更全的杂志信息网

生物技术在食品工业中的应用论文选题方向怎么写

发布时间:2024-07-07 20:49:43

生物技术在食品工业中的应用论文选题方向怎么写

微生物在食品工业中的应用1 食醋食醋是我国劳动人民在长期的生产实践中制造出来的一种酸性调味品。它能增进食欲,帮助消化,在人们饮食生活中不可缺少。在我国的中医药学中醋也有一定的用途。全国各地生产的食醋品种较多。著名的山西陈醋、镇江香醋、四川麸醋、东北白醋、江浙玫瑰米醋、福建红曲醋等是食醋的代表品种。食醋按加工方法可分为合成醋、酿造醋、再制醋三大类。其中产量最大且与我们关系最为密切的是酿造醋,它是用粮食等淀粉质为原料,经微生物制曲、糖化、酒精发酵、醋酸发酵等阶段酿制而成。其主要成分除醋酸(3%~5%)外,还含有各种氨基酸、有机酸、糖类、维生素、醇和酯等营养成分及风味成分,具有独特的色、香、味。它不仅是调味佳品,长期食用对身体健康也十分有益。1 生产原料目前酿醋生产用的主要原料有:薯类 如甘薯、马铃薯等;粮谷类 如玉米、大米等;粮食加工下脚料 如碎米、麸皮、谷糠等;果蔬类 如黑醋栗、葡萄、胡萝卜等;野生植物 如橡子、菊芋等;其他 如酸果酒、酸啤酒、糖蜜等。生产食醋除了上述主要原料外,还需要疏松材料如谷壳、玉米芯等,使发酵料通透性好,好氧微生物能良好生长。2 发酵乳制品发酵乳制品是指良好的原料乳经过杀菌作用接种特定的微生物进行发酵作用,产生具有特殊风味的食品,称为发酵乳制品。它们通常具有良好的风味、较高的营养价值、还具有一定的保健作用。并深受消费者的普遍欢迎。常用发酵乳制品有酸奶、奶酪、酸奶油、马奶酒等。发酵乳制品主要包括酸奶和奶酪两大类,生产菌种主要是乳酸菌。乳酸菌的种类较多,常用的有干酪乳杆菌(Lactobacillus casei)、保加利亚乳杆菌(L bulgaricus)、嗜酸乳杆菌(L acidophilus)、植物乳杆菌(L plantarum)、乳酸乳杆菌(L Lactis)、乳酸乳球菌(Lactococcus lactis)、嗜热链球菌(Streptococcus thermophilus)等。近年来,随着对双歧乳酸杆菌在营养保健方面作用的认识,人们便将其引入酸奶制造,使传统的单株发酵,变为双株或三株共生发酵。由于双歧杆菌的引入,使酸奶在原有的助消化、促进肠胃功能作用基础上,又具备了防癌、抗癌的保健作用。双歧杆菌因其菌体尖端呈分枝状(如Y型或V型)而得名。双歧杆菌是无芽孢革兰氏阳性细菌,专性厌氧、不抗酸、不运动、过氧化氢酶反应为阴性,最适生长温度为37~41℃。初始生长最适pH5~0,能分解糖。双歧杆菌能利用葡萄糖发酵产生醋酸和乳酸(2:3),不产生CO2。目前已知的双歧杆菌共有24种,其中9种存在于人体肠道内,它们是两歧双歧杆菌(B bifidum)、长双歧杆菌(B longum)、短双歧杆菌(B brevvis)、婴儿双歧杆菌(B angulatum)、链状双歧杆菌(B adolescentis)、假链状双歧杆菌(B pseudocatenulatum)和牙双歧杆菌(B dentmum)等。应用于发酵乳制品生产的仅为前面5种。双歧杆菌与人体,除了如在酸奶中起到和其它乳酸菌一样的对乳营养成分的“预消化”作用,使鲜乳中的乳糖、蛋白质水解成为更易为人体吸收利用的小分子以外,主要产生双歧杆菌素。其对肠道中的致病菌如沙门氏菌、金黄色葡萄球菌、志贺氏菌等具有明显的杀灭效果。乳中的双歧杆菌还能分解积存于肠胃中的致癌物N-亚硝基胺,防止肠道癌变,并能通过诱导作用产生细胞干扰素和促细胞分裂剂,活化NK细胞,促进免疫球蛋白的产生、活化巨嗜细胞的功能,提高人体的免疫力,增强人体对癌症的抵抗和免疫能力。目前,发酵乳制品的品种很多,如酸奶、饮料、干酪、乳酪等。现仅简要介绍一下双歧杆菌酸奶的生产工艺。双歧杆菌酸奶的生产有两种不同的工艺。一种是两歧双歧杆菌与嗜热链球菌、保加利亚乳杆菌等共同发酵的生产工艺,称共同发酵法。另一种是将两歧双歧杆菌与兼性厌氧的酵母菌同时在脱脂牛乳中混合培养,利用酵母在生长过程中的呼吸作用,以生物法耗氧,创造一个适合于双歧杆菌生长繁殖、产酸代谢的厌氧环境,称为共生发酵法。3 氨基酸发酵1 概述氨基酸是组成蛋白质的基本成分,其中有8种氨基酸是人体不能合成但又必需的氨基酸,称为必需氨基酸,人体只有通过食物来获得。另外在食品工业中,氨基酸可作为调味料,如谷氨酸钠、肌苷酸钠、鸟苷酸钠可作为鲜味剂,色氨酸和甘氨酸可作为甜味剂,在食品中添加某些氨基酸可提高其营养价值等等。因此氨基酸的生产具有重要的意义。表7~1列出部分氨基酸生产所用的菌株。自从60年代以来,微生物直接用糖类发酵生产谷氨酸获得成功并投入工业化生产。我国成为世界上最大的味精生产大国。味精以成为调味品的重要成员之一,氨基酸的研究和生产得到了迅速发展。随着科学技术的进步,对传统的工艺不断地进行改革,但如何保持传统工艺生产的特有风味,从而使新工艺生产出的产品更具魅力,是今后研究的课题。5 黄原胶1 概况黄原胶(Xamthan Gum)别名汉生胶,又称黄单胞多糖,是国际上70年代发展起来的新型发酵产品。它是由甘兰黑腐病黄单胞细菌(Xanthomonas campestris)以碳水化合物为主要原料,经通风发酵、分离提纯后得到的一种微生物高分子酸性胞外杂多糖。其作为新型优良的天然食品添加剂用途越来越广泛。国际上,黄原胶开发及应用最早的是美国。美国农业部北方地区Peoria实验室于60年代初首先用微生物发酵法获得黄原胶。1964年,美国Merck公司Keco分部在世界上首先实现了黄原胶的工业化生产。1979年世界黄原胶总产量为2000t,1990年达4000t以上。在美国,黄原胶年产值约为5亿美元,仅次于抗生素和溶剂的年产值,在发酵产品中居第3位。我国对黄原胶的研究起步较晚,进行开发研究的单位,如南开大学、中科院微生物研究所、山东食品发酵研究所等,均已通过中试鉴定。目前全国有烟台、金湖、五连等数家黄原胶生产厂,年产在200t左右,主要用作食品添加剂。我国生产黄原胶的淀粉用量一般在5%左右,发酵周期为72~96h,产胶能力30~40g/L,与国外比较,生产水平较低。随着黄原胶生产和应用范围的进一步发展,目前北京、四川、郑州、苏州、山东等地都有黄原胶生产新厂建成,预示着我国的黄原胶生产将呈现一个新的局面。2 食品制造中的酵母及其应用酵母菌与人们的生活有着十分密切的关系,几千年来劳动人民利用酵母菌制作出许多营养丰富、味美的食品和饮料。目前,酵母菌在食品工业中占有极其重要的地位。利用酵母菌生产的食品种类很多,下面仅介绍几种主要产品。1 面包面包是产小麦国家的主食,几乎世界各国都有生产。它是以面粉为主要原料,以酵母菌、糖、油脂和鸡蛋为辅料生产的发酵食品,其营养丰富,组织蓬松,易于消化吸收,食用方便,深受消费者喜爱。酵母是生产面包必不可少的生物松软剂。面包酵母是一种单细胞生物,属真菌类,学名为啤酒酵母。面包酵母有圆形、椭圆形等多种形态。以椭圆形的用于生产较好。酵母为兼性厌氧性微生物,在有氧及无氧条件下都可以进行发酵。2 酿酒我国是一个酒类生产大国,也是一个酒文化文明古国,在应用酵母菌酿酒的领域里,有着举足轻重的地位。许多独特的酿酒工艺在世界上独领风骚,深受世界各国赞誉,同时也为我国经济繁荣作出了重要贡献。酿酒具有悠久的历史,产品种类繁多如:黄酒、白酒、啤酒、果酒等品种。而且形成了各种类型的名酒,如绍兴黄酒、贵州茅台酒、青岛啤酒等。酒的品种不同,酿酒所用的酵母以及酿造工艺也不同,而且同一类型的酒各地也有自己独特的工艺。

