确证。

2018年9月,《皇家天文学会月报》发表论文,科学家称在恒星HD 26965周围发现一颗超级地球,围绕这颗类似太阳的恒星运行。恒星HD 26965也被称作波江座40A,它正是《星际迷航》中所设定瓦肯星所环绕的“太阳”。

2018年11月,《自然》杂志发表论文,科学家发现在距离太阳系最近的单星系统巴纳德星周围,有一颗类似地球的候选行星在运行。

银河系最新地图公布

2018年4月25日,欧洲航天局公布了盖亚探测器的最新数据集,其中包括关于银河系超过13亿颗恒星位置和运动情况的详细资料。

人们在仰望夜空时,往往会想这些星星在多远的位置,往什么方向移动,事实上科学家们并不知晓银河系绝大多数恒星的确切位置和运动情况。来自欧洲航天局盖亚探测器的数据包为绘制最新的银河系地图提供的前所未有的更多信息和细节,为人类用用更加完善的银河系地图带来了更多的可能。

盖亚的数据集形成了一份最新的银河系三维地图,一份迄今为止银河系人们已知的最全的星系目录。精确的恒星运动信息可以用来模拟星系的过去和未来,揭示星系的 历史 和演化,并且可以帮助人们推断暗物质的性质和分布等。

洞察号首探火星内部

2018年5月5日,美国航天局的洞察号无人探测器从位于美国加利福尼亚州中部的范登堡空军基地升空。美国东部时间2018年11月26日14时54分许在火星成功着陆,执行人类首次探究火星“内心深处”奥秘的任务。

这是人类 历史 上第八次成功登陆火星。它并非人类登陆火星的首个航天器,但却是深入火星内部的首个航天器。随洞察号前往火星的,有刻有全球240多万人姓名的登机牌,存在两枚芯片中。

洞察号对火星研究有重要意义,它的使命是通过 探索 火星的内核,来分析火星形成的 历史 ,同时增进人类对地球起源的认识。

外星水冰和有机物陆续发现

2018年6月8日,美国宇航局(NASA)宣布好奇号火星探测器在火星上发现了有机分子。好奇号在盖尔撞击坑钻入一块大约35亿年前的细粒沉积岩,仅5厘米深处,就发现了3种不同类型的有机分子。在检测中,还在这些岩石样品中发现了有机碳,另外一些可识别的分子包括噻吩、苯、甲苯和小碳链,如丙烷或丁烯。

这些有机物质的来源有三种可能,一是我们未知的生命活动,二是陨石,三则是地质酌,即岩石形成过程。

同样在2018年6月初,发表在《科学》杂志上的一项关于冥王星的最新研究成果显示,冥王星上沙丘状的地表是由甲烷冻粒构成的。

地球人寻找外星生命的重点近年着眼于土卫二和木卫二之上,进一步的消息也不断有出现。2018年6月27日,《自然》杂志发布了新的证据,根据对卡西尼号探测器的数据的进一步研究,科学家宣布,在土卫二上的冰羽流中,成功找到了大体积的有机分子,这使得它支持外星生命的可能性大大增加。这是首次在地外星球中的含水星球中探测到复杂有机物的存在。

2018年7月25日,《科学》杂志发表研究结果,火星南极发现有一处长约19.3公里的液态水湖泊,藏在1.6公里厚的冰层之下。这是欧洲航天局首次确定火星上存在成规模的稳定的液态水体。

联盟号宇航员戏剧性逃生

2018年10月11日,俄罗斯“联盟MS-10”飞船发射失败,升空后119秒,火箭第二级发动机突然关闭,飞船“发射逃逸系统”自动启动,两名航天员紧急逃生,安全返回地球。

俄罗斯航天局公布了“联盟号”火箭故障后成功返回地球的俄罗斯宇航员Alexey Ovchinin和美国宇航员Nick Hague的照片。两名宇航员都将在2019年春继续执行太空任务。

