更全的杂志信息网

集成电路制造工艺论文题目有哪些

发布时间:2024-09-05 20:50:58

集成电路制造工艺论文题目有哪些

电子信息科学与技术专业本科毕业设计(论文)选题指南一、电子信息科学与技术专业的学科领域电子信息科学与技术专业属于电子信息科学类专业。电子信息科学类专业还包括:微电子学(071202);光信息科学与技术(071203)。二、电子信息科学与技术专业的主要研究方向和培养目标1、电子信息科学与技术专业的主要研究方向(1) 电路与系统(2) 计算机应用2、电子信息科学与技术专业的培养目标本专业培养具备电子信息科学与技术、计算机科学与技术的基本理论和基本知识,受到严格的科学实验训练和科学研究初步训练,能在电子信息科学与技术、计算机科学与技术及相关领域和行政部门从事科学研究、教学、科技开发、产品设计、生产技术或管理工作的电子信息科学与技术高级专门人才。本专业学生主要学习电子信息科学与技术的基本理论和技术,受到科学实验与科学思维的训练,具有本学科及跨学科的应用研究与技术开发的基本能力。毕业生应具备以下几方面的知识、能力和素质:(1) 掌握数学,物理等方面的基本理论和基本知识,;(2) 掌握电子信息科学与技术,计算机科学与技术等方面的基本理论,基本知识和基本技能与方法; (3) 了解相近专业的一般原理和知识;(4) 熟悉国家电子信息产业政策及国内外有关知识产权的法律法规;(5) 了解电子信息科学与技术的理论前沿,应用前景和最新发展动态,以及电子信息产业发展状况;(6) 掌握现代电路设计自动化技术。(7) 掌握资料查询,文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的技术设计,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力;(8) 具备善于运用已有知识来学习挖掘新知识,能够将所学知识运用到实践活动中去和运用科学知识分析解决实际问题的能力;(9) 具有独立观察,分析问题,敢于标新立异,勇于置疑,具备开展科学创新活动的基本能力;(10) 善于自我设计、自我推销,协调和处理人际关系,能够及时掌握人才市场需求的信息,具有自主择业的能力。三、毕业设计(论文)选题原则本专业毕业论文(设计)题目的选择要遵循以下原则:1、要结合所学专业毕业论文主要用来衡量学生对所学知识的掌握程度,所以论文题目不能脱离所学的专业知识。有些学生工作与所学专业没有关系,而本人对所从事的工作有一定的探索或研究,毕业论文就写了这方面的内容。这只能算是工作总结,但不能算是一篇毕业论文。工科学生学习的专业往往和他们从事的工作有教紧密的关系,他们有教丰富的实验经验和感性认识,经过几年的系统学习,可以学到相应的理论知识,使他们对自己的工作有一种新的认识,他们可以利用所学知识对原来的工作方式、工作程序、工作工具进行改进,以提高工作效率。2、内容要新工科论文除了具有理论性之外,更重要的是它的实践性和实际操作性。工科各学科发展非常之快,往往教科书刚进入课堂,内容就已经落后了。待学生毕业时,所学知识可能几近淘汰,所以学生选题要注意所用知识不能陈旧,要能跟上学科的发展。3、题目要大小适当,难易适度论文题目不宜过大,否则必然涉及的范围大广。学生处涉科研,普遍存在着知识面窄、理论功底不足的问题,再加上学生主要以业余学习为主,题目太大,势必讲得不深不透,乃至丢三落四,难以驾驭。因此,选题必须具体适中。题目选择要难易适度。过难,自己不能胜任,最后可能半途而废,无法完成论文;太容易,则论文层次太低,不能很好地反映几年来的学习成绩和科研水平,同时自己也得不到锻炼。选题最好能合乎个性兴趣爱好,如果自己对论题兴趣很高,就会有自发的热情和积极性,文章就容易写出新意来。四、毕业设计(论文)选题选题是决定毕业设计(论文)训练成败与质量好坏的关健之一。1、电子信息科学与技术专业本科从选题的内容上可以分为理论型毕业设计(论文)和应用型毕业设计(论文)两大类。2、从本科毕业设计(论文)课题的来源,也可以分为科研开发型和自确定型毕业设计(论文)两大类。3、从电子信息科学与技术专业本科毕业设计(论文)所涉及的研究领域来看,又可以将其划分为如下一些领域: (1) 集成电路的测试与故障诊断(2) 集成电路的设计与分析(3) ARM的设计与应用(4) 信号与信息处理(5) 单片机应用系统开发(6) 仪器、仪表的设计开发与改进(7) 视频、音频信号处理技术(8) 可编程器件、EDA技术(9) 新型电源的开发与应用(10) 各种电子电路的设计(11) 微机接口电路的设计(12) 电子电路的软件仿真技术(13) 太赫兹电子技术(14) 测试控制系统的设计与仿真(15) 数据采集系统设计(16) 虚拟仪器

