更全的杂志信息网

丁锋论文发表

发布时间:2024-07-06 00:33:40

丁锋论文发表

1. 张雷,李东来,马锐强,奚长海,万冬梅*.人工巢箱繁殖鸟类主要巢捕食者及其影响因素研究. 生态学报,2013, DOI号:10.5846/stxb2012101514312. Dongmei Wan*, Peng Chang, Jiangxia Yin. Causes of extra-pair paternity and its inter-specific variation in socially monogamous birds. Acta Ecologica Sinica(International Journal),2013,33:158-1663. 尹黎献,张雷,常鹏,李静,万冬梅*.大山雀的婚外父权调查.动物学研究,2013,34(1):47-52.4. 李乐,张雷,殷江霞,刘子成,刘鹤,万冬梅*.人工巢箱条件下两种山雀鸟类的同域共存机制.生态学报,2013,33(1):0150-0158.5. 李静,殷江霞,尹黎献,李乐,常鹏,万冬梅*.杂色山雀亲代喂食与子代乞食间的行为交流.动物学杂志,2012,47(4):19-27.6. 李乐,万冬梅*,刘鹤,殷江霞,李其久,霍雅鹏.人工巢箱条件下杂色山雀的巢位选择及其对繁殖成功率的影响.生态学报,2011,31(24):7492-7499.7. 杜杨,霍雅鹏,万冬梅*,孙军,吕永通,曹君.杂色山雀对人工巢箱内苔藓类巢材的选择.动物学杂志,2010,45(4):144-149.8. YUN-LEI JIANG, WEI GAO, FU-MIN LEI, DONG-MEI WAN, JIANG ZHAO and HAI-TAO WANG*.Nesting biology and population dynamics of Jankowski’s Bunting Emberiza jankowskii in Western Jilin,China. Bird Conservation International,2008,18:153–163.9. 金春日,王爽,万冬梅*,李昊晔,曲再春,丁锋. 杂色山雀繁殖成功率的研究.动物学杂志,2007,42(3):28-33.10. 金春日,王爽,万冬梅*,李昊晔,霍雅鹏. 杂色山雀繁殖生态.生态学杂志,2007,26(12):1988-1995.11. 赵匠,万冬梅,王海涛,高玮. 大鸨繁殖期觅食地的选择. 应用生态学报,2005,16(3):501-50412. 万冬梅,赵匠,高玮,王海涛等. 大鸨求偶场的选择. 生态学报,2004,24(11):2597-2601.13. 赵匠,高玮,万冬梅,王海涛等. 大鸨繁殖期活动时间预算和日节律. 应用生态学报,2003,14(10):1705~1709.14. 王海涛,高玮,万冬梅,刘多,邓文洪. 利用天然树洞繁殖的五种鸟的巢位特征及繁殖成功率. 生态学报,2003,23(7):1377~1385.15. 万冬梅,高玮,赵匠等. 大鸨巢位选择研究. 应用生态学报,2002,13(11):1445~1448.16. 万冬梅,高玮,王秋雨,王海涛. 生境破碎化对丹顶鹤巢位选择的影响. 应用生态学报,2002,13(5):581~584.17. 万冬梅,高玮,赵匠,王海涛. 辽宁猛禽迁徙规律的研究. 东北师大学报,2002,34(2):78~83.18. 万冬梅,任炳忠,张凤岭.吉林省鸣蝗属一新种.动物分类学报,1998,23(1):33~35.

张锋发表论文

“诺奖风向标”拉斯克奖揭晓, 光遗传学领域的三位科学家获2021年的拉斯克奖基础医学研究奖 | 图源:laskerfoundation.org

导 读

北京时间9月25日零点,2021年拉斯克奖(The Lasker Awards)公布了三大奖项获奖名单。其中, 基础医学研究奖 由Dieter Oesterhelt、Peter Hegemann 和Karl Deisseroth获得,以表彰他们对光遗传学的贡献;来自BioNTech的Katalin Karikó和宾夕法尼亚大学的Drew Weissman获得 临床医学研究奖 ,以表彰他们发现基于mRNA修饰的新治疗技术; 医学科学特别成就奖 则颁给了诺贝尔奖得主David Baltimore。

光遗传学被认为是一项注定要得诺奖的技术(相关文章:光遗传学:一项注定要得诺贝尔奖的技术)。

实际上,对于光遗传学技术作出贡献的科学家不止这三人,还有他们的合作者和其他科学家。

科学的发展常常伴随着科学家竞争,这是科学的常态。每一项科学成果的背后,故事主角们都有不同的悲喜。但无论结局如何,每一位 探索 在知识边缘的科学家都值得我们深深的敬意。

撰文 王承志 梁希同 林岑

责编 夏志坚 陈晓雪

北京时间2021年9月25日零点,有 “诺奖风向标” 之称的拉斯克奖 (the Lasker Awards) 公布,三位在光遗传学领域作出重要贡献的科学家获得阿尔伯特·拉斯克基础医学研究奖。

获奖理由:

发现了可以激活或沉默单个脑细胞的光敏微生物蛋白,并将其用于开发光遗传学——神经科学领域的一项革命性技术。

根据拉斯克奖官网介绍,三位获奖人的具体贡献分别是:

迪特尔·奥斯特黑尔特 (Dieter Oesterhelt) ,发现了一种古细菌蛋白质,它可以在光照条件下将质子泵出细胞;

彼得·黑格曼 (Peter Hegemann) ,在单细胞藻类中发现了相关的通道蛋白;

卡尔·代塞尔罗思 (Karl Deisseroth) ,利用这些分子创建了光触发系统,这些系统可以在活的、自由移动的动物身上使用,以理解在迷宫一般的脑回路中特定类别乃至一类神经元的作用。

大脑是人最复杂的器官,人的感觉、记忆、思考、运动等诸多生理活动,以及各种神经系统疾病都与神经元的功能息息相关。多年以来,理解各种神经元的具体功能一直是神经生物学的中心研究领域。

特异性地控制神经元活动对神经生物学家具有无法抵挡的吸引力。如果能特异性地激活一类神经元,那么就可以通过观察激活后的生理现象来推测其功能。同理,如果能特异性地抑制一类神经元,则可以推测这类神经元对哪些生理活动是必须的。

神经生物学家们尝试过各种方法来达到这个目标。比如,用微电极来刺激神经元,或者使用化学物质来模拟或者拮抗神经递质。但这些方法都有难以克服的缺陷:微电极控制的精度不够,比如不能特异性地控制一类神经元;化学物质控制神经元的速度难以控制,很难在毫秒级别进行操作。