俄载人飞船发射失败的原因,是负责发出分离指令的一个传感器发生故障,导致运载火箭的助推器未及时分离到安全距离。

帕克号太阳探测器触摸太阳

2018年11月8日,美国宇航局最新报告说,帕克号太阳探测器成功在近日点飞掠太阳,状态良好,并创造了人类航天器最快飞行速度。

11月5日,帕克号第一次抵达近日点,当时距离太阳表面1500万英里处(约2414万千米),并实现了约34.31万千米的时速,创造了人类航天器有史以来的最快速度。

帕克号太阳探测器2018年8月12日升空,9月9日拍摄到了它此番太阳之旅中的第一张图像,预计在未来7年内环绕太阳飞行24圈,并在金星引力的帮助下调整轨道逐渐逼近太阳,最终抵达距离太阳表面约610万千米的地方。

人类实现了对本星系恒星距离最近的一次造访,这将让我们更深入理解地球和宇宙。

月球计划密集发布

2018年,各国月球计划密集发布。欧洲航天局刚刚“出大招”,宣布将在位于科隆的欧洲航天局宇航中心建一个模拟月球土壤和月球栖息地的新工程,俄罗斯联邦航天局紧接着于11月19日高调宣布,俄罗斯将登月时间设在2030年,宇航员将在月球停留长达14天。而美国宇航局又通过发布一个两分钟的视频重申要通过在月球轨道建立长期基地而重返月球的决心。

11月19日,俄罗斯联邦航天局航天工程总设计师在国际空间站成立20周年之际发表演说,高调宣布俄罗斯登月计划,称2030年至2035年间将是俄罗斯创建月球轨道器的时间范围,俄罗斯宇航员将实现首次登陆,预计停留14天。

欧洲航天局11月发布的登月“大动作”是与德国航空航天中心(DLR)合作,在位于科隆的欧洲航天局宇航中心建设一个模拟月球土壤和月球栖息地的新工程,作为测试月球 探索 技术的“训练场”。

2017年12月11日,美国总统特朗普签署一号太空政令,宣布美国宇航员将重返月球表面,并最终前往火星。

以色列一家名为SpaceIL的非营利性太空组织2018年7月10日宣布,将于约半年后将首个由私人赞助的无人航天器送上月球,从而使以色列成为继美国、俄罗斯和中国之后的第四个将探测器送上月球的国家。

2018年5月,亚马逊创始人杰夫·贝索斯在国际太空发展大会上再次强调他的殖民月球规划不会改变,称在月球上建立人类定居点势在必行。

发现太阳失散已久的双胞胎

2018年11月,发表在《天文学与天体物理学》杂志上的一篇论文称,天文学家发现了我们的太阳失散已久的双胞胎兄弟,这颗编号为HD186302的恒星距离地球184光年,研究者强调这颗恒星不仅是太阳的兄弟,而且是“双胞胎”兄弟,是太阳2.0。

天文学家们相信,85%以上的恒星都是二元星系,甚至可能是三元或多元星系,有证据表明,太阳也曾经有过二元伴星,而太阳的二元伴星与太阳失散已久,在太空中的某个地方存在着。这颗HD186302在各个方面都与太阳极其相似,被认为是太阳曾经的二元对。

首次抵达小行星贝努

2018年12月3日,美国宇航局小行星探测器奥西里斯-REx抵达小行星“贝努”,开始探测这颗可能威胁地球安全的近地天体,并有望为研究太阳系形成和生命起源提供新证据。

奥西里斯-REx于2016年发射,抵达“贝努”后将逐步接近它,计划于2020年伸出取样臂接触小行星表面并“一触即走”,获取至少60克土样。如任务进展顺利,它将于2021年3月踏上归途,2023年9月从地球近旁飞过时把样本舱弹出送回地球。