霉菌在食品加工工业中用途十分广泛,许多酿造发酵食品、食品原料的制造,如豆腐乳、豆豉、酱、酱油、柠檬酸等都是在霉菌的参与下生产加工出来的。绝大多数霉菌能把加工所用原料中的淀粉、糖类等碳水化合物、蛋白质等含氮化合物及其它种类的化合物进行转化,制造出多种多样的食品、调味品及食品添加剂。不过,在许多食品制造中,除了利用霉菌以外,还要有细菌、酵母的共同作用下来完成。在食品酿造业中,常常以淀粉质为主要原料。只有将淀粉转化为糖才能被酵母菌及细菌利用。

摘要:微生物千姿百态,人类对它的应用也涉及各个领域,我们主要讨论下它在食品方面的应用。主要来说有两个方面,一方面是利用有益微生物的作用制造发酵食品,现代发酵工程在食品领域应用非常广泛;另一方面是防止有害微生物污染食品,保证食品安全。在人们对食品卫生要求越来越高的今天,食品的保鲜技术正悄然发生着一场革命性的变化。传统的食品保鲜技术将逐步被一种全新、无毒、高效的保鲜技术,微生物保鲜技术所取代。关键词:微生物发酵工程食品保鲜微生物发酵在食品方面的应用微生物发酵即利用微生物在适宜的条件下,将原料经过特定的代谢途径转化为人类所需要的产物。它在食品发面应用非常广泛,日常生活中常见的奶酪、面包、一些食品添加剂和各种酒类的都是微生物发酵的产品。微生物发酵的应用古以有之,酒在古代就已经是生活中不可或缺的,受到社会各个阶层的喜爱。现代发酵工程更是把微生物发酵运用到各个方面。1酵母在食品制作中的应用酵母菌在食品工业中占有极其重要的地位。制作面包时酵母是必不可少的生物松软剂,面包酵母是一种单细胞生物,属真菌类,学名啤酒酵母;酿酒工业从古至今一直长盛不衰,各种酵母居功至伟;酱类食品如豆瓣酱,面酱等都是利用以米曲霉为主的微生物发酵酿制的。2微生物在单细胞蛋白中的应用由于微生物就提的蛋白含量高,一般细菌含蛋白质60%-70%,酵母45%-65%,霉菌35%-40%。因此,它是很理想的一种蛋白质来源,也是解决全球蛋白资源紧缺的重要途径之一。为了和来源于动物、植物中的蛋白相区别,人们把来源于微生物的蛋白叫做单细胞蛋白。它有以下几种优点:一SCP营养丰富,二利用原料广可就地取材,廉价大量地解决原料问题,三生产速率高一般蛋白质生产速度同猪、牛、羊等体重的倍增时间成正比,四劳动生产率高生产不受季节气候的制约,易于人工控制,同时由于在大型发酵罐中立体式培养占地面积少,五可以完全工业化生产单细胞蛋白生产比农业生产需要的劳动力少,又不受地区、季节和气候条件的制约,可在占地有限的小设备上进行,不仅数量大,而且质量好,远远超过现有粮食品种的蛋白质,六单细胞生物易诱变,比动、植物品种容易改良可采用物理、化学、生物学方法定向诱变育种,获得蛋白质含量高、质量好、味美,并易于提取蛋白质的优良菌种。3微生物在发酵乳制品中的应用现代生活中随处可见的各种乳制品的制作均离不开微生物发酵。发酵乳制品主要包括酸奶和奶酪两大类,生产菌种主要是乳酸菌。由此可见,微生物发酵在食品工业中占有非常重要的地位。4微生物油脂的生产我们平常吃的不是芝麻、花生、大豆等等油料作物榨取的植物油脂,就是由猪、羊级牛熬制的动物油脂,很少考虑到微生物油脂。其实,很多微生物中都含有油脂,少的有2%-3%,多的有60%-70%,且大多数微生物油脂多富含不饱和脂肪酸,有益于人体健康。微生物保鲜技术在食品方面的应用微生物保鲜是微生物在食品方面的另一种重要应用。目前,控制食品质量,延长食品货架期最常用的方法仍是机械低温贮藏和化学药剂处理。低温贮藏成本高、耗能大、质量不稳定、而且像茄子等原产热带、亚热带的果蔬不能在低温下贮藏,只能在亚低温下贮藏,否则容易发生冷害,造成重大损失,而病菌在亚低温下繁殖较快,致使食品在贮藏期间常发生严重腐烂。种类有限的化学制剂虽可较有效的控制食品质量,但化学药剂对人体健康的危害性和对农业生态的严重破坏性,已使人们深感担扰。采用生物制剂对食品进行贮藏保鲜,不但没有化学处理带来的健康危害和环境污染等问题,而且贮藏环境小,贮藏条件好控制,处理目标明确,处理费用低,特别是随着人们生活水平的提高,对食品卫生的要求越来越高,人们希望能吃到天然、安全、无残留化学制剂的食品,因此,食品生物保鲜技术的研究和开发显得更为迫切和重要。1常用于食品保鲜的微生物微生物中利用细菌保鲜的报道比较多。利用蜡样芽孢杆菌对绿茶进行生物保鲜的技术已获得中国专利发明,乳酸菌在水果、蔬菜、肉品、奶类的生物保鲜方面已有了较深的研究和较为广泛的应用。在国外有利用木霉对果蔬进行保鲜的报道。例如,美国、法国、英国利用木霉对洋梨、蘑菇、苹果进行防病保鲜;我国也有一些应用木霉对茉莉花、茄子、蜜柑等进行保鲜的研究报道。2食品的微生物保鲜机理(1)形成生物膜微生物通过分泌胞外多糖等成膜物质,在食品外部形成一层致密的薄膜,隔绝氧气,防止水分蒸发。如在绿茶的生物保鲜中,蜡样芽孢杆菌会在茶叶表面形成生物膜,阻止了茶叶与氧气的直接接触,有效地控制了茶叶的氧化劣变。生物保鲜膜可以有效抑制呼吸作用,减少水分蒸发,防止微生物污染,减少微生物腐败作用,延长果实保鲜时间,提高商品率。(2)竞争作用保鲜微生物可与有害微生物竞争食品中的糖类等营养物质,从而抑制有害微生物的生长。在羊肉的生物保鲜中,乳酸菌可以有效地减少食品表面有限的糖类,从而达到了较好的保鲜效果。(3)拮抗作用微生物主要是通过拮抗作用抑制或杀死食品中的有害微生物,从而达到防腐保鲜目的。3生物保鲜食品的安全性无论用什么保鲜方法,人们最关心的都是食品的安全性问题。目前,有些常用于生物保鲜的微生物像乳酸菌,可以从日常食品如肉品、奶类、蔬菜、水果中分离到,因此,人们也不自觉地有了几百年甚至几千年的食用历史;乳酸菌细菌素已被美国FDA和全世界45个国家认可,并被大规模的商业化应用,这充分证明,用这类微生物对食品进行保鲜是绝对安全的。但也有些微生物的安全性还有待进一步的研究。

1、基因工程在食品工业中应用:改良食品加工的原料、改良微生物菌种性能、应用于酶制剂的生产、改良食品加工工艺、应用于生产保健食品的有效成分2、发酵食品生产、食品中发酵成分制备3、食品工业废水处理