紫色的膜与光传感器

1969 年,29岁的青年化学家迪特尔·奥斯特黑尔特 (Dieter Oesterhelt,1940年-) 从德国慕尼黑大学学术休假,来到了美国加州大学旧金山分校电子显微镜专家沃尔瑟·斯托克尼乌斯 (Walther Stoeckenius,1921年7月3日-2013年8月12日) 的实验室。

当时,斯托克尼乌斯正在研究一种可以在高盐环境中生存的古细菌的细胞膜,这种微生物现在被称作盐生盐杆菌 ( Halobacterium salinurum ) 。在这次合作中,奥斯特黑尔特证实盐生盐杆菌的细胞膜中紫色的组分含有视黄醛。随后,他和斯托克尼乌斯确定了古细菌中的一种蛋白质,并将其命名为细菌视紫红质 (bacteriorhodopsin) 。1971 年,他们提出细菌视紫红质起到了光传感器或光感受器的作用。

迪特尔·奥斯特黑尔特 | 图源:biochem.mpg

回到德国后,奥斯特黑尔特和斯托克尼乌斯继续合作这一研究。奥斯特黑尔特发现,细菌视紫红质可以将质子泵出细胞。这个神奇蛋白质,像是一个微型光能发电机,能吸收光子的能量,用这些能量把质子泵到细胞的外面,从而进一步转化为细菌所需的能量。

后来,科学家们发现了另外一种含视黄醛的光激活泵——卤化视紫红质 (halorhodpsin) ,可以将氯离子输送到细胞中。这两种物质的发现和对其生物物理、结构和遗传学的研究,为光遗传学的发展提供了基础性的见解。

来自微生物的光敏蛋白

20世纪80年代,彼得·黑格曼在位于慕尼黑的马克思·普朗克生物化学研究所攻读博士学位。他的导师正是发现细菌视紫红质的迪特尔·奥斯特黑尔特。

黑格曼的博士论文,研究的是来自另一种细菌的视紫红质——卤化视紫红质 (halorhodopsin) 。

卤化视紫红质存在于一种耐盐古细菌中,其利用光能将其生活的高盐度环境中的氯离子排出体外。黑格曼首先通过生物化学技术分离提纯了这一蛋白。

彼得·黑格曼 | 图源:project-stardust.eu

此时,刚刚在法兰克福的马克思·普朗克生物物理研究所建立自己实验室的恩斯特·班贝格 (Ernst Bamberg) 参与了进来,他通过构建体外系统来研究黑格曼所提纯出的halorhodopsin的电化学特性。

1984年获得博士学位后,黑格曼来到美国雪城大学的肯·福斯特 (Kenneth Foster) 的实验室从事博士后研究。

福斯特研究的是另一种对光敏感的微生物:单细胞绿藻。这些单细胞的藻类具有趋光性,能够挥舞鞭毛向着有光的方向游去 (它们需要光进行光合作用) 。福斯特认为,单细胞绿藻也可能使用某种视紫红质作为它们的眼睛,从而得知光亮的方向,并且能驱动鞭毛游往有光的地方。

莱茵衣藻 Chlamydomonas reinhardtii

1986年,黑格曼回到普朗克生物化学研究所建立起自己的实验室,开始潜心研究莱茵衣藻 ( Chlamydomonas reinhardtii ,一种微小的绿藻) 趋光性行为。

1991年,黑格曼发现,莱茵衣藻的光受体也是一种视紫红质,但它的工作方式与之前发现的各种视紫红质都不一样。衣藻视紫红质的光照之后会引起钙离子流入细胞中,从而引起的电流能够激发鞭毛的运动,他称之为光电流 (photocurrent) 。

恩斯特·班贝格(Ernst Bamberg)

人眼中的视紫红质感光之后也会产生光电流,通过神经传递到大脑之后就形成了视觉。人眼中视紫红质引起光电流需要经过细胞内一系列蛋白的信号传导,而黑格曼发现衣藻视紫红质产生光电流的速度比人眼中的视紫红质快得多。据此他大胆地推测: 衣藻视紫红质本身可能就是一个可以作为电流开关的离子通道。

然而,此后的十年里,黑格曼使尽各种办法,也无法像当初分离提纯一样分离卤化视紫红质提纯出衣藻视紫红质,来验证他的猜想。

随着分子生物的发展,2001年,黑格曼和其他科学家通过测序衣藻的基因组发现了两个新的光受体基因。

为了证明它们究竟是不是苦苦追寻十余年的衣藻视紫红质,黑格曼找到了当初和合作研究卤化视紫红质电化学特性的班贝格。

此时的班贝格已经是普朗克生物物理研究所的所长。此前的1995年,班贝格就和普朗克生物物理研究所的科学家格奥尔格·纳格尔 (Georg Nagel) 将细菌视紫红质表达在动物细胞中,使得动物细胞在受到光照时产生光电流。

奥尔格·纳格尔(Georg Nagel)

2003年,从黑格曼那里得到光受体基因后,班贝格和纳格尔用同样的方法成功地在动物细胞中表达了衣藻视紫红质蛋白,从而发现只要有这个蛋白单独存在,就能产生光电流,使阳离子流入细胞中,造成细胞去去极化。他们的结果终于证明黑格曼的假说:衣藻视紫红质是一个能被光所打开的阳离子通道。

从前人们知道,特定的化学分子,或者电压的变化,或者机械力的变化可以开关特定的离子通道,而能被光直接控制的离子通道还是第一次被发现,于是他们把衣藻视紫红质命名为视紫红质通道蛋白 (Channelrhodopsins,ChR1) 。这个词由离子通道 (Channel) 和视紫红质 (Rhodopsin) 组合而成。

他们还在爪蟾的卵细胞中表达了这种蛋白,发现光照可以引起细胞的静息电位发生变化。这项开创性的工作发表在了2002年6月的 Science 上。

2003年,纳格尔和黑格曼又发现了一个新的通道蛋白——ChR2。这一次,他们不但做了更深入的机制研究,而且把ChR2首次在人的细胞(HEK)中表达。作者在文章结论中写道:“ChR2能够成为控制细胞内钙离子浓度或者细胞膜极化水平的有用工具,特别是在哺乳动物细胞中”。