贝努成为研究目标的原因之一是对地球有潜在威胁。美国宇航局认为,在2175年至2199年之间,“贝努”撞击地球的可能性为2700分之一。另一个原因在于其表面碳含量丰富,可能存在氨基酸等有机分子,相关研究有助 探索 地球生命起源。

编辑 肖晓君 责编 李琰

刊号:CN31-1385/N 出版:上海科学技术出版社《科学》编辑部 地址:上海钦州南路71号 邮编:200235 《空间科学学报》空间科学是当代高科技发展的前沿领域之一,《空间科学学报》是我国空间研究界有影响综合性刊物。所刊载的内容由以空间本身为研究对象的研究成果和与空间环境有关的基础研究,应用研究及技术研究成果构成,报道的主要学科分支包括空间天文学、空间物理学、空间化学与地质学、空间生命科学、微动科学、空间材料科学和空间地球科学等。主要栏目有:理论研究、探测与实验、综述、研究简报,学报动态等等。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-1783/V 国际刊号: ISSN 0254-6124 邮发代号: 2-562 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院空间科学与应用研究中心 中国空间科学学会 编辑单位: 《空间科学学报》编辑部 天体物理学报(英文版)Chinese Journal of Astronomy and Astrophysics简 介: 创刊时为中文期刊,2001年改为英文刊。主要刊登天文学和天体物理学领域的原创性研究论文。主要栏目和报道范围:“研究快报”用来报道天文观测的新结果及新理论;“特约综述”聘请国际知名天文学家就某些热点问题进行专题评述。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-4631/P 国际刊号: ISSN 1009-9271 邮发代号: 2-187 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院北京天文台 编辑单位: CJAA编辑部

天体物理学论文发表

笔者 东邪

“后羿射日”这个神话故事相信大家并不陌生,传说古代天上出现了10个太阳,把大地炙烤得民不聊生,这时候民间出现了一个射日青年,他就是后羿。后羿搭弓相继射下了九个太阳,只剩下一个太阳照耀大地。虽然后羿射日的故事听起来并不真实,但在宇宙中确实存在多颗恒星的系统,而且去年就有研究发现太阳系内可能曾经存在第二颗“太阳”。

来自哈佛—史密森天体物理学中心的天体物理学家亚伯拉罕·勒布和他的团队在《天体物理学期刊》上发表了研究论文,称太阳系在过去存在两颗恒星。也就是说,太阳系曾经是双星系统,后来发生了变故一颗恒星离开了太阳系,只剩下太阳坚持到现在。那么有什么证据证明太阳系内曾经存在两颗恒星呢?太阳系内另一个“太阳”去哪了呢?

依据一:宇宙中多恒星系统更为普遍

在该研究之前,科学家通过对太阳系周围的恒星系进行长期观测发现,大多数恒星系中都有多颗恒星,即所谓的多恒星系统。以最靠近太阳系的比邻星系为例,这个星系中存在两颗较大的恒星,分别是A星和B星,它们相互围绕着运动。而在A星和B星外围还有一颗C星在围绕着AB星转,因此它们形成一个三合星系统。

天文学上将含有两颗恒星的恒星系统称为“联星系统”,稳定的联星系统中恒星分别在以质心为焦点的椭圆轨道上运行。目前人类已经探测清楚的联星系统就有天狼星、天鹅座X-1和南河三。拥有三颗或更多恒星的系统被称为“聚星系统”,数量不同的恒星系统可以根据数目来进行命名,例如三颗恒星的系统就称为三合星系统,或者三体系统。

和联星系统相比,聚星系统内部更为复杂,因为多个天体的动力系统产生交错时,可能会引起浑沌行为,因此聚星系统稳定性往往比联星系统弱一些,而联星系统的稳定星又要比单星系统更弱。天文学家通过观测发现,银河系中有七成以上的恒星系都是多恒星系统,这使得它们组成的系统能够吸引大量的物质靠近。