生物技术在食品工业中的应用论文选题方向

生物技术是应用微生物、动植物细胞或细胞器、酶,在最适宜条件下,生产有价值的产物或进行有益过程的技术。近年来,随着生物技术在食品生产与开发中的应用,用生物程序生产细胞或其代谢物质来制造食品,改进传统生产过程,使食品工业得到了飞速发展,主要体现在四个方面:一是利用基因工程、细胞工程技术对食品资源进行改造与改良;二是利用生物技术产品进行二次开发,形成新的产品,如功能性低聚糖、食品添加剂等;三是利用酶工艺、发酵技术、生物反应器等对传统食品加工工艺进行改造,降低能耗、提高产率;四是利用发酵工程、酶工程技术将农副原材料加工成商品,如酒类、调味品、酸奶类等。此外,与食品生产相关领域,如食品包装、质量检测、三废处理等方面,生物技术也得到了广泛应用。1 生物技术生物技术以生命科学为基础,是一门跨学科的综合性科学,是研究生物学、医学、农业与食品科学的基础工具,主要包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程等5个方面。1.1 基因工程基因工程又叫遗传工程,是分子遗传学和工程技术相结合的产物,是生物技术的主体。基因工程是指用酶学法将异源基因与载体DNA在体外进行重组,将形成的重组因子转入受体细胞,使异源基因在其中复制并表达,从而改造生物特性,生产出目标产物的高新技术。主要包括重组DNA、基因缺失、基因加倍、导人外源基因以及改变基因位置等分子生物学技术手段。基因工程技术在食品工业中的应用,主要涉及微生物、植物和动物,通过对被加工材料的处理,生产出符合人们需要的基因食品。基因工程能够培育和创造出自然界所没有的新的生命形态。目前,用这种技术已培育出多种“工程细菌”,可以用来生产诸如含有生长激素、胰岛素、干扰素的功能食品和可食单细胞蛋白等,在食品工业中具有广阔的发展前景。1.2 蛋白质工程蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科基础之上,融合蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。蛋白质工程,又称“第二代基因工程”,是按人们的意志创造出适合人类需求的,具有不同功能的蛋白质,创造出世界上原来不曾有过的新蛋白质及其众多的新产品,利用蛋白质工程可以生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,生产新型营养功能食品,以全新的思路发展食品工业。其内容主要有两个方面:①根据需要合成具有特定氨基酸序列和空间结构的蛋白质;②确定蛋白质化学组成、空间结构与生物功能之间的关系。在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新蛋白质,这也是蛋白质工程最根本的目标之一。1.3 细胞工程细胞工程是应用细胞生物学方法,按照人们预定的设计,有计划地保存、改变和创造遗传物质的技术。包括细胞培养、细胞核移植、细胞器摄取、染色体片断重组、细胞融合及细胞代谢物的生产等。虽然目前工业规模的细胞培养仍有一定难度,但该技术仍然是继微生物技术以后当代生物技术的重要发展领域。利用细胞杂交和细胞培养可生产具有独特香味和风味的食品添加剂,如香草素、可可香素、菠萝风味剂以及高级天然色素,如咖喱黄、紫色素、花色苷素、辣椒素、靛蓝等,而且培养的色素含量高,色调和稳定性好。1.4 酶工程酶工程是指在一定的生物反应器内,利用酶催化作用,将相应的原料转化成有用物质,其应用领域已经遍及农业、食品、医药、环境保护、能源开发和生命科学理论研究等各个方面。酶工程包括各种酶的开发和生产、酶的分离和纯化技术、酶或细胞的固定化技术、固定化酶反应器的研制以及酶的应用等方面。随着基因工程、细胞工程等高新技术应用于酶工程领域,不断研究开发出更多的新品种、新用途、高活力的酶类,同时酶的固定化技术,酶分子修饰技术及模拟酶技术也得到更快发展。1.5 发酵工程发酵工程是利用微生物的某些特定功能,通过现代工程技术手段生产有用物质或直接把微生物应用于工业生产的方法和过程,包括培育优良菌种、发酵生产某些代谢产物、生产微生物菌体、改造某些天然物质等。发酵工程可用于工业化生产预定的食品或食品功能成分。利用发酵工程技术所取得的成就涉及到新食品配料、食品加工的催化剂、饮料稳定剂、D一氨基酸及其衍生物制造以及废弃物利用和食品品质的检测等。2 生物技术在食品工业中的应用2.1 食品资源及食品品质的改良利用基因工程,对用于食品资源的动植物,利用基因转移或DNA重组,使其蛋白质、脂肪、淀粉等营养要素的含量、性质、结构朝着有益人们身体健康的方向转移和发展。如提高水稻胡萝b素含量、谷物赖氨酸含量、马铃薯固形物含量、改变植物油组成中不饱和脂肪酸比例。应用基因工程技术,可以将任何生物的性状转移到植物、动物和微生物中,这项技术已用于改造或转化当今用作食品的植物、动物和微生物。采用基因工程改造的面包酵母可使得面粉的膨发性提高,所得面包更松软可口。Brigitte Ronnow等通过替代面包酵母或啤酒酵母中的Gall80或MIGI基因,解除了糖蜜发酵过程中的随着蜜二糖分解形成的葡萄糖对该基因编码的酶蛋白的抑制作用,从而最终提高酒精产率。用现代发酵工程改造传统发酵食品,最典型的是使用双酶法糖化工艺取代传统的酸法水解工艺,用于生产味精。利用优选的微生物菌群发酵,缩短发酵周期,提高原料利用率,改良风味和品质。在蛋白质食品加工中,用磷脂酶A进行活性面筋的改性;用肽链内切酶、醛脱氢酶等方法除去蛋白臭;用肽链内切酶方法生产人造肉和粉末蛋白质也取得了成功。在啤酒的生产中采用基因工程和蛋白质技术将 一乙酰乳酸脱羧酶基因克隆到啤酒酵母中进行表达,可明显降低啤酒中双乙酰含量,从而改善啤酒风味。利用基因工程技术不但可以成倍地提高酶活力,而且还可以将生物酶基因克隆到微生物中,构建基因工程菌来生产酶制剂,生产出的酶制剂不仅催化活性、稳定性得到提高,而且用于食品中可使蛋白质、碳水化合物和脂肪发生改性。例如,蛋白酶可以改善蛋白质的溶解性;新型食品酶制剂转谷氨酰胺酶可以使蛋白质分子间发生交联,因而可用于增加大豆蛋白的胶凝性能,使其具有更好的加工品质。在食品加工过程中,适量地添加一些酶类,可以改善产品的色泽、风味和质构,如用葡萄糖氧化酶可去除蛋液中的葡萄糖,改善蛋制品的色泽;葡萄糖苷酶可用于果汁和果酒的增香;木瓜蛋白酶可分解胶原蛋白,用于肉制品的嫩化。对于含有难消化成分的食品,可以通过添加一些酶类,改善这些食品的营养和消化利用性能。2.2 在食品检测中的应用生物技术检测方法具有特异的生物识别功能、极强的选择性,与现代的物理化学方法相结合,产生一些简单、结果精确、灵敏、专一、微量和快速的检测方法。生物技术检测方法的应用几乎涉及到了食品检验的各个方面,包括食品品质评价、质量监督、生产过程的质量监控及食品科学研究。目前常用的检测方法主要有:酶联免疫吸附测定(EUSA)、聚合酶链式反应(PCR)、DNA探针。2.3 在农副产品深加工方面的应用生物技术可以迅速提高农副产品加工能力和水平,使我国农副产品加工技术在整体上实现跨越式发展,甚至能在一些重大关键技术领域达到世界先进水平。利用遗传工程技术选择培育对乙烯敏感性低的新品种,从基因工程角度解决农副产品的保鲜问题,以便向食品行业、医药行业提供更多的易于贮藏的工业原料。肉类保鲜方面,重点在于提高综合品质以及瘦肉、嫩肉和肥肉的综合利用;奶制品方面重点是发酵乳制品、双歧杆菌发酵乳等;鱼类产品方面重点是从淡水鱼内脏、鱼眼、精卵巢中分离提取有效成分,不断推出保健制品和药物制品;将以前废弃不用的农副产品下脚料如麦秸、稻草、豆秸、木屑、枝叶、玉米秆、薯蔓等植物纤维素资源,通过生物转化,生产一些重要的生物产品。2.4 生产功能食品及新型食品用酵母或细菌等微生物菌体发酵得到的单细胞蛋白(SCP),含有丰富的蛋白质、碳水化合物、维生素、矿物质等,营养价值极高。而富硒酵母的生产开辟了发酵工艺应用于微量元素生产的新途径。利用转基因手段从目的供体物种体内获得带有特定优良遗传性状的DNA片段,直接或通过载体导入被改造物种即“受体物种” 的胚胎内,培育出优良的新品种,如生长速度快、抗病力强、肉质好的转基因兔、猪、鸡,这将大力推动畜牧业的发展,为改善人们的膳食结构提供一条新的思路和方法。利用发酵技术和酶技术可生产双歧杆菌增殖因子,如低聚果糖、低聚半乳糖、低聚甘露糖、低聚木糖等;利用酶技术,如木聚糖酶、B一葡聚糖酶、 一淀粉酶及其他降解细胞壁的酶类可生产膳食纤维素;还可生产各种活性肽,如降压肽、抗氧化肽、减肥肽、预防肝性脑病肽和心血管疾病肽等,提高人类的营养水平和健康状况 。3 展望生物技术的迅猛发展必将影响到工业、农业、医药、食品等众多领域,将有助于解决能源、粮食、疾病和环境污染等一系列全球性的重大问题,给人类带来难以估量的经济效益。我们要充分利用生物技术迅猛发展的契机,重视食品生物技术的研究,利用现代生物技术,促进我国食品工工业的改革,实现我国食品工业健康有序地发展。