ChR1和ChR2的发现,让一些神经生物学家眼前一亮——这或许就是使用光来控制神经元的理想介质。而光遗传学的大门从这里也正式开启了。

光遗传学的诞生

视紫红质通道蛋白的发现,不仅仅解释的衣藻的趋光性行为,纳格尔和班贝格的实验还证明了这个来自衣藻的光敏感通道能独自驱使动物细胞产生光电流。因此,借助这个光敏感通道,就可以通过光来遥控动物细胞,特别是神经细胞的电活动。

用光来改变神经细胞的电活动是神经科学家长久以来的梦想,光刺激有着比传统药物刺激和电刺激更高的时间和空间的精确性,并且对组织的伤害更小。

20世纪90年代,科学家开始使用光控释放神经递质来激活细胞,但这种方法的时间和空间的精确性仍然不够。

2002年,奥地利神经科学家格罗·米森伯克 (Gero Miesenböck) 开始在光控中引入遗传学,尝试将果蝇眼中的视紫红质表达在哺乳动物细胞中,或者将哺乳动物的离子通道表达的果蝇的神经细胞中。使用遗传学的优势在于,可以专门针对研究者想到测试的神经细胞进行遥控,但米森伯克缺乏一种强有力的工具可以让光精确地改变神经活动。

格罗·米森伯克 (Gero Miesenböck) | 图源:cncb.ox.ac.uk

2003年在衣藻中发现的视紫红质通道蛋白正好提供了这样一个强有力的工具。

2000年,爱德华·博伊登 (Edward S. Boyden,1979-) 来到斯坦福大学,在钱永佑 (Richard Tsien,钱永健的哥哥) 和詹妮弗·雷蒙德 (Jennifer Raymond) 教授的指导下,研究小脑神经回路。

在钱永佑的实验室,博伊登遇到了钱永佑之前的博士生卡尔·代塞尔罗思 (Karl Deisseroth,1971-) 。代塞尔罗思之前在斯坦福大学学习神经生物学,并在斯坦福医院当过精神科住院医师。

有着工程背景的博伊登和医学背景的代塞尔罗思经常在一起讨论当时神经生理学的研究技术。多次的思想碰撞让两位年轻人意识到,当时的技术还有很大局限,神经生物学家需要更好的工具来控制大脑中特异的神经元,他们决定开发这样的工具。

Edward S. Boyden | 图源:mcgovern.mit.edu

他们最初设想可以使用磁场来控制神经元,在神经元中表达机械拉力敏感的离子通道,然后把微小的磁珠特异性连接到这种通道蛋白上,这样就可能通过外部磁场来控制神经元的电活动。但是,无论是找到合适的机械敏感离子通道基因还是把磁珠连接到通道蛋白上,技术难度都非常大。

后来,博伊登在阅读一篇1999年发表的论文中得到了灵感。这篇论文报道了在嗜盐碱单胞菌中发现的卤化视紫红质 (halorhodopsin) ,能够在大脑的氯离子浓度下工作。这种视紫红质可以在受光照时激活离子通道。

博伊登意识到使用光来控制离子通道比磁场更容易实现。他写邮件给这篇论文的作者,索要了这个蛋白的基因。但后来由于博伊登忙于博士学位论文,这件事情被晾在了一边。

2003年秋天,代塞尔罗思即将独立成为PI,组建自己的实验室。他写邮件给博伊登,希望博伊登博士毕业后可以去他的实验室做博后,一起开展之前讨论的使用磁场控制神经元的项目。

卡尔·代塞尔罗思 | 图源:

从2003年10月到2004年2月,代塞尔罗思和博伊登为即将开始的磁控神经元项目阅读了大量的文献。恰在此时,纳格尔、黑格曼和班贝格及同事们在 PNAS 期刊上发表了前文提到的ChR2的论文。

博伊登阅读这篇论文时立刻意识到,ChR2拥有他们设想过的一切特性:在一个蛋白中把输入信号 (光) 和输出 (去极化神经细胞) 偶联起来。事实上,同时意识到这一ChR2这一特性可以用于光控神经细胞的,远不止博伊登一人。

博伊登写信给代塞尔罗思,希望能联系纳格尔索要ChR2的克隆。代塞尔罗思于2004年3月联系了纳格尔。那时,纳格尔已对ChR2做了一些改良,他把这些改良后的克隆寄送给了代塞尔罗思和博伊登。

博伊登当时还在钱永佑的实验室做博士课题。但从2004年7月开始,博伊登几乎把博士课题放在了一边,专心做起了ChR2在神经元中表达的项目。

2004年8月4日的凌晨1点,博伊登在钱永佑的实验室里用蓝光照射表达了ChR2的神经元,成功观察到了去极化和动作电位。早上,他发邮件给代塞尔罗思告诉了他的发现。代塞尔罗思回信:“太棒了!!!!!” 五个感叹号显示了他当时的兴奋心情。

2005年初,张锋 (就是后来最早在哺乳动物细胞中使用CRISPR做基因编辑的那位,现麻省理工学院教授) 来到代塞尔罗思实验室开始了研究生生涯。他改进了博伊登的表达体系,使用慢病毒在神经元中表达ChR2,大大增加了该系统的稳定性。

2005年4月19日,博伊登和代塞尔罗思把他们的发现投稿给 Science 杂志,遭拒稿,理由是没有具体的科学发现。5月5日,他们投稿到 Nature 杂志, Nature 建议把稿件转投给 Nature Neuroscience 杂志。经过一轮修改, Nature Neuroscience 接受了这篇文章。

光遗传学的其他研究者

自从黑格曼等在2003年发表了光敏通道蛋白ChR1和ChR2,很多科学家都意识到这类光控通道蛋白有极大的应用潜力。一场无形的竞争也在悄然展开。

美国底特律的韦恩州立大学华人神经科学家潘卓华是一位视觉专家,他在2000年早期即构想将光敏蛋白表达在盲人的眼内,以代替视杆细胞和视锥细胞的缺失。

潘卓华 | 图源:kresgeeye.org

2003年ChR1和ChR2论文的发表,潘卓华敏锐地觉察到这可能就是他一直在寻找的光敏蛋白。

他与萨鲁斯大学 (Salus University) 的 Alexander Dizhoor 教授合作,在神经节细胞中表达ChR2。Dizhoor 教授的团队设计合成了光敏通道蛋白的DNA,并添加了示踪的荧光蛋白——这与纳格尔对ChR2的改良非常类似。同时,潘卓华使用病毒在细胞中表达ChR2,这与张锋在代塞尔罗思实验室的改进也相似。