集成电路工艺分为以硅平面工艺为基础的单片集成电路、以薄膜技术为基础的薄膜集成电路和以丝网印刷技术为基础的厚膜集成电路。1、单片集成电路工艺利用研磨、抛光、氧化、扩散、光刻等一整套平面工艺技术,在一小块硅单晶片上同时制造晶体管、二极管、电阻和电容等元件,并且采用一定隔离技术使各元件在电性能上互相隔离。在硅片表面蒸发铝层并用光刻技术刻蚀成互连图形,使元件按需要互连成完整电路,制成半导体单片集成电路。2、薄膜集成电路工艺采用薄膜工艺在蓝宝石、石英玻璃、陶瓷、覆铜板基片上制作电路元、器件及其接线,并加以封装而成。薄膜工艺包括蒸发、溅射、化学气相淀积等。特点为电阻、电容数值控制较精确,且数值范围宽,但集成度不高,主要用于线性电路。3、厚膜集成电路工艺厚膜混合集成电路的特点是设计更为灵活、工艺简便、成本低廉,特别适宜于多品种小批量生产。在电性能上,它能耐受较高的电压、更大的功率和较大的电流。厚膜微波集成电路的工作频率可以达到 4GHz 以上。它适用于各种电路,特别是消费类和工业类电子产品用的模拟电路。扩展资料:集成电路工艺的工艺发展单片集成电路除向更高集成度发展外,也正在向着大功率、线性、高频电路和模拟电路方面发展。不过,在微波集成电路、较大功率集成电路方面,薄膜、厚膜混合集成电路还具有优越性。在具体的选用上,往往将各类单片集成电路和厚膜、薄膜集成工艺结合在一起,特别如精密电阻网络和阻容网络基片粘贴于由厚膜电阻和导带组装成的基片上,装成一个复杂的完整的电路。必要时甚至可配接上个别超小型元件,组成部件或整机。参考资料来源:百度百科-集成电路工艺参考资料来源:百度百科-厚膜集成电路参考资料来源:百度百科-薄膜集成电路

工艺阿,主要就是焊接吧,印刷电路板是单独作的,上面元件用布线机自动装,然后就剩焊接了

工程硕士的学位论文的选题可以直接来源于生产实际或具有明确的生产背景和应用价值。学位论文选题应具有一定的先进性和技术难度,能体现工程硕士研究生综合运用科学理论、方法和技术手段解决工程实际问题的能力。学位论文选题可以是一个完整的集成电路工程项目,可以是工程技术研究专题,也可以是新工艺、新设备、新材料、集成电路与系统芯片新产品的研制与开发。学位论文应包括:课题意义的说明、国内外动态、设计方案的比较与评估、需要解决的主要问题和途径、本人在课题中所做的工作、理论分析、设计计算书、测试装置和试验手段、计算程序、试验数据处理、必要的图纸、图表曲线与结论、结果的技术和经济效果分析、所引用的参考文献等,与他人合作或前人基础上继续进行的课题,必须在论文中明确指出本人所做的工作。

集成电路制造工艺论文题目

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装  70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 适合PCB的穿孔安装; 比TO型封装(图1)易于对PCB布线; 操作方便。  DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。  衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/24×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。  Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装  80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。  以5mm焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:8,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 适合用SMT表面安装技术在PCB上安装布线; 封装外形尺寸小,寄生参数减小,适合高频应用; 操作方便; 可靠性高。  在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装  90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。  BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: I/O引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 厚度比QFP减少1/2以上,重量减轻3/4以上; 寄生参数减小,信号传输延迟小,使用频率大大提高; 组装可用共面焊接,可靠性高; BGA封装仍与QFP、PGA一样,占用基板面积过大;  Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术  BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按5mm焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。  1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:1的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 满足了LSI芯片引出脚不断增加的需要; 解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。  曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 封装延迟时间缩小,易于实现组件高速化; 缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 可靠性大大提高。  随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