我国常用食品分析与安全检测技术化工仪器网2016-11-10 · 优质财经领域创作者【中国化工仪器网 本网原创】导读:食品分析与安全检测技术作为食品质量安全管理体系的技术支撑,是国家开展食品安全监测、实施安全风险评估、执行食品安全标准、加强食品安全管理的重要手段,是维护国际贸易利益、保障人民生命健康的重要工具。随着经济全球一体化,我国食品产业亟待加快分析检测技术的创新,通过研究和掌握前沿的检测方法和技术手段,有效破除国际技术壁垒,为我国食品质量安全提供强有力的保障。我国常用食品分析与安全检测技术色谱、质谱技术色谱技术实质上是一种物理化学分离方法,即当两相作相对运动时,由于不同的物质在两相(固定相和流动相)中具有不同的分配系数(或吸附系数),通过组分在两相之间进行反复多次的溶解、挥发或吸附、脱附过程,从而达到各物质被分离的目的。目前,色谱技术已经发展成熟,具有检测灵敏度高、分离效能高、选择性高、检出限低、样品用量少、方便快捷等优点,已被广泛应用于食品工业的安全检测中。色谱中常用的方法有气相色谱法、高效液相色谱法、薄层色谱法和免疫亲和色谱法、色谱-质谱联用法。气相色谱法和高效液相色谱法气相色谱法是英国科学家1952年创立的一种极有效的分离方法,是色谱技术仪器化、成套化的先驱。具有高效能、高选择性、高灵敏度、高分辨率、用量少、速度快等特点,主要用于沸点低、具有挥发性成分的定性定量分析。近年来毛细管气相色谱法以其分离效率高,分析速度快,样品用量少等特点,在食品农药残留等的分析检测上广泛应用。高效液相色谱法是在经典液相色谱法基础上发展起来的。高效液相色谱法是在高压条件下溶质在固定相和流动相之间进行的一种连续多次交换的过程,它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同引起排阻作用的差别使不同溶质得以分离。经过近30年的发展,现在高效液相色谱法在分析速度、分离效能、检测灵敏度和操作自动化方面,都达到了与气相色谱相媲美的程度,并保持了经典液相色谱法对样品适用范围广、可供选择的流动相种类多和便于制备色谱等优点。其主要优点概括如下:采用高效微粒固定相使色谱分离效能大大提高;采用新型高压输液泵使分离时间大大缩短;采用高灵敏度的检测器使仪器的检测灵敏度大大提高;由于HPLC 具有高柱效、流动相可以控制和改善分离过程的特点,故其选择性高。薄层色谱法和免疫亲和色谱法薄层色谱法(thin layer chromatography)是 20 世纪30年代发展起来的一种分离和分析方法,仪器操作简单、方便、应用广泛,但灵敏度不高。目前,薄层色谱广泛的应用于农药、毒素、食品添加剂等方面,在定性、半定量以及定量分析中发挥着重要作用。免疫亲合色谱(Immunoaffinity Chromatography ,IAC)是一种根据抗原抗体的特异性可逆结合,从复杂的待测样品中捕获目标化合物的方法,能够快速检测食品中的诸如农药等化合物,且成本较低。基于可以生产出任何一种化合物的抗体,免疫亲和色谱成为最流行的纯化方法。目前,免疫亲和色谱技术可以作为样品前处理手段,也可以与一些常规的仪器色谱分析法结合,应用于化合物残留分析。Moretti 等利用在线高效液相免疫亲和色谱系(HPLIAC)系统对牛奶和猪肉中的氯霉素在 280nm 波长处进行检测,色谱检测后无杂质干扰,牛奶和肉中氯霉素的检测限分别为1μg/kg和10μg/kg。液相-质谱和气相-质谱联用技术质谱分析是一种测量离子荷质比的分析法,质谱作为理想的色谱检测器,不仅特异,而且具有极高的检测灵敏度。色谱与质谱联用技术结合了两者的优点,成为分析化学的研究热点。其中,气相色谱-质谱联用技术(GC-MS)与液相色谱-质谱技术(LC-MS)已广泛应用,前者用于有机物的定性定量分析,后者通常用于极性较大,热稳定性强、难挥发的样品分析。光谱分析法光谱分析法是利用物质发射、吸收电磁辐射以及物质与电磁辐射的相互作用而建立起来的一种方法,通过辐射能与物质组成和结构之间的内在联系及表现形式,以光谱测量为基础形成的方法,是一种无损的快速检测技术,分析成本低。其中,近红外光谱、荧光光谱及拉曼光谱等在食品安全检测中应用较为广泛。近红外光谱近红外光是指波长介于可见区与中红外区之的电磁波,波数范围为 4000~12500cm-1。近红外光谱(Near Infrared Spectroscopy,NIR)分析技术是一种间接的分析技术,通过建立校正模型对样品进行定性或者定量分析,近红外光谱技术速度快、无需制备样品以及成本低等优势,已经广泛应用于食品安全分析方面。荧光光谱荧光光谱(Fluorescence Spectroscopy)是一项快速、敏感、无损的分析技术,能在几秒钟内提供物质的特征图谱,基于食品内部含有大量的荧光团,因此荧光光谱广泛应用食品检测研究中,如黄酒、淀粉、胭脂红等在紫外波长的激励下能够产生荧光光谱 。拉曼光谱拉曼光谱(Raman Spectroscopy)技术是一门基于键的延伸和弯曲的振动模式,利用散射光的强度与拉曼位移作图获取信息,在食品安全检测分析中,可以定性分析待测物质,也可以定量检测食品成分中含量的多少。生物检测技术生物检测技术是近年来飞速发展,且在食品检测中备受关注。由于食品多数来源于动植物等自然界生物,因此自身天然存在辨别物质和反应能力。利用生物材料与食品中化学物质反映,从而达到检测目的的生物技术在食品检验中显示出巨大的应用潜力,具有特异性生物识别功能、选择性高、结果精确、灵敏、专一、微量和快速等优点。目前应用较广泛的方法有酶联免疫吸附技术、PCR 技术、生物传感器技术以及生物芯片技术等。酶联免疫吸附分析和 PCR 技术酶联免疫吸附技术(enzyme-linked immuno sorbent assay,ELISA)是建立在免疫酶学基础上,将抗原抗体反应的高度特异性和酶的高效催化作用相结合而发展建立的一种免疫分析方法。基本原理是利用酶标记的抗原或酶标记的抗体作为主要试剂,通过复合物中的酶催化底物呈色反应来对待测物质进行定性或定量,在农药和兽药残留、违法添加物质、生物毒素、病原微生物、转基因食品等食品安全检测方面广泛应用,如恩诺沙星、瘦肉精以及嗜碱耐盐性奇异变形杆菌等的测定。生物传感器技术和生物芯片技术生物传感器是一种将生物识别元素与目标物质结合的物理传感器,具有高特异性和灵敏度、反应速度快、成本低等优点,也已经成为食品检测中的重要工具,主要应用于食品添加剂、致病菌、农药和抗生素、生物毒素等方面的检测。随着生物传感器应用领域的不断扩展,已经出现了不少与食品安全检测相关的生物芯片,该类传感器已逐步走向了产业化,主要包括以下几个方面:(1)在食源性致病微生物检测方面的应用。(2)在动物疫病病原菌检测方面的应用。(3)在兽药残留检测方面的应用。(4)抗生素耐药检测。(5)转基因食品的检