2004年7月,潘卓华将载有ChR2基因的病毒注入给小鼠,5周后他通过荧光蛋白确认了ChR2在视网膜细胞上的表达。当他打开照射灯时,插入视网膜的电极显示了明显的电活性。这显然是个了不起的实验,它第一次证明了ChR2在活体动物中的活性,证明表达视紫红质通道蛋白可以使的失明的大鼠重新感光——这有着极大的应用价值,有可能成为治愈盲人的一种方法。

2004年11月25日,潘卓华和合作者将这些发现投稿给 Nature 杂志。与代塞尔罗思的文章遭遇一样, Nature 建议将文章改投到旗下子刊 Nature Neuroscience 。

不过,潘卓华的论文继续被拒。2005年初,潘卓华将文章投到 Journal of Neuroscience ,再次遭拒稿。

2005年5月,潘卓华在佛罗里达参加视觉与眼科学研究协会大会时,简短报告了他的这项成果。当时他的论文还没有发表,这是该工作第一次公布于众。

2005年,日本的 Hiromo Yawo 实验室和美国的凯斯西储大学的林恩·兰德梅赛 (Lynn Landmesser) 和 Stefan Herlitze 也发表了类似的结果,他们比代塞尔罗思等人等的文章晚了两三个月。

科学的发展常常伴随着科学家竞争,这是科学的常态。每一项科学成果的背后,故事主角们都有不同的悲喜。但无论结局如何,每一位 探索 在知识边缘的科学家都值得我们深深的敬意。

光照使表达了Channelrhodopsin的神经元放电

光遗传学的发明,几乎在一夜之间改变了神经科学研究。

从线虫到灵长类动物,人们在几乎所有实验动物中表达光敏感通道来实现远程遥控神经活动。通过在不同类型的神经细胞中表达光敏感通道,人们可以用光控制小鼠的行为,控制它们的运动,使它们产生虚拟的饥饿感或饱腹感,甚至在它们脑中用光写入或抹去特定的记忆。

光遗传学已经成为神经科学中证明因果性的关键手段。这一技术也为众多医学应用开辟了道路。科学家们希望能利用光,给盲人提供基本视力,刺激患有帕金森病的患者的深部脑,甚至影响心律,以治疗心力衰竭。

用光纤控制实验鼠的行为

作为一项彻底改革了神经科学发展的技术,光遗传学也让包括黑格曼、纳格尔、班贝格、代塞尔罗思、博伊登在内的科学家在过去几年中屡获殊荣,其中包括了2010年《科学》杂志十年最佳进展,2013年的大脑奖,2015年的生命科学突破奖、2016年度科学突破奖、2019年的拉姆福德奖金和2020年的邵逸夫奖等。

回到故事最开始的时候,科学家们只是想知道单细胞藻类微小的秘密。彼时,没有人会想到,那些努力向光游去的小绿藻,最终居然教会我们如何改写大脑活动的秘诀,推动我们向解开大脑秘密前进了一大步。

迪特尔·奥斯特黑尔特

现为德国马克斯·普朗克生物化学研究所名誉组长。他1940年11月10日出生于德国慕尼黑,1959-1963年在德国慕尼黑大学学习化学,1967年他博士毕业于慕尼黑大学,之后担任马克斯·普朗克细胞化学研究所研究助理。1969年,奥斯特黑尔特前往加州大学旧金山分校做研究,并在那里开启了对细菌视紫红质的研究。1973-1975年,他是马克斯·普朗克学会弗里德里希·米歇尔实验室的研究组长,1976-1979年在维尔茨堡大学任正教授。1980年之后,奥斯特黑尔特长期担任马克斯·普朗克生物化学研究所所长。2008年退休。

彼得·黑格曼

1954年12月11日出生于德国明斯特。1975年至1980年在明斯特大学和慕尼黑大学学习化学。1980年至1984年在马克斯·普朗克生物化学研究所 Dieter Oesterhelt 教授的指导下完成博士学位,研究细菌的光敏感离子泵。之后,在美国雪城大学的Kenneth Foster 实验室从事博士后工作,开始研究单细胞藻类的趋光行为。

1986年黑格曼回到马克斯·普朗克生物化学研究所建立微藻光受体实验室。1991年发现衣藻的光电流。2002年找到介导衣藻光电流的基因,即视紫红质通道蛋白(Channelrhodopsins)。2005年至今,在柏林洪堡大学担任生物物理学教授和系主任。

卡尔·代塞尔罗思

代塞尔罗思为美国斯坦福大学教授。他1971年出生于美国,在哈佛大学获得生物化学学士学位后,1998年在斯坦福大学获得神经学博士学位。2004年,他在斯坦福大学建立自己的实验室。

2005年,代塞尔罗思和博士后爱德华·博伊登(Edward Boyden)、学生张锋等共同发表了一篇论文,首次利用通道视紫红质在神经细胞上实现了毫秒级动作电位的控制。2006年,代塞尔罗思将这种方法命名为“光遗传学”。他们的方法很快被广泛应用于生物学各个领域,使生物学家可以用光控制各种生命活动。

主要参考资料

[1] Bamberg, Ernst, Peter Hegemann, and Dieter Oesterhelt. "The chromoprotein of halorhodopsin is the light-driven electrogenic chloride pump in Halobacterium halobium." Biochemistry 23, no. 25 (1984): 6216-6221.

[2] Harz, Hartmann, and Peter Hegemann. "Rhodopsin-regulated calcium currents in Chlamydomonas." Nature 351, no. 6326 (1991): 489-491.

[3] Nagel, Georg, Bettina Möckel, Georg Büldt, and Ernst Bamberg. "Functional expression of bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light induced H+ pumping." FEBS letters 377, no. 2 (1995): 263-266.

[4] Nagel, Georg, Doris Ollig, Markus Fuhrmann, Suneel Kateriya, Anna Maria Musti, Ernst Bamberg, and Peter Hegemann. "Channelrhodopsin-1: a light-gated proton channel in green algae." Science 296, no. 5577 (2002): 2395-2398.

[5] Boyden, Edward S., Feng Zhang, Ernst Bamberg, Georg Nagel, and Karl Deisseroth. "Millisecond-timescale, genetically targeted optical control of neural activity." Nature neuroscience 8, no. 9 (2005): 1263-1268.

[6]Zemelman, Boris V., Georgia A. Lee, Minna Ng, and Gero Miesenböck. "Selective photostimulation of genetically chARGed neurons." Neuron 33, no. 1 (2002): 15-22.