我的本科论文,带隙基准电压源的设计与研究,优秀论文

线路板 制作方法 原料板——按照预定尺寸切割电路板——按照准备好的电路图用自动钻孔机钻孔——用抛光机抛光——预浸(3分钟)——水洗—用使油墨固化机75℃烘干——活化(5分钟)——通孔(通孔后的检查通孔效果)——固化机120℃烘干——用抛光机抛光——微蚀——水洗——加速水洗——用镀铜机镀铜25~30分钟(有效镀铜面积下镀铜电流:3A/01㎡)——抛光机抛光——75℃烘干——线路油墨丝印(使用90T丝网丝印)——75℃烘干——用曝光机曝光9秒(抽气,开灯,曝光)——显影机显影(在46℃下显影10秒左右)——水洗——烘干——微蚀——水洗——烘干——用镀锡机镀锡25~30分钟(有效镀锡面积下镀锡电流:5A/01㎡)——油墨脱膜(3~4分钟)——水洗——75℃烘干——用腐蚀机腐蚀(在56℃左右下腐蚀45秒左右)——水洗——抛光——烘干——刷阻焊油墨(1:3调配油墨,使用100T丝网印刷)——75℃烘干——曝光90秒——显影(10秒左右)——水洗——75℃烘干——刷字符油墨(1:3调配油墨,使用120T丝网印刷)——75℃烘干——曝光120秒——显影(10秒左右)——水洗——150℃固化烘干(10~15分钟)总的来说你只要做好电路就可以了其他的都是代工厂家做的事情集成电路其实一句话说到底就是在多晶硅材料商 硅是半导体添加五价或者三价元素形成PN结在硅片上形成无数个PN结就可以了 详细看电子技术基础电子元器件的制作其实要看哪种了,比如三极管或者二极管再者可控硅等其实还是利用了PN结电阻有很多种,有的是金属膜电阻有的是线绕电阻每个的工艺都不一样电容也分很多种的,常见的有电解电容和涤纶电容和纸介电容等

集成电路制造工艺论文选题

磁控溅射300 nm铜膜的电学性能研究1 引 言作为互连材料,铜(Cu)相对于铝具有较低的电阻率(67μΩ·cm)和良好的抗电迁移性能,因而在集成电路和微电子领域有着广阔的应用前景[1]。随着器件不断向微型化发展,互连Cu膜的厚度不断向亚微米和纳米尺度减小。一方面,膜厚减小导致薄膜比表面积的急剧增加,从而使Cu膜呈现出与块体迥然不同的性能,如由于对传输电子产生显著的表面散射而导致较高的电阻率等[2];另一方面,当膜厚减小至纳米尺度时,Cu膜表面形貌也将表现出新的演化特征,从而可能影响与其连接的其他膜层的结构和性能等[3]。因此,研究纳米尺度铜膜的表面形貌演化及其电学性能有着非常重要的意义。近年来,大量文献报道了淀积工艺对较厚Cu