食品工业中用发酵和煮制的话,常常用离心技术。此外层析和膜分离也很常用。  下面介绍下生物分离技术和生物技术在食品工业中的应用进展。  生物分离技术最常见的分离纯化方法包括盐析和有机溶剂分级沉淀、超滤技术、层析技术、电泳技术、离心技术。  (1)盐析或有机溶剂分级沉淀:向反应产物溶液中加入大量易溶解的盐如氯化钠、硫酸铵,这些盐的离子能结合大量的水,产物因此被盐沉淀出来。产物溶液中加入能和水互溶的有机溶剂如乙醇、丙酮,常常能降低产物溶解度,而使产物沉淀。选择适当条件可使产物和杂质分开。  (2) 超滤技术:选择适当孔径的超滤膜或超滤中空纤维柱,通过抽滤加压使一定大小的分子能水一起穿过孔径,更大的分子则被挡住,以此将产物分离出来。  (3)层析技术:使用滤纸、纤维素、树脂、凝胶颗粒、多空玻璃珠等填充支持物或者不同于溶剂的另一种液相作为固定的介质对溶剂中的不同物质的结合力不一样,当溶剂向前推进时,溶剂中的不同溶质便可彼此分开。此外还有按分子大小分开的分子筛层析,按解离能力和离子性质分开的离子交换层析,按生物分子间亲和力大小分开的亲和层析,以及按两相溶液间分配系数差异而分开的逆流分溶。  (4)电泳技术:带有电荷的离子或颗粒在电场作用下向一个电击方向移动,离子或颗粒因其所带电荷和质量的不同,在电场中的移动速度不同,因而彼此被分开。被广泛使用的是凝胶电泳,而毛细管电泳具有最灵敏的分析效果。  (5)细胞、细胞碎片和生物大分子在离心力场作用下能被沉淀下来。离心机在每分钟旋转10000次以下的低速是就能使细胞沉淀,细胞碎片要在每分钟旋转20000到30000次的高速下才能被沉降,生物大分子则需要在每分钟旋转30000次以上的超速离心方能克服分子热运动而被沉降。  生物技术在食品工业中的应用进展  益生菌:随着益生菌多项保健功能的不断发现,如平衡肠道菌群,改善肠道功能、调节免疫、增强消化功能,促进营养物质吸收、抗诱变和防癌特性、抗氧化与延缓衰老以及改善心血管系统等。目前,国际上对益生菌的研究显得非常活跃,特别是在日本、法国、美国等国家已形成了系统化专业性科研队伍。  世界各国益生菌研究主要集中在益生菌促进人体健康的机理、益生菌的工业化与产业化应用技术、更高质量或带多功能性益生菌的高效筛选与定向设计等前沿领域,其研究成果应用于食品工业生产大大提高了人体健康水平并带来了客观的经济效益。在我国,特别是在奶  制品和一些功能性的食品中益生菌已广为运用。  在基础研究方面,我国科学家取得了丰硕的研究成果。2008年7月,内蒙古农业大学等单位承担的益生菌L.casei Zhang基因组学和蛋白质组学研究项目通过鉴定,项目完成了益生菌L.ca-sei Zhang染色体基因组和质粒基因组plca36序列的测定,从而能够准确地将该菌株的益生功能基因进行定位,为其益生机理进一步深入研究和相关产品的开发应用从基因水平上奠定了基础。该项目的完成标志着我国在乳酸菌基因组学方面的研究达到国际水平。同时,国内围绕乳制品、发酵肉制品工业发酵剂菌株筛选获得重要进展,建立了从多菌相肉品发酵体系中定向筛选特质菌株的高通量技术平台和我国第一个原创性、具有自主知识产权的乳酸菌菌种资源库,筛选得到了几十株具有优良生产性状及益生特性的乳酸菌菌株,为我国益生菌制品的开发奠定了强大的技术和菌源基础。  代谢工程:在代谢工程研究方面,随着研究应用的深入,代谢工程的定义也在不断更新,现在多将其定义为利用基因工程技术,有目的地对细胞代谢途径进行精确地修饰、改造或扩展、构建新的代谢途径,以改变微生物原有代谢特性,并与微生物基因调控、代谢调控及生化工程相结合,提高目的代谢产物活性或产量,合成新的代谢产物的工程技术科学。总体而言,代谢工程是在建立代谢网络理论的基础上,通过对代谢流的定性、定量分析,从而对代谢工程进行设计包括改变代谢流、扩展代谢途径和构建新的代谢途径等方法,其核心是在分子水平上对靶基因或基因簇进行遗传操作,所以又称为第三代基因工程。  代谢工程主要包括3个步骤:细胞途径的修饰(合成),修饰后细胞表型的严格评价(表型表征),根据评价结果设计进一步的修饰(优化设计)。其中,表现表征的评价即是在获得大量生化反应数据的基础上,采用化学、数学的研究方法并结合先进的信息技术进行高通量分析,进一步研究细胞代谢的动态特征和控制机理,并由此发展了各种数学系统模型用于辅助改善代谢工程设计。  随着后基因组学时代的到来,各种组学技术(基因组学、转录物组学、蛋白质组学、代谢物组学、代谢通量组学等)在代谢工程相关研究中被广泛使用,通过组学技术对细胞基因组以及细胞与微观和宏观环境条件关系等特性进行表型表征,代替传统表型表征的方法,使代谢工程的研究从局部通路水平上升到整体水平,从而可以更好地揭示生物复杂代谢网络及调控机理,进行代谢工程的研究。目前,以各层次功能基因组学研究为基础,借助高通量实验技术和生物信息学工具等,通过整合各层次组学研究数据,建立数学模型,或通过比较不同菌株或同一菌株在不同条件下各个层次组学差异以阐明生命活动规律,以此进行代谢工程设计的尺度多层次的系统生物学方法,成为了各国科学家研究的重点方向。  生物反应器:在生物反应器研究方面,自动化、多功能和高效率的新型生物反应器一直是近年来研究的热点。包括人工生物反应器和天然生物反应器,比如微生物、动物和植物表达系统等,研究主要集中在将分离技术和生物反应过程结合开发出高效率的生物反应器,比如超临界反应器和膜反应器等,以及研究生物反应机理、反应过程参数传感器的研制、自动化控制系统和数学模型的建立等,特别是参数控制方面的研究和固体发酵生物反应器的开发是研究的两个重点领域。  安全检测:此外,生物技术,如酶联免疫吸附测定(ELISA)、聚合酶链式反应(PCR)和DNA芯片技术等用于食品微生物、毒素以及残留药物等食品安全检测方面也显示出其灵敏度高、特异性强、简便快捷等优势,逐渐成为食品安全研究的重要方向。

1、基因工程在食品工业中应用:改良食品加工的原料、改良微生物菌种性能、应用于酶制剂的生产、改良食品加工工艺、应用于生产保健食品的有效成分2、发酵食品生产、食品中发酵成分制备3、食品工业废水处理