[7]Nagel, Georg, Tanjef Szellas, Wolfram Huhn, Suneel Kateriya, Nona Adeishvili, Peter Berthold, Doris Ollig, Peter Hegemann, and Ernst Bamberg. "Channelrhodopsin-2, a directly light-gated cation-selective membrane channel." Proceedings of the National Academy of Sciences 100, no. 24 (2003): 13940-13945.

[8]Boyden, Edward S. "A history of optogenetics: the development of tools for controlling brain circuits with light." F1000 biology reports 3 (2011).

[9]Bi, Anding, Jinjuan Cui, Yu-Ping Ma, Elena Olshevskaya, Mingliang Pu, Alexander M. Dizhoor, and Zhuo-Hua Pan. "Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration." Neuron 50, no. 1 (2006): 23-33.

从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。

2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。

在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。

2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。

CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所

“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”

除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”

此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。

Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”

该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。

3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积**,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )

A.质粒示意图;B.N2a细胞中 Pten 的下调;C.Western检测PTEN及AKT的表达; D.CasRx与shRNA脱靶比较;E.尾静脉注射质粒示意图;F.G.H.免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达

图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )

A.针对 Pcsk9 的AAV8病毒注射示意图;B.肝组织中 Pcsk9 的表达量;C.血清 PCSK9 的表达量;D.血清胆固醇水平;E.F.血清ALT和AST的测定;G.可逆调节注射示意图; H. Pcsk9 的动态调控。

图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)

A.小鼠和人序列比较以及sgRNA示意图;B.C.在293T和N2a细胞中敲低 Vegfa ;D.VEGFA蛋白的表达;E.AAV病毒质粒示意图;F.实验流程图;G.CasRx的mRNA表达水平;H.I.激光烧伤之前或之后7天的 Vegfa mRNA水平;J.CNV诱导3天后的VEGFA蛋白水平;K.激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;L.M.CNV面积统计。

2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。

该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。

人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。

在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。

作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。

帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。

该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。

大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。

研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。

为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。

在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。

需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。

(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。

(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。

(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。

RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only 2.8 kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.

Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities. To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease. The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily. Yan et al. proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp. (RspCas13d), while Konermann et al. characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d.

Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs. crRNA cleavage is retained in dCas13d and is thus HEPN-independent. These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs. As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system.

Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special? The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity. But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below.

The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain). Yan et al. from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d. RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity. This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here ).

Not all Cas13d proteins are functional in mammalian cells, but Konermann et al. saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS). In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively. Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown. Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs.

One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region. Konermann et al. show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary.

Konermann et al. compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown. CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors. Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero. Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown. It seems that CasRx may make it possible to target essentially any RNA in a cell.

Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al. tested its ability to manipulate RNA species through exon skipping. Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy . In this case, Konermann et al. targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers. After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx.

The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining. As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be. It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community.

References

Konermann, Silvana, et al. “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.” Cell (2018) pii: S0092-8674(18)30207-1. PubMed PMID: 29551272

Yan, Winston X., et al. “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.” Mol Cell. (2018) pii: S1097-2765(18)30173-4. PubMed PMID: 29551514

\1. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors

\2. CRISPR genetic editing takes another big step forward, targeting RNA

\3. How Editing RNA—Not DNA—Could Cure Disease in the Future

[ https://www.obiosh.com/kyfw/zl/aav/209.html](

张锋教授简介 张锋,教授,男,1961年9月23日生,理学博士。1982年辽宁大学化学系有机专业大学毕业,理学学士。1985年辽宁大学化学系无机专业博士研究生毕业,理学硕士。1998年日本名古屋大学理学部生物无机化学专业博士研究生毕业,理学博士。1985-1993年在辽宁大学化学系任教,1985-1987年任助教,1987年晋升讲师,1993年晋升副教授。1992年9月-1993年9月在北京语言学院出国部参加国家教委日语培训班并通过选拔考试。1993-1994年国家教委公派赴日留学,在日本名古屋大学理学部化学科生物无机化学研究室做访问学。1994-1998年在日本名古屋大学研究生院攻读博士学位。1998年3月获博士学位后回国。1998年3月至今在辽宁大学化学科学与工程学院任教。1999年8月晋升教授。

张锋论文发表

2000年在内蒙古大学生命科学院国家基地班获学士学位。2006年在中科院上海应用物理研究所获无机化学博士学位,期间主要从事与神经退行性疾病相关蛋白的纤维化机制与其纤维化核心肽段的自组装研究。曾于2006年获得中科院优秀毕业生奖,2007年获得中科院刘永龄奖学金特别奖。2006年1月到12月,留上海应用物理所同步辐射研究室工作,期间获得自然科学青年基金3年资助。从2007年1月到2011年2月,先后在德国慕尼黑大学物理系(纳米中心,博士后)、马尔堡大学物理系(生物光学组,研究组长,校方付工资)以及美国华盛顿大学(生物医学工程系,高级研究员)从事基于纳米颗粒的生物分子检测,成像及相关应用方面研究。2011年2月到6月被内蒙古大学作为学科带头人引进,获得两项国家自然科学基金项目资助。2011年6月被内蒙古农业大学作为高层次人才引进。在ACIE、Small、Langmuir、JPCB、BBRC、Nature Nanotechnology,Chemical Society Reviews等国外刊物上发表30多篇SCI论文

张锋,教授,男,1961年9月23日生,理学博士。1982年辽宁大学化学系有机专业大学毕业,理学学士。1985年辽宁大学化学系无机专业博士研究生毕业,理学硕士。1998年日本名古屋大学理学部生物无机化学专业博士研究生毕业,理学博士。1985-1993年在辽宁大学化学系任教,1985-1987年任助教,1987年晋升讲师,1993年晋升副教授。1992年9月-1993年9月在北京语言学院出国部参加国家教委日语培训班并通过选拔考试。1993-1994年国家教委公派赴日留学,在日本名古屋大学理学部化学科生物无机化学研究室做访问学。1994-1998年在日本名古屋大学研究生院攻读博士学位。1998年3月获博士学位后回国。1998年3月至今在辽宁大学化学科学与工程学院任教。1999年8月晋升教授。 主攻方向:(1)配位化学-配合物的结构与溶液稳定性。研究生命相关配体和金属离子形成三元混配配合物的分子和超分子结构及其与配合物稳定性的关系,探索配体间的分子识别规律及金属离子的结构效应。(2)生物无机化学-激素分子的结构作用解析。利用金属离子的模板作用模拟研究一些激素分子如甲状腺激素、甾类激素等与受体蛋白结合的结构作用及其与激素生物活性的关系。(3)超分子化学-配合物超分子晶体的制备和结构研究。选择和设计各种受体分子,通过与金属形成配合物,利用金属离子的模版作用,构筑特殊超分子体系,研究其结构特性。 代表性成果:

张锋教授简介 张锋,教授,男,1961年9月23日生,理学博士。1982年辽宁大学化学系有机专业大学毕业,理学学士。1985年辽宁大学化学系无机专业博士研究生毕业,理学硕士。1998年日本名古屋大学理学部生物无机化学专业博士研究生毕业,理学博士。1985-1993年在辽宁大学化学系任教,1985-1987年任助教,1987年晋升讲师,1993年晋升副教授。1992年9月-1993年9月在北京语言学院出国部参加国家教委日语培训班并通过选拔考试。1993-1994年国家教委公派赴日留学,在日本名古屋大学理学部化学科生物无机化学研究室做访问学。1994-1998年在日本名古屋大学研究生院攻读博士学位。1998年3月获博士学位后回国。1998年3月至今在辽宁大学化学科学与工程学院任教。1999年8月晋升教授。 主攻方向:(1)配位化学-配合物的结构与溶液稳定性。研究生命相关配体和金属离子形成三元混配配合物的分子和超分子结构及其与配合物稳定性的关系,探索配体间的分子识别规律及金属离子的结构效应。(2)生物无机化学-激素分子的结构作用解析。利用金属离子的模板作用模拟研究一些激素分子如甲状腺激素、甾类激素等与受体蛋白结合的结构作用及其与激素生物活性的关系。(3)超分子化学-配合物超分子晶体的制备和结构研究。选择和设计各种受体分子,通过与金属形成配合物,利用金属离子的模版作用,构筑特殊超分子体系,研究其结构特性。 代表性成果: 1. "Electrostatic Ligand-Ligand Interactions in Ternary Copper(Ⅱ)Complexes with 3,5-Diiodo-L-tyrsine and Polar Amino Acids"F.Zhang,T.Yajima,A.Odani,O.Yamauchi,Inorg.Chim.Acta,278,136-142(1998). 2."Weak Interactions in Ternary Copper(Ⅱ)Complexes with Iodotyrosinates. Biological Significance of the Iodines in T hyroid Hormones" F.Zhang,T.Yajima,H.Masuda,A.Odani,O.Yamauchi,Inorg.Chem,36,5777-5784(1997). 3."Structures and Stabilities of Tenary Copper(Ⅱ)Complexes with 3,5-Diioko-L-tyrosinate.Weak Interactions Involving Iodo Groups" F.Zhang,A.Odani,H.Masuda,O.Yamauchi,Inorg.Chem,35,7148-7155(1996). 4."Ternary Cadmium(Ⅱ)Complexes with Vitamin D and Amino Acids.Quantitative Expressions of Relative Stabilities" F.Zhang,Q.T.Liu,J.Coord.Chem,28,197-202(1993).

男,1971年5月出生,中共党员,博士研究生,副教授。专业方向为动物学。 《科学24小时》《化石吟》 原文 最早的鱼儿怎么没下巴? 最早的鸟儿怎么嘴长牙? 最早登陆的鱼儿怎么没有腿? 最早的树儿怎么不开花? 逝去万载的世界可会重现? 沉睡亿年的石头能否说话? 长眠地下刚苏醒的化石啊, 请向我一一讲述那奇幻的神话。 你把我的思绪引向远古, 描绘出一幅幅生物进化的图画; 你否定了造物主的存在, 冰冷的骸骨把平凡的真理回答。 肉体虽早已腐朽化为乌有, 生之灵火却悄然潜行在地下, 黑色的躯壳裹藏着生命的信息, 为历史留下一本珍贵的密码。 时光在你脸上刻下道道皱纹, 犹如把生命的档案细细描画, 海枯,石烂,日转,星移…… 生命的航船从太古不息地向近代进发。 复原的恐龙、猛犸仿佛在引颈长吼, 重现的远古林木多么葱茏、幽雅, 啊,你——令人叹服的大自然, 高明的魔法师,卓越的雕刻家! 逝去万载的世界又重现, 沉睡亿年的石头说了话。 长眠地下刚苏醒的化石啊, 你讲的故事多么令人神往、惊讶