电子信息科学与技术专业本科毕业设计(论文)选题指南 一、电子信息科学与技术专业的学科领域 电子信息科学与技术专业属于电子信息科学类专业。电子信息科学类专业还包括:微电子学(071202);光信息科学与技术(071203)。 二、电子信息科学与技术专业的主要研究方向和培养目标 1、电子信息科学与技术专业的主要研究方向 (1) 电路与系统 (2) 计算机应用 2、电子信息科学与技术专业的培养目标 本专业培养具备电子信息科学与技术、计算机科学与技术的基本理论和基本知识,受到严格的科学实验训练和科学研究初步训练,能在电子信息科学与技术、计算机科学与技术及相关领域和行政部门从事科学研究、教学、科技开发、产品设计、生产技术或管理工作的电子信息科学与技术高级专门人才。 本专业学生主要学习电子信息科学与技术的基本理论和技术,受到科学实验与科学思维的训练,具有本学科及跨学科的应用研究与技术开发的基本能力。 毕业生应具备以下几方面的知识、能力和素质: (1) 掌握数学,物理等方面的基本理论和基本知识,; (2) 掌握电子信息科学与技术,计算机科学与技术等方面的基本理论,基本 知识和基本技能与方法; (3) 了解相近专业的一般原理和知识; (4) 熟悉国家电子信息产业政策及国内外有关知识产权的法律法规; (5) 了解电子信息科学与技术的理论前沿,应用前景和最新发展动态,以及 电子信息产业发展状况; (6) 掌握现代电路设计自动化技术。 (7) 掌握资料查询,文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的技术设计,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力; (8) 具备善于运用已有知识来学习挖掘新知识,能够将所学知识运用到实践活动中去和运用科学知识分析解决实际问题的能力; (9) 具有独立观察,分析问题,敢于标新立异,勇于置疑,具备开展科学创新活动的基本能力; (10) 善于自我设计、自我推销,协调和处理人际关系,能够及时掌握人才市场需求的信息,具有自主择业的能力。 三、毕业设计(论文)选题原则 本专业毕业论文(设计)题目的选择要遵循以下原则: 1、要结合所学专业 毕业论文主要用来衡量学生对所学知识的掌握程度,所以论文题目不能脱离所学的专业知识。有些学生工作与所学专业没有关系,而本人对所从事的工作有一定的探索或研究,毕业论文就写了这方面的内容。这只能算是工作总结,但不能算是一篇毕业论文。 工科学生学习的专业往往和他们从事的工作有教紧密的关系,他们有教丰富的实验经验和感性认识,经过几年的系统学习,可以学到相应的理论知识,使他们对自己的工作有一种新的认识,他们可以利用所学知识对原来的工作方式、工作程序、工作工具进行改进,以提高工作效率。 2、内容要新 工科论文除了具有理论性之外,更重要的是它的实践性和实际操作性。工科各学科发展非常之快,往往教科书刚进入课堂,内容就已经落后了。待学生毕业时,所学知识可能几近淘汰,所以学生选题要注意所用知识不能陈旧,要能跟上学科的发展。 3、题目要大小适当,难易适度 论文题目不宜过大,否则必然涉及的范围大广。学生处涉科研,普遍存在着知识面窄、理论功底不足的问题,再加上学生主要以业余学习为主,题目太大,势必讲得不深不透,乃至丢三落四,难以驾驭。因此,选题必须具体适中。 题目选择要难易适度。过难,自己不能胜任,最后可能半途而废,无法完成论文;太容易,则论文层次太低,不能很好地反映几年来的学习成绩和科研水平,同时自己也得不到锻炼。 选题最好能合乎个性兴趣爱好,如果自己对论题兴趣很高,就会有自发的热情和积极性,文章就容易写出新意来。 四、毕业设计(论文)选题 选题是决定毕业设计(论文)训练成败与质量好坏的关健之一。 1、电子信息科学与技术专业本科从选题的内容上可以分为理论型毕业设计(论文)和应用型毕业设计(论文)两大类。 2、从本科毕业设计(论文)课题的来源,也可以分为科研开发型和自确定型毕业设计(论文)两大类。 3、从电子信息科学与技术专业本科毕业设计(论文)所涉及的研究领域来看,又可以将其划分为如下一些领域: (1) 集成电路的测试与故障诊断 (2) 集成电路的设计与分析 (3) ARM的设计与应用 (4) 信号与信息处理 (5) 单片机应用系统开发 (6) 仪器、仪表的设计开发与改进 (7) 视频、音频信号处理技术 (8) 可编程器件、EDA技术 (9) 新型电源的开发与应用 (10) 各种电子电路的设计 (11) 微机接口电路的设计 (12) 电子电路的软件仿真技术 (13) 太赫兹电子技术 (14) 测试控制系统的设计与仿真 (15) 数据采集系统设计 (16) 虚拟仪器满意请采纳