因此很早就有科学家怀疑太阳系是否曾经也是一个恒星系统,因为太阳系内不仅有八大行星,还有一条小行星带,太阳系边缘还存在柯伊伯带,如此多物质的聚集单靠太阳自己的能力就可以实现吗?这个问题仍然存疑。

依据二:奥尔特云的存在

奥尔特云指的是包围着太阳系的球体云团,这个层次上存在着许多不活跃的彗星。柯伊伯带和奥尔特云存在明显的差异,前者是一个平面区域,彗星、陨石等小天体分布在这个平面区域上,而后者是一个空间区域,它即包围了柯伊伯带,又包括太阳系上下空间的区域。最早提出“奥尔特云”这个概念的人是爱沙尼亚天文学家恩斯特·奥匹克,他于1932年提出彗星是来自太阳系外层边缘的云团。

然而奥尔特云的存在引起了科学家的质疑,因为这片区域中存在过多的物质,按照理论计算单靠太阳是不可能吸引来如此多物质的,因此科学家认为存在一种可能性,那就是太阳系曾经存在第二个“太阳”。为了在理论上验证这个假说,亚伯拉罕和他的同事们利用计算机搭建了一个仿真模型,通过模拟实验发现截然不同的情况。

如果太阳系曾经存在另一颗恒星的话,那么它和太阳会形成一张无形的引力网,这张网能够把靠近太阳系的任何物质都吸引过来。在太阳系形成的初期,这两颗恒星就是通过这样的方式累积了“原始资本”,然后再用这些“资本”筑造起一道外层保护结构。也有观点认为,奥尔特云的存在确实可能与第二颗恒星有关。

但它不是太阳和另一颗恒星通过引力吸引过来的,而是第二颗恒星发生解体后出现了大量的碎片,这些碎片在太阳系外层堆积,从而形成了奥尔特云。无论是哪一种说法,它们都与第二颗恒星有关。

依据三:太阳系边缘可能存在第九大行星

美国宇航局的“卡西尼号”探测器在对土星进行探测时,科学家根据土星的探测数据推测太阳系的边缘可能还存在第九大行星,它并非冥王星,而是真实的行星。前段时间,来自法国巴黎天文台的科学家雅克·拉斯卡尔在《天文学和物理学》期刊上发表了研究论文,该论文指出拉斯卡尔和他的团队已经计算出了第九颗行星的轨迹。

拉斯卡尔表示第九颗行星的轨迹非同一般,这也是人类长期以来没能发现它的原因。这颗隐藏的行星处于椭圆形的拉长轨道上,而且它与黄道平面存在巨大的夹角。再加上它的运动方向和太阳系内其他行星的运动方向相反,这导致第九行星大多数时间都处于和八大行星相反的空间位置上。

拉斯卡尔表示他们团队已经将发现第九颗行星的工作量减少了一半左右,剩下的工作就要靠其他科学家一起努力 探索 了。在拉斯卡尔发表科研成果的两个月后,另外两位天文学家康斯坦丁和布朗就提出预测,认为第九行星的体积可能是地球的10倍左右。如果未来要验证第九行星的存在,那么人类需要建设一座巨大的望远镜,并且花上几年甚至是几十年的时间去观测。

那么第九大行星的预测与太阳系内第二颗恒星的推测有什么关系呢?如果太阳系内曾经存在第二颗恒星的话,那么第九颗行星存在的可能性进一步提高。在第九颗行星的预言被提出来之前,太阳系最外边的天体是冥王星,它是一颗比月球还要小的天体,说明那个区域的太阳引力已经很有限了,又如何束缚住一颗比地球大10倍的行星呢?

因此太阳系内曾经存在第二颗恒星是第九颗行星存在的其中一个前提条件,如果这个前提条件都不成立,那么第九行星存在的可能性会大幅降低。

如果第二颗“太阳”确实存在过,它如今去哪儿了?