祁锋发表论文

他说的挺详细的,咱就打个酱油吧。

延安是中国革命的摇篮。它记载中国革命的历史,是一本真实的教科书。它凝聚了共产党人的精神,谱写了中国革命闪光的篇章。 祈念曾(新闻工作者,现居深圳) 《延安,我把你追寻》是我8年前的一首诗作,没想到被选入人民教育出版社新编的第12册语文课本中。回忆这首诗的写作过程,心中再次涌起火辣辣的激情和沉甸甸的思索……。1968年,我从北京大学中文系毕业,分配到陕西工作。我曾多次到延安参观采访。当时,正是十年动乱时期,延安的面貌变化不大。1974年我到延安采访,那里的人民依然比较贫困,我心里难过极了。归来后,写一首《延安,我为你哭泣》的诗,留在我的日记本上。粉碎“四人帮”以后,拨乱反正,改革开放,延安的面貌才发生了翻天覆地的变化。延安人民丢掉了老牛破车,通了飞机、火车,窑洞变成了林立的高楼大厦,人民越来越富裕。1991年,我随中央电视台《黄河》创作组再次不定期到延安采访,参观了枣园、杨家岭、宝塔山、南泥湾等地,浮想联翩,遐思漫伸……我看到当年南泥湾开荒的镢头,在大生产运动中开垦出陕北的锦绣江南;我望着延河清澈的流水,这河水曾哺育了无数中华民族最优秀、最有觉悟的先锋战士;我闻着枣园梨花的清香,当年毛主席在这里写下了彪炳史册的革命雄文;我走进杨家岭“鲁艺”的礼堂,毛泽东那篇《在延安文艺座谈会上的讲话》又回响在我的再边。追寻当年革命前辈的足迹,我更感到今天的幸福生活来之不易。 老一辈无产阶级革命家所培育的延安精神是革命的传家宝,是中国人民宝贵的精神财富。如今,时代发展了,生活富裕了,但艰苦奋斗、开拓进取的延安精神不能丢。延安精神既体现了共产党人的高尚品质和崇高理想,又凝聚了中华民族的传统美德和英雄气概。在我们建设现代化社会主义强国的进程中,延安精神更要发扬光大,在物质生活水平不断提高的情况下,更要提高精神生活的质量。 基于这种认识,我开始构思,创作了《延安,我把你追寻》这首诗。 诗写完后,1992年,收入我的诗集《人生之恋》(陕西人民出版社),受到文学界和广大读者的好评。评论家马莹伯撰文说:“这首诗以高昂的激情和生动的形象讴歌了延安精神,强调了改革开放条件下继承和发扬延安精神的极端重要性。”这首诗,1993年荣获全国诗歌“菊花奖”,1994年入选《新时期诗歌精选》。1997年选入5年制语文课本第10册,今后又选入6 年制语文课本第12册。 1992年,我来到深圳,虽然离开了生活工作20多年的黄土地,但延河永远在我心中流淌,融入我的血管,净化我的灵魂。祁念曾 : 1963年至1968年北京大学中文系学生,1969年至1980年陕西省宝鸡铲车厂新闻干事,1981年至1991年陕西省宝鸡教育学院副教授,1992年至1993年广东惠州晚报总编辑,1993年至1996年深圳市深圳晚报总编室主任,1996年至2002年深圳市深圳商报新闻研究室主任,高级编辑、教授。 姓 名: 祁念曾 笔 名: 祁星 性 别: 男 出生年月: 1946/12 民 族: 汉族 诗集《火红的战旗》(1975年陕西人民出版社),诗集《春天的歌》(1982年秦岭诗丛)。诗集《人生之恋》(1991年陕西人民教育出版社),散文集《红烛之歌》(1987年辽宁教育出版社),《高等写作教程》(1987年上海文化出版社),《宝鸡漫游》(1988年陕西人民美术出版社),《千秋业》(报告文学集)(1992年中国青年出版社),《新时期文学》(评论集)(1992年河北大学出版社),《苏轼凤翔诗文赏析》(1990年陕西人民出版社),《艺术家的脚步》(1997年京华出版社),《三秦儿女在深圳》(报告文学集,1998年三秦出版社)。 [祈念曾简介]祈念曾,毕业于北京大学中文系,曾任《红旗》杂志记者,《惠州晚报》总编辑,《深圳晚报》总编室主任。现任深圳报业集团新闻研究室主任,高级编辑,中国作家协会会员,中国记协新闻研究会会员。主要著作有诗集《人生之恋》、《春天的歌》。散文通讯集《红烛之歌》、《艺术家的脚步》,长篇报告文学《千秋业》,评论集《新时期文学》、《新闻探索与实践》等,其作品和论文多次在全国和省、市获奖。其代表作《延安,我把你追寻》1997年到2003年三次被收入全国小学语文课本转载

祁念曾,出生于1946年12 月,笔名祁星,河南洛阳人,毕业于北京大学中文系。曾任《红旗》杂志社记者,陕西某高校中文系副教授,《惠州晚报》总编辑,现任深圳商报社新闻研究室主任、高级编辑、中国作家协会会员。

祁念曾,出生于1946年12月,笔名祁星,河南洛阳人,毕业于北京大学中文系,曾任《红旗》杂志社记者,中国作家协会会员、《惠州晚报》总编辑,高级编辑

余剑锋发表论文

华龙一号”全球首堆商业运行我国自主三代核电技术跻身世界前列上万名建设者常年奋战,5300多家设备制造企业大力协同,自2015年5月开工以来,“华龙一号”全球首堆便开始了“加速跑”,并终于在5年多后交出成绩单。1月30日,“华龙一号”全球首堆——中核集团福建福清核电5号机组投入商业运行,标志着我国在三代核电技术领域跻身世界前列。2021年1月30日拍摄的“华龙一号”核电机组福建福清核电5号机组。新华社记者 林善传 摄“中国成为继美国、法国、俄罗斯等国家之后真正掌握自主三代核电技术的国家。”中核集团党组书记、董事长余剑锋说,作为中国高端制造业走向世界的“国家名片”,“华龙一号”是当前核电市场上接受度最高的三代核电机型之一。由科技自立自强“打底”产生的一系列数据,可以为“华龙一号”这一地位做注脚:设计寿命为60年,反应堆采用177堆芯设计,堆芯设计换料周期18个月,创新采用“能动和非能动”相结合安全系统及双层安全壳等技术,在安全性上满足国际最高安全标准要求。“华龙一号”首堆所有核心设备均已实现国产,所有设备国产化率达88%,完全具备批量化建设能力。“‘华龙一号’全球首堆的商运,对优化中国能源结构、推动绿色低碳发展,助力碳达峰、实现碳中和目标具有重要意义。”余剑锋所言非虚,据悉,“华龙一号”每台机组每年可发电近100亿千瓦时,能满足中等发达国家100万人口的生产和生活年度用电需求,同时相当于减少标准煤消耗312万吨、减少二氧化碳排放816万吨,相当于植树造林7000多万棵。2“海牛Ⅱ号”下钻231米刷新深海钻机钻探深度纪录高7.6米、“腰围”10米、体重12吨,在南海超2000米的深水成功下钻231米,刷新世界深海海底钻机钻探深度。这一纪录的创造者,是湖南科技大学牵头,我国自主研发的“海牛Ⅱ号”海底大孔深保压取芯钻机系统。4月7日晚的这次海试,“海牛Ⅱ号”也填补了我国海底钻探深度大于100米、具备保压取芯功能的深海海底钻机装备的空白。金永平 摄海底钻机,是开展海洋地质及环境科学研究、进行海洋矿产资源勘探和海底工程地质勘查所必备的海洋高技术装备。“海牛Ⅱ号”的研制,依托我国国家重点研发计划“深海关键技术与装备专项”课题,研制作业水深不少于2000米、钻进深度不低于200米、保压成功率不小于60%的海底大孔深保压取芯钻机系统,并最终形成一整套具