集成电路制造工艺论文题目推荐

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装  70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 适合PCB的穿孔安装; 比TO型封装(图1)易于对PCB布线; 操作方便。  DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。  衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/24×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。  Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装  80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。  以5mm焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:8,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 适合用SMT表面安装技术在PCB上安装布线; 封装外形尺寸小,寄生参数减小,适合高频应用; 操作方便; 可靠性高。  在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装  90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。  BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: I/O引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 厚度比QFP减少1/2以上,重量减轻3/4以上; 寄生参数减小,信号传输延迟小,使用频率大大提高; 组装可用共面焊接,可靠性高; BGA封装仍与QFP、PGA一样,占用基板面积过大;  Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术  BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按5mm焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。  1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:1的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 满足了LSI芯片引出脚不断增加的需要; 解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。  曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 封装延迟时间缩小,易于实现组件高速化; 缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 可靠性大大提高。  随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

工程硕士的学位论文的选题可以直接来源于生产实际或具有明确的生产背景和应用价值。学位论文选题应具有一定的先进性和技术难度,能体现工程硕士研究生综合运用科学理论、方法和技术手段解决工程实际问题的能力。学位论文选题可以是一个完整的集成电路工程项目,可以是工程技术研究专题,也可以是新工艺、新设备、新材料、集成电路与系统芯片新产品的研制与开发。学位论文应包括:课题意义的说明、国内外动态、设计方案的比较与评估、需要解决的主要问题和途径、本人在课题中所做的工作、理论分析、设计计算书、测试装置和试验手段、计算程序、试验数据处理、必要的图纸、图表曲线与结论、结果的技术和经济效果分析、所引用的参考文献等,与他人合作或前人基础上继续进行的课题,必须在论文中明确指出本人所做的工作。

电子信息科学与技术专业本科毕业设计(论文)选题指南 一、电子信息科学与技术专业的学科领域 电子信息科学与技术专业属于电子信息科学类专业。电子信息科学类专业还包括:微电子学(071202);光信息科学与技术(071203)。 二、电子信息科学与技术专业的主要研究方向和培养目标 1、电子信息科学与技术专业的主要研究方向 (1) 电路与系统 (2) 计算机应用 2、电子信息科学与技术专业的培养目标 本专业培养具备电子信息科学与技术、计算机科学与技术的基本理论和基本知识,受到严格的科学实验训练和科学研究初步训练,能在电子信息科学与技术、计算机科学与技术及相关领域和行政部门从事科学研究、教学、科技开发、产品设计、生产技术或管理工作的电子信息科学与技术高级专门人才。 本专业学生主要学习电子信息科学与技术的基本理论和技术,受到科学实验与科学思维的训练,具有本学科及跨学科的应用研究与技术开发的基本能力。 毕业生应具备以下几方面的知识、能力和素质: (1) 掌握数学,物理等方面的基本理论和基本知识,; (2) 掌握电子信息科学与技术,计算机科学与技术等方面的基本理论,基本 知识和基本技能与方法; (3) 了解相近专业的一般原理和知识; (4) 熟悉国家电子信息产业政策及国内外有关知识产权的法律法规; (5) 了解电子信息科学与技术的理论前沿,应用前景和最新发展动态,以及 电子信息产业发展状况; (6) 掌握现代电路设计自动化技术。 (7) 掌握资料查询,文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的技术设计,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力; (8) 具备善于运用已有知识来学习挖掘新知识,能够将所学知识运用到实践活动中去和运用科学知识分析解决实际问题的能力; (9) 具有独立观察,分析问题,敢于标新立异,勇于置疑,具备开展科学创新活动的基本能力; (10) 善于自我设计、自我推销,协调和处理人际关系,能够及时掌握人才市场需求的信息,具有自主择业的能力。 三、毕业设计(论文)选题原则 本专业毕业论文(设计)题目的选择要遵循以下原则: 1、要结合所学专业 毕业论文主要用来衡量学生对所学知识的掌握程度,所以论文题目不能脱离所学的专业知识。有些学生工作与所学专业没有关系,而本人对所从事的工作有一定的探索或研究,毕业论文就写了这方面的内容。这只能算是工作总结,但不能算是一篇毕业论文。 工科学生学习的专业往往和他们从事的工作有教紧密的关系,他们有教丰富的实验经验和感性认识,经过几年的系统学习,可以学到相应的理论知识,使他们对自己的工作有一种新的认识,他们可以利用所学知识对原来的工作方式、工作程序、工作工具进行改进,以提高工作效率。 2、内容要新 工科论文除了具有理论性之外,更重要的是它的实践性和实际操作性。工科各学科发展非常之快,往往教科书刚进入课堂,内容就已经落后了。待学生毕业时,所学知识可能几近淘汰,所以学生选题要注意所用知识不能陈旧,要能跟上学科的发展。 3、题目要大小适当,难易适度 论文题目不宜过大,否则必然涉及的范围大广。学生处涉科研,普遍存在着知识面窄、理论功底不足的问题,再加上学生主要以业余学习为主,题目太大,势必讲得不深不透,乃至丢三落四,难以驾驭。因此,选题必须具体适中。 题目选择要难易适度。过难,自己不能胜任,最后可能半途而废,无法完成论文;太容易,则论文层次太低,不能很好地反映几年来的学习成绩和科研水平,同时自己也得不到锻炼。 选题最好能合乎个性兴趣爱好,如果自己对论题兴趣很高,就会有自发的热情和积极性,文章就容易写出新意来。 四、毕业设计(论文)选题 选题是决定毕业设计(论文)训练成败与质量好坏的关健之一。 1、电子信息科学与技术专业本科从选题的内容上可以分为理论型毕业设计(论文)和应用型毕业设计(论文)两大类。 2、从本科毕业设计(论文)课题的来源,也可以分为科研开发型和自确定型毕业设计(论文)两大类。 3、从电子信息科学与技术专业本科毕业设计(论文)所涉及的研究领域来看,又可以将其划分为如下一些领域: (1) 集成电路的测试与故障诊断 (2) 集成电路的设计与分析 (3) ARM的设计与应用 (4) 信号与信息处理 (5) 单片机应用系统开发 (6) 仪器、仪表的设计开发与改进 (7) 视频、音频信号处理技术 (8) 可编程器件、EDA技术 (9) 新型电源的开发与应用 (10) 各种电子电路的设计 (11) 微机接口电路的设计 (12) 电子电路的软件仿真技术 (13) 太赫兹电子技术 (14) 测试控制系统的设计与仿真 (15) 数据采集系统设计 (16) 虚拟仪器