那么问题来了,如果太阳系内曾经存在第二个“太阳”,那么这颗“太阳”后来去哪了呢?对此支持这一假说的科学家西拉日表示,几十亿年前太阳系还是一个双星系统,后来有一颗比两颗恒星都要大的恒星经过太阳系,导致太阳被“挖墙脚”了,第二颗太阳被大质量恒星给捕获走了。而且西拉日认为,太阳系被“挖墙脚”的事应该发生在奥尔特云形成之后。

另一种假说指出,太阳系内的第二颗恒星遭遇了银河系中心的引力摄动,导致它不但脱离了与太阳组成的双星系统,还在脱离的过程中发生解体。解体后的碎片一部分散落在火星与木星之间,形成了小行星带。另一部分碎片则在引力的牵引下到达如今的奥尔特云地区,导致该区域的物质密度大大增加。

天空中曾出现过两个太阳,这是怎么回事?

综上所述,太阳系在过去可能存在另一颗恒星,这一假说还需要更多科学依据去证明。前几年我国东北地区的天空出现了“两个太阳”的现象,这又是怎么回事呢?首先要确定的是,目前太阳系内就只有一个太阳,那么天空出现的两个太阳中肯定有一个是真的,有一个是假的。后来气象局专家对这种现象进行了解释,这是一种“幻日”现象。

幻日现象的本质是大气的光学现象,当天空中出现了大量的半透明薄云,薄云里面又存在许多六角形的冰晶体,它们整齐地排列在一起就会对阳光产生折射现象。这些细小的冰晶体排列起来就像一面多棱镜一样,当太阳光从上往下照射到冰晶体阵列上时就会发生折射现象。而我们以仰视的角度去看太阳,所以就会发现天空中出现了两个太阳,亮度最高的那一个是真的,亮度最暗的那一个则是折射出来的现象。

气象专家表示,幻日现象一般在早上5:30~6:00之间出现,但并非所有地方都能看到幻日现象,这与空气情况、纬度位置等有关。幻日现象一般不会持续很长时间,所以能够看到这种现象也算是比较幸运了。

想发表天体物理论文

现在发表东西越来越难了.我投出去的东西,连退稿也没有.偶尔有寄回来的信,说初选通过,复选要交50元或100元的"辛苦费"...............投稿太困难,还不如发表在自己的博客上省事些......

宇宙发展都是从黑暗走向光明。恒星中的文明以是高文明,地球文明从原始文明到初级现在是初级文明到中级文明的,过渡期,人类走向了真正的和平,才会进入中级阶段,地球变成了恒星,就进入了高级阶段

现在发表论文不交版面费用的杂志已经没有了吧,即使有审核也通不过。难啊

刊号:CN31-1385/N 出版:上海科学技术出版社《科学》编辑部 地址:上海钦州南路71号 邮编:200235 《空间科学学报》空间科学是当代高科技发展的前沿领域之一,《空间科学学报》是我国空间研究界有影响综合性刊物。所刊载的内容由以空间本身为研究对象的研究成果和与空间环境有关的基础研究,应用研究及技术研究成果构成,报道的主要学科分支包括空间天文学、空间物理学、空间化学与地质学、空间生命科学、微动科学、空间材料科学和空间地球科学等。主要栏目有:理论研究、探测与实验、综述、研究简报,学报动态等等。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-1783/V 国际刊号: ISSN 0254-6124 邮发代号: 2-562 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院空间科学与应用研究中心 中国空间科学学会 编辑单位: 《空间科学学报》编辑部 天体物理学报(英文版)Chinese Journal of Astronomy and Astrophysics简 介: 创刊时为中文期刊,2001年改为英文刊。主要刊登天文学和天体物理学领域的原创性研究论文。主要栏目和报道范围:“研究快报”用来报道天文观测的新结果及新理论;“特约综述”聘请国际知名天文学家就某些热点问题进行专题评述。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-4631/P 国际刊号: ISSN 1009-9271 邮发代号: 2-187 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院北京天文台 编辑单位: CJAA编辑部

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2