好消息!江西“人造太阳”首次成功放电的消息曝光后引发大家各界人士的关注热议,“人造太阳”这个词语并不是第一次听到,但是一直以来都觉得“人造太阳”技术离我们太远了,感觉是那么的遥不可及,但是中国江西“人造太阳”再次轰动了整个世界,这让很多其他国家的人都感到非常震撼,身为一名中国江西人真的感到非常骄傲了,那么,我国科研发展到底有多硬核呢?我觉我国科研发展真的是太硬核了,从原来的最初发展阶段然后到在现在的成就,可以说发展的速度真的非常快,而且成就也非常高,真的超级厉害!开始看到这个新闻的时候还以为是什么小道消息呢?一直以来各国的科研都想要制造这种“人造太阳”,但是因为技术有限,所以一直都没有国家真正成功过,江西这次再次轰动整个世界,由江西省科研人员发明的“人造太阳”首次成功放电的消息曝光后引发网友们的轰动,这可以算是科研成果的很大突破,所谓的“人造太阳”就是可以很太阳一样散发热量和其他的各种能源,这对于今后的科研工作有这很大的推动作用,据说这是我国第一个实现压缩融合启动等离子体电流的球形托卡马克装置(NCST)正式投入运行并且实现首次成功放电,之前江西在这方面的技术是空白的,但是这次可以说让大家刮目相看,真的超级硬核。江西“人造太阳”首次成功放电的消息一经曝光后很多国家都表示非常羡慕,尤其是印度,因为印度也一直都在做这方面的研究,但是由于技术卡壳所以一直都没有成功,所以面对这次江西的成功,印度方面表示真的很佩服,而且也很羡慕,虽然说现在这个技术还不是最后的结果,现在这个“人造太阳”也是在实验的阶段,技术也不是完成成熟,但是这也是一个非常好的开端,这次的成功对于之后的研究来说非常重要。现在其他国家都还没有这方面的成就,我国也算是这方面的领头羊,想到以前很多国家还嘲笑我国的科学技术落后,现在我们国家的科学技术飞速发展,而且也获得了多方面的成就,一直默默潜心努力,我觉得这就是中国人的低调和气度。

中国科技即将迎来新的重大突破,不仅中国自主研发的天宫空间站即将建成,而且今年“中国制造”又迎来新的重大突破!中国“人造太阳”装置建后才能,成功完成首次放电!

12月4日,中国的核聚变发展迎来新的重大突破,研发的新一代“人造太阳”——中国环流器二号M装置在四川成都建成并且成功完成首次放电!这是中国对核聚变试验迎来新成就。中国“国际热核聚变实验堆计划”(ITER)是目前全世界规模最大,影响更为深远的国际科研合作项目之一,建造时间约为10年,耗费50亿元美金巨资成功打造。它是一个成功产生大规模核聚变反应的超导托克马克,也被叫做“人造太阳”!

ITER计划在1985年开始提出,实验堆的研究设计工作于1988年开始实行,经过13年的努力,耗费15亿美金,终于在集成世界聚变研究主要成果的基础之上,于2001年完成设计。设计完成之后就是紧张的谈判环节,中国耗时5年,最终ITER计划在2006年和其他七大国家正式签署联合实施协定。ITER计划拥有着重大意义,它是仅次于国际空间站的另一个国际大科学工程计划。其中提到的核聚变研究是目前世界科技界为了解决人类未来能源问题而实施的一项重大国际合作计划,中国设计、中国“制造”、中国技术将会改变未来世界能源格局!

我国的核聚变研究可以追溯到60年代初期,曾经也经历过漫长的困难时期,但是本着坚强的毅力,不断解决困难,最终建成目前在发展中国家两个最大、由理工结合的大型现代化专业研究所——西南物理研究院、合肥等离子体物理研究所。国家为了培养更多关于这方面的人才,在几大科技学院都相继设立了核聚变以及等离子体物理专业以及研究室。

那“人造太阳”有何用处呢?天上已经有一个太阳了,多出一个“太阳”会不会有何副作用呢?此太阳非彼太阳,“人造太阳”在未来就用来解决能源不足的问题,一旦实施运用,未来人类将会摆脱对矿物能源的依赖,给人类带来更加清洁的能源,就像太阳光芒普照大地一样!

人类生活的环境不仅面临自然资源缺乏的问题,还有大量能源被浪费的问题,还有大多数能源在生活中带来不同程度的污染,对人类的生存带来重大的影响,为了改善这一系列的糟糕状况,核聚变应该被好好利用起来,它所释放的能量很有可能掌控未来的能源格局!市场前景很广阔,未来中国技术将会再创辉煌!

“国际空间站”曾经拒绝中国的加入,如今有些国家参与着中国研发设计的“人造太阳”工作,虽然曾经的中国不被看好,并且经常被数落,但是中国并没有一蹶不振,而是“卧薪尝胆”,潜心研究之下,终究会迎来最大的爆发,“人造太阳”就是最好的见证,除此之外,中国自主建造的天宫空间站在未来两年也将会投入使用,届时便成为唯一的太空空间站,中国正如冉冉升起的“太阳”,在未来将会用自己光芒万丈的“阳光”普照大地,让世界的每一寸土地都会感受到中国带来的温暖!

01分享基因组信息我们分享的第一个基因组信息是在1月11号,特别强调这个时间实际上是第一时间,正是因为有了这个信息的共享,全球各个国家才有条件开始病毒研究、药物开发和疫苗研究,这是一个基础性的工作。同时在共享数据方面,我们还搭建了两个平台,一是在国家微生物科学数据中心有一个平台叫“全球冠状病毒组学数据共享与分析系统”,第二个平台是国家生物信息中心发布的“2019新型冠状病毒资源库”,这两个平台发挥了很重要的作用。02搭建学术共享平台我们在《中华医学杂志》上搭建了“防控新冠肺炎科研成果共享交流平台”,现在已经有99种期刊上线,论文和报告一共超过700多篇,浏览量已经超过230万次。在鼓励发表论文上,像《柳叶刀》、《新英格兰杂志》等四大主流医学杂志,还有综合性杂志《SCIENCE》、《Nature》、《CELL》等共七大期刊,中国科学家已经发表了54篇论文,供同行交流。钟南山院士团队发表的论文涉及到1099例的病例分析,中国疾控中心发表的文章涉及到7万多例的病例分析。03构建交流机制首先在WHO框架下有10个工作组,10个组我们全部参加了。二是通过科技部的驻外科技参赞和各个政府、非政府组织建立了很好的交流机制,开展视频会议和学术交流等等。三是非政府机构之间的交流,科学家之间的交流。04开展技术合作研究和技术服务工作我们的五大研究方向,每一个方向都有国际合作的内容。同时在对外援助上,我们有科技产品,有科研人员参与,还有研究的中国方案、中国经验,到疫情严重的地区提供技术服务。徐南平说,中国科学家在两个月时间内能取得这样一些成绩是努力奋斗的结果、拼搏的结果,也是汇集全球智慧和国际合作的结果。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2