集成电路制造工艺论文题目大全

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装  70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 适合PCB的穿孔安装; 比TO型封装(图1)易于对PCB布线; 操作方便。  DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。  衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/24×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。  Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装  80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。  以5mm焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:8,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 适合用SMT表面安装技术在PCB上安装布线; 封装外形尺寸小,寄生参数减小,适合高频应用; 操作方便; 可靠性高。  在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装  90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。  BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: I/O引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 厚度比QFP减少1/2以上,重量减轻3/4以上; 寄生参数减小,信号传输延迟小,使用频率大大提高; 组装可用共面焊接,可靠性高; BGA封装仍与QFP、PGA一样,占用基板面积过大;  Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术  BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按5mm焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。  1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:1的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 满足了LSI芯片引出脚不断增加的需要; 解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。  曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 封装延迟时间缩小,易于实现组件高速化; 缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 可靠性大大提高。  随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

工艺是指衬底制备,离子注入,扩散,外延,氧化,抛光,光刻这些步骤吧。其实步骤蛮多的,我说我上课学到的部分,衬底制备就是对硅衬底进行一些改进,消除一些表面态,内部晶格的损伤什么的; 离子注入和扩散就是在硅上面进行参杂,以提高导电率或者是让他反型; 外延就是在表面上再生长一层东西,可以是其他半导体材料,金属等各种东西为的是形成;氧化就是形成二氧化硅隔离层,或者是场氧化层; 抛光就是你在硅上面生长了东西或者是利用大马士革工艺形成了各种沟道啊,导线啊什么的,你要把突出来的地方利用物理或者化学的方法去掉,是表面平滑,一边进行下一步; 光刻是最重要的一步,没走一层就要用光刻来完成,光刻主要是完成离子注入,扩散等上面这些东西的。只有利用光刻才能把你想走的线路或者想要参杂的地方在硅表面呈现出来。。最后给个链接吧这里面更详细。。

这有一样板,可参照。以上信息希望对你有帮助!

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2