生物技术在食品工业中的应用论文选题方向怎么选

食品工业中用发酵和煮制的话,常常用离心技术。此外层析和膜分离也很常用。  下面介绍下生物分离技术和生物技术在食品工业中的应用进展。  生物分离技术最常见的分离纯化方法包括盐析和有机溶剂分级沉淀、超滤技术、层析技术、电泳技术、离心技术。  (1)盐析或有机溶剂分级沉淀:向反应产物溶液中加入大量易溶解的盐如氯化钠、硫酸铵,这些盐的离子能结合大量的水,产物因此被盐沉淀出来。产物溶液中加入能和水互溶的有机溶剂如乙醇、丙酮,常常能降低产物溶解度,而使产物沉淀。选择适当条件可使产物和杂质分开。  (2) 超滤技术:选择适当孔径的超滤膜或超滤中空纤维柱,通过抽滤加压使一定大小的分子能水一起穿过孔径,更大的分子则被挡住,以此将产物分离出来。  (3)层析技术:使用滤纸、纤维素、树脂、凝胶颗粒、多空玻璃珠等填充支持物或者不同于溶剂的另一种液相作为固定的介质对溶剂中的不同物质的结合力不一样,当溶剂向前推进时,溶剂中的不同溶质便可彼此分开。此外还有按分子大小分开的分子筛层析,按解离能力和离子性质分开的离子交换层析,按生物分子间亲和力大小分开的亲和层析,以及按两相溶液间分配系数差异而分开的逆流分溶。  (4)电泳技术:带有电荷的离子或颗粒在电场作用下向一个电击方向移动,离子或颗粒因其所带电荷和质量的不同,在电场中的移动速度不同,因而彼此被分开。被广泛使用的是凝胶电泳,而毛细管电泳具有最灵敏的分析效果。  (5)细胞、细胞碎片和生物大分子在离心力场作用下能被沉淀下来。离心机在每分钟旋转10000次以下的低速是就能使细胞沉淀,细胞碎片要在每分钟旋转20000到30000次的高速下才能被沉降,生物大分子则需要在每分钟旋转30000次以上的超速离心方能克服分子热运动而被沉降。  生物技术在食品工业中的应用进展  益生菌:随着益生菌多项保健功能的不断发现,如平衡肠道菌群,改善肠道功能、调节免疫、增强消化功能,促进营养物质吸收、抗诱变和防癌特性、抗氧化与延缓衰老以及改善心血管系统等。目前,国际上对益生菌的研究显得非常活跃,特别是在日本、法国、美国等国家已形成了系统化专业性科研队伍。  世界各国益生菌研究主要集中在益生菌促进人体健康的机理、益生菌的工业化与产业化应用技术、更高质量或带多功能性益生菌的高效筛选与定向设计等前沿领域,其研究成果应用于食品工业生产大大提高了人体健康水平并带来了客观的经济效益。在我国,特别是在奶  制品和一些功能性的食品中益生菌已广为运用。  在基础研究方面,我国科学家取得了丰硕的研究成果。2008年7月,内蒙古农业大学等单位承担的益生菌L.casei Zhang基因组学和蛋白质组学研究项目通过鉴定,项目完成了益生菌L.ca-sei Zhang染色体基因组和质粒基因组plca36序列的测定,从而能够准确地将该菌株的益生功能基因进行定位,为其益生机理进一步深入研究和相关产品的开发应用从基因水平上奠定了基础。该项目的完成标志着我国在乳酸菌基因组学方面的研究达到国际水平。同时,国内围绕乳制品、发酵肉制品工业发酵剂菌株筛选获得重要进展,建立了从多菌相肉品发酵体系中定向筛选特质菌株的高通量技术平台和我国第一个原创性、具有自主知识产权的乳酸菌菌种资源库,筛选得到了几十株具有优良生产性状及益生特性的乳酸菌菌株,为我国益生菌制品的开发奠定了强大的技术和菌源基础。  代谢工程:在代谢工程研究方面,随着研究应用的深入,代谢工程的定义也在不断更新,现在多将其定义为利用基因工程技术,有目的地对细胞代谢途径进行精确地修饰、改造或扩展、构建新的代谢途径,以改变微生物原有代谢特性,并与微生物基因调控、代谢调控及生化工程相结合,提高目的代谢产物活性或产量,合成新的代谢产物的工程技术科学。总体而言,代谢工程是在建立代谢网络理论的基础上,通过对代谢流的定性、定量分析,从而对代谢工程进行设计包括改变代谢流、扩展代谢途径和构建新的代谢途径等方法,其核心是在分子水平上对靶基因或基因簇进行遗传操作,所以又称为第三代基因工程。  代谢工程主要包括3个步骤:细胞途径的修饰(合成),修饰后细胞表型的严格评价(表型表征),根据评价结果设计进一步的修饰(优化设计)。其中,表现表征的评价即是在获得大量生化反应数据的基础上,采用化学、数学的研究方法并结合先进的信息技术进行高通量分析,进一步研究细胞代谢的动态特征和控制机理,并由此发展了各种数学系统模型用于辅助改善代谢工程设计。  随着后基因组学时代的到来,各种组学技术(基因组学、转录物组学、蛋白质组学、代谢物组学、代谢通量组学等)在代谢工程相关研究中被广泛使用,通过组学技术对细胞基因组以及细胞与微观和宏观环境条件关系等特性进行表型表征,代替传统表型表征的方法,使代谢工程的研究从局部通路水平上升到整体水平,从而可以更好地揭示生物复杂代谢网络及调控机理,进行代谢工程的研究。目前,以各层次功能基因组学研究为基础,借助高通量实验技术和生物信息学工具等,通过整合各层次组学研究数据,建立数学模型,或通过比较不同菌株或同一菌株在不同条件下各个层次组学差异以阐明生命活动规律,以此进行代谢工程设计的尺度多层次的系统生物学方法,成为了各国科学家研究的重点方向。  生物反应器:在生物反应器研究方面,自动化、多功能和高效率的新型生物反应器一直是近年来研究的热点。包括人工生物反应器和天然生物反应器,比如微生物、动物和植物表达系统等,研究主要集中在将分离技术和生物反应过程结合开发出高效率的生物反应器,比如超临界反应器和膜反应器等,以及研究生物反应机理、反应过程参数传感器的研制、自动化控制系统和数学模型的建立等,特别是参数控制方面的研究和固体发酵生物反应器的开发是研究的两个重点领域。  安全检测:此外,生物技术,如酶联免疫吸附测定(ELISA)、聚合酶链式反应(PCR)和DNA芯片技术等用于食品微生物、毒素以及残留药物等食品安全检测方面也显示出其灵敏度高、特异性强、简便快捷等优势,逐渐成为食品安全研究的重要方向。

我国常用食品分析与安全检测技术化工仪器网2016-11-10 · 优质财经领域创作者【中国化工仪器网 本网原创】导读:食品分析与安全检测技术作为食品质量安全管理体系的技术支撑,是国家开展食品安全监测、实施安全风险评估、执行食品安全标准、加强食品安全管理的重要手段,是维护国际贸易利益、保障人民生命健康的重要工具。随着经济全球一体化,我国食品产业亟待加快分析检测技术的创新,通过研究和掌握前沿的检测方法和技术手段,有效破除国际技术壁垒,为我国食品质量安全提供强有力的保障。我国常用食品分析与安全检测技术色谱、质谱技术色谱技术实质上是一种物理化学分离方法,即当两相作相对运动时,由于不同的物质在两相(固定相和流动相)中具有不同的分配系数(或吸附系数),通过组分在两相之间进行反复多次的溶解、挥发或吸附、脱附过程,从而达到各物质被分离的目的。目前,色谱技术已经发展成熟,具有检测灵敏度高、分离效能高、选择性高、检出限低、样品用量少、方便快捷等优点,已被广泛应用于食品工业的安全检测中。色谱中常用的方法有气相色谱法、高效液相色谱法、薄层色谱法和免疫亲和色谱法、色谱-质谱联用法。气相色谱法和高效液相色谱法气相色谱法是英国科学家1952年创立的一种极有效的分离方法,是色谱技术仪器化、成套化的先驱。具有高效能、高选择性、高灵敏度、高分辨率、用量少、速度快等特点,主要用于沸点低、具有挥发性成分的定性定量分析。近年来毛细管气相色谱法以其分离效率高,分析速度快,样品用量少等特点,在食品农药残留等的分析检测上广泛应用。高效液相色谱法是在经典液相色谱法基础上发展起来的。高效液相色谱法是在高压条件下溶质在固定相和流动相之间进行的一种连续多次交换的过程,它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同引起排阻作用的差别使不同溶质得以分离。经过近30年的发展,现在高效液相色谱法在分析速度、分离效能、检测灵敏度和操作自动化方面,都达到了与气相色谱相媲美的程度,并保持了经典液相色谱法对样品适用范围广、可供选择的流动相种类多和便于制备色谱等优点。其主要优点概括如下:采用高效微粒固定相使色谱分离效能大大提高;采用新型高压输液泵使分离时间大大缩短;采用高灵敏度的检测器使仪器的检测灵敏度大大提高;由于HPLC 具有高柱效、流动相可以控制和改善分离过程的特点,故其选择性高。薄层色谱法和免疫亲和色谱法薄层色谱法(thin layer chromatography)是 20 世纪30年代发展起来的一种分离和分析方法,仪器操作简单、方便、应用广泛,但灵敏度不高。目前,薄层色谱广泛的应用于农药、毒素、食品添加剂等方面,在定性、半定量以及定量分析中发挥着重要作用。免疫亲合色谱(Immunoaffinity Chromatography ,IAC)是一种根据抗原抗体的特异性可逆结合,从复杂的待测样品中捕获目标化合物的方法,能够快速检测食品中的诸如农药等化合物,且成本较低。基于可以生产出任何一种化合物的抗体,免疫亲和色谱成为最流行的纯化方法。目前,免疫亲和色谱技术可以作为样品前处理手段,也可以与一些常规的仪器色谱分析法结合,应用于化合物残留分析。Moretti 等利用在线高效液相免疫亲和色谱系(HPLIAC)系统对牛奶和猪肉中的氯霉素在 280nm 波长处进行检测,色谱检测后无杂质干扰,牛奶和肉中氯霉素的检测限分别为1μg/kg和10μg/kg。液相-质谱和气相-质谱联用技术质谱分析是一种测量离子荷质比的分析法,质谱作为理想的色谱检测器,不仅特异,而且具有极高的检测灵敏度。色谱与质谱联用技术结合了两者的优点,成为分析化学的研究热点。其中,气相色谱-质谱联用技术(GC-MS)与液相色谱-质谱技术(LC-MS)已广泛应用,前者用于有机物的定性定量分析,后者通常用于极性较大,热稳定性强、难挥发的样品分析。光谱分析法光谱分析法是利用物质发射、吸收电磁辐射以及物质与电磁辐射的相互作用而建立起来的一种方法,通过辐射能与物质组成和结构之间的内在联系及表现形式,以光谱测量为基础形成的方法,是一种无损的快速检测技术,分析成本低。其中,近红外光谱、荧光光谱及拉曼光谱等在食品安全检测中应用较为广泛。近红外光谱近红外光是指波长介于可见区与中红外区之的电磁波,波数范围为 4000~12500cm-1。近红外光谱(Near Infrared Spectroscopy,NIR)分析技术是一种间接的分析技术,通过建立校正模型对样品进行定性或者定量分析,近红外光谱技术速度快、无需制备样品以及成本低等优势,已经广泛应用于食品安全分析方面。荧光光谱荧光光谱(Fluorescence Spectroscopy)是一项快速、敏感、无损的分析技术,能在几秒钟内提供物质的特征图谱,基于食品内部含有大量的荧光团,因此荧光光谱广泛应用食品检测研究中,如黄酒、淀粉、胭脂红等在紫外波长的激励下能够产生荧光光谱 。拉曼光谱拉曼光谱(Raman Spectroscopy)技术是一门基于键的延伸和弯曲的振动模式,利用散射光的强度与拉曼位移作图获取信息,在食品安全检测分析中,可以定性分析待测物质,也可以定量检测食品成分中含量的多少。生物检测技术生物检测技术是近年来飞速发展,且在食品检测中备受关注。由于食品多数来源于动植物等自然界生物,因此自身天然存在辨别物质和反应能力。利用生物材料与食品中化学物质反映,从而达到检测目的的生物技术在食品检验中显示出巨大的应用潜力,具有特异性生物识别功能、选择性高、结果精确、灵敏、专一、微量和快速等优点。目前应用较广泛的方法有酶联免疫吸附技术、PCR 技术、生物传感器技术以及生物芯片技术等。酶联免疫吸附分析和 PCR 技术酶联免疫吸附技术(enzyme-linked immuno sorbent assay,ELISA)是建立在免疫酶学基础上,将抗原抗体反应的高度特异性和酶的高效催化作用相结合而发展建立的一种免疫分析方法。基本原理是利用酶标记的抗原或酶标记的抗体作为主要试剂,通过复合物中的酶催化底物呈色反应来对待测物质进行定性或定量,在农药和兽药残留、违法添加物质、生物毒素、病原微生物、转基因食品等食品安全检测方面广泛应用,如恩诺沙星、瘦肉精以及嗜碱耐盐性奇异变形杆菌等的测定。生物传感器技术和生物芯片技术生物传感器是一种将生物识别元素与目标物质结合的物理传感器,具有高特异性和灵敏度、反应速度快、成本低等优点,也已经成为食品检测中的重要工具,主要应用于食品添加剂、致病菌、农药和抗生素、生物毒素等方面的检测。随着生物传感器应用领域的不断扩展,已经出现了不少与食品安全检测相关的生物芯片,该类传感器已逐步走向了产业化,主要包括以下几个方面:(1)在食源性致病微生物检测方面的应用。(2)在动物疫病病原菌检测方面的应用。(3)在兽药残留检测方面的应用。(4)抗生素耐药检测。(5)转基因食品的检

生物技术在食品中的应用论文选题方向

食品专业其实分类很细致,有很多旁系跟交叉学科,比如食品工程,粮油,生物技术等等,可以自己到中国知网先作资料搜集,建议可以写发酵或者乳酸菌类的,这一类论文还比较好做。

其实生物技术在食品方面应用不少,比如一些乳酸饮料的生产,就是利用生物技术,也就是微生物发酵。食品因为本身不会有太高的科技含量,这样才能满足大工业生产,因此在各种条件控制方面都不能达到实验室的精确程度,因此生物技术应用在食品上也是相对低端的,一个是方便生产,一个是降低成本,酿酒等都属于生物技术,具体的还要自己体会,这个面比较宽。

微生物在单细胞蛋白中的应用一 摘要 微生物细胞含有丰富的蛋白质,而这正是人和动物不可缺少的营养物质,这是微生物食品倍受青睐的一个原因。人们热衷于微生物食品的开发,还有一个重要的原因,就是它可以解决因人们对蛋白质的需求增加而导致的粮食供求矛盾。 关键词 微生物细胞 蛋白质 营养物质二 引言 食品特别是蛋白质的短缺,正在对我们人类构成威胁。在这种情况下,开发新的食品资源就显得十分重要。在我们食用的各种食品中,除了动物食品和植物食品外,还包含了微生物食品。事实上,人类在很早的时候就开始食用微生物了,比如说我们所食用的味道鲜美的香茹,就是真菌形成的菌落,其他还有木耳、猴头、灵芝等,都是极具营养价值和药用价值的食用微生物。现已被人们广泛栽培和利用。三 正文单细胞蛋白定义单细胞蛋白是通过培养单细胞生物而获得的菌体蛋白质。单细胞蛋白的优点一 SCP营养丰富 二 利用原料广 可就地取材,廉价大量地解决原料问题。三 生产速率高 一般蛋白质生产速度同猪、牛、羊等体重的倍增时间成正比。四 劳动生产率高 生产不受季节气候的制约,易于人工控制,同时由于在大型发酵罐中立体式培养占地面积少。五 可以完全工业化生产 单细胞蛋白生产比农业生产需要的劳动力少,又不受地区、季节和气候条件的制约,可在占地有限的小设备上进行,不仅数量大,而且质量好,远远超过现有粮食品种的蛋白质。六 单细胞生物易诱变,比动、植物品种容易改良 可采用物理、化学、生物学方法定向诱变育种,获得蛋白质含量高、质量好、味美,并易于提取蛋白质的优良菌种。单细胞蛋白种类与具备条件及生产过程用于生产单细胞蛋白的微生物种类很多,包括细菌、放线菌、酵母菌、霉菌以及某些原生生物。这些微生物通常要具备下列条件:所生产的蛋白质等营养物质含量高,对人体无致病作用,味道好并且易消化吸收,对培养条件要求简单,生长繁殖迅速等。单细胞蛋白的生产过程也比较简单:在培养液配制及灭菌完成以后,将它们和菌种投放到发酵罐中,控制好发酵条件,菌种就会迅速繁殖;发酵完毕,用离心、沉淀等方法收集菌体,最后经过干燥处理,就制成了单细胞蛋白成品。单细胞蛋白特性(1)在理想情况下,菌种甚易使单细胞蛋白质产量倍加,而其所需时间要比使农作物蛋白质量倍增所消耗时间快500倍,比其他一般饲养家畜产量所耗的时间倍增快1000-5000倍。(2)单细胞蛋白质研究发展的实验要比研究农作物或家畜的实验易于进行,而且在极短的时间内就可得到有价值的数据与结果。(3)单细胞蛋白质的生产不受季节,空间,阳光的种种限制。单细胞蛋白的作用通过微生物发酵可以生产大量的微生物蛋白,不仅可供人类直接食用,也可作为家畜、家禽的高蛋白饲料,为我们提供质优价高的肉类蛋白,它的脂肪含量只有瘦牛肉的10%,深受广大消费者的欢迎。一方面微生物蛋白食品的开发可以缓解耕地减少、粮食紧缺的矛盾,另一方面高蛋白的微生物蛋白食品的开发,也有利于改善人们的食品结构。1 作为畜禽饲料添加剂据分析,酵母单细胞蛋白中蛋白质含量为45%-55%,比大豆高30%以上;细菌的单细胞蛋白中蛋白质的含量高达70%,比大豆高50%,比鱼粉高20%。因此,在各类饲料中加入单细胞蛋白添加剂,可以取得诸如使猪长得更快、牛产奶更多这样的效果。如在畜禽的饲料中,只要添加3%~10%的单细胞蛋白,便能大大提高饲料的营养价值和利用率。2 作为食用蛋白质 单细胞蛋白所含的营养物质极为丰富。其中,蛋白质含量高达40%~80%,比大豆高10%~20%,比肉、鱼、奶酪高20%以上;氨基酸的组成较为齐全,含有人体必需的8种氨基酸,尤其是谷物中含量较少的赖氨酸。单细胞蛋白中还含有多种维生素、碳水化合物、脂类、矿物质,以及丰富的酶类和生物活性物质,如辅酶A、辅酶Q、谷胱甘肽、麦角固醇等。单细胞蛋白不仅能制成“人造肉”供人们直接食用,而且还能提高食品的某些物理性能。开发单细胞蛋白的意义 蛋白质是维持生命的基本物质,它是组成人体器官、组织和体内酶、激素以及免疫球蛋白的主要成分。全世界蛋白质缺乏的问题已存在多年,生物技术开发单细胞蛋白是解决这一问题的重要途径。单细胞蛋白是现代饲料工业和食品工业中重要的蛋白来源。但单细胞蛋白作为当前比较尖端的科技产品,还处于刚刚起步阶段,尤其在我国还不成熟,其发展前景是广阔的。四 参考文献[1]李丽立 杨坤明 现代生物技术与畜牧业[2]栾玉静 单细胞蛋白的开发利用[3]魏瑶 单细胞蛋白

生物技术在食品工业中的应用论文选题方向有哪些

其实生物技术在食品方面应用不少,比如一些乳酸饮料的生产,就是利用生物技术,也就是微生物发酵。食品因为本身不会有太高的科技含量,这样才能满足大工业生产,因此在各种条件控制方面都不能达到实验室的精确程度,因此生物技术应用在食品上也是相对低端的,一个是方便生产,一个是降低成本,酿酒等都属于生物技术,具体的还要自己体会,这个面比较宽。

生物技术是应用微生物、动植物细胞或细胞器、酶,在最适宜条件下,生产有价值的产物或进行有益过程的技术。近年来,随着生物技术在食品生产与开发中的应用,用生物程序生产细胞或其代谢物质来制造食品,改进传统生产过程,使食品工业得到了飞速发展,主要体现在四个方面:一是利用基因工程、细胞工程技术对食品资源进行改造与改良;二是利用生物技术产品进行二次开发,形成新的产品,如功能性低聚糖、食品添加剂等;三是利用酶工艺、发酵技术、生物反应器等对传统食品加工工艺进行改造,降低能耗、提高产率;四是利用发酵工程、酶工程技术将农副原材料加工成商品,如酒类、调味品、酸奶类等。此外,与食品生产相关领域,如食品包装、质量检测、三废处理等方面,生物技术也得到了广泛应用。1 生物技术生物技术以生命科学为基础,是一门跨学科的综合性科学,是研究生物学、医学、农业与食品科学的基础工具,主要包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程等5个方面。1.1 基因工程基因工程又叫遗传工程,是分子遗传学和工程技术相结合的产物,是生物技术的主体。基因工程是指用酶学法将异源基因与载体DNA在体外进行重组,将形成的重组因子转入受体细胞,使异源基因在其中复制并表达,从而改造生物特性,生产出目标产物的高新技术。主要包括重组DNA、基因缺失、基因加倍、导人外源基因以及改变基因位置等分子生物学技术手段。基因工程技术在食品工业中的应用,主要涉及微生物、植物和动物,通过对被加工材料的处理,生产出符合人们需要的基因食品。基因工程能够培育和创造出自然界所没有的新的生命形态。目前,用这种技术已培育出多种“工程细菌”,可以用来生产诸如含有生长激素、胰岛素、干扰素的功能食品和可食单细胞蛋白等,在食品工业中具有广阔的发展前景。1.2 蛋白质工程蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科基础之上,融合蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。蛋白质工程,又称“第二代基因工程”,是按人们的意志创造出适合人类需求的,具有不同功能的蛋白质,创造出世界上原来不曾有过的新蛋白质及其众多的新产品,利用蛋白质工程可以生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,生产新型营养功能食品,以全新的思路发展食品工业。其内容主要有两个方面:①根据需要合成具有特定氨基酸序列和空间结构的蛋白质;②确定蛋白质化学组成、空间结构与生物功能之间的关系。在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新蛋白质,这也是蛋白质工程最根本的目标之一。1.3 细胞工程细胞工程是应用细胞生物学方法,按照人们预定的设计,有计划地保存、改变和创造遗传物质的技术。包括细胞培养、细胞核移植、细胞器摄取、染色体片断重组、细胞融合及细胞代谢物的生产等。虽然目前工业规模的细胞培养仍有一定难度,但该技术仍然是继微生物技术以后当代生物技术的重要发展领域。利用细胞杂交和细胞培养可生产具有独特香味和风味的食品添加剂,如香草素、可可香素、菠萝风味剂以及高级天然色素,如咖喱黄、紫色素、花色苷素、辣椒素、靛蓝等,而且培养的色素含量高,色调和稳定性好。1.4 酶工程酶工程是指在一定的生物反应器内,利用酶催化作用,将相应的原料转化成有用物质,其应用领域已经遍及农业、食品、医药、环境保护、能源开发和生命科学理论研究等各个方面。酶工程包括各种酶的开发和生产、酶的分离和纯化技术、酶或细胞的固定化技术、固定化酶反应器的研制以及酶的应用等方面。随着基因工程、细胞工程等高新技术应用于酶工程领域,不断研究开发出更多的新品种、新用途、高活力的酶类,同时酶的固定化技术,酶分子修饰技术及模拟酶技术也得到更快发展。1.5 发酵工程发酵工程是利用微生物的某些特定功能,通过现代工程技术手段生产有用物质或直接把微生物应用于工业生产的方法和过程,包括培育优良菌种、发酵生产某些代谢产物、生产微生物菌体、改造某些天然物质等。发酵工程可用于工业化生产预定的食品或食品功能成分。利用发酵工程技术所取得的成就涉及到新食品配料、食品加工的催化剂、饮料稳定剂、D一氨基酸及其衍生物制造以及废弃物利用和食品品质的检测等。2 生物技术在食品工业中的应用2.1 食品资源及食品品质的改良利用基因工程,对用于食品资源的动植物,利用基因转移或DNA重组,使其蛋白质、脂肪、淀粉等营养要素的含量、性质、结构朝着有益人们身体健康的方向转移和发展。如提高水稻胡萝b素含量、谷物赖氨酸含量、马铃薯固形物含量、改变植物油组成中不饱和脂肪酸比例。应用基因工程技术,可以将任何生物的性状转移到植物、动物和微生物中,这项技术已用于改造或转化当今用作食品的植物、动物和微生物。采用基因工程改造的面包酵母可使得面粉的膨发性提高,所得面包更松软可口。Brigitte Ronnow等通过替代面包酵母或啤酒酵母中的Gall80或MIGI基因,解除了糖蜜发酵过程中的随着蜜二糖分解形成的葡萄糖对该基因编码的酶蛋白的抑制作用,从而最终提高酒精产率。用现代发酵工程改造传统发酵食品,最典型的是使用双酶法糖化工艺取代传统的酸法水解工艺,用于生产味精。利用优选的微生物菌群发酵,缩短发酵周期,提高原料利用率,改良风味和品质。在蛋白质食品加工中,用磷脂酶A进行活性面筋的改性;用肽链内切酶、醛脱氢酶等方法除去蛋白臭;用肽链内切酶方法生产人造肉和粉末蛋白质也取得了成功。在啤酒的生产中采用基因工程和蛋白质技术将 一乙酰乳酸脱羧酶基因克隆到啤酒酵母中进行表达,可明显降低啤酒中双乙酰含量,从而改善啤酒风味。利用基因工程技术不但可以成倍地提高酶活力,而且还可以将生物酶基因克隆到微生物中,构建基因工程菌来生产酶制剂,生产出的酶制剂不仅催化活性、稳定性得到提高,而且用于食品中可使蛋白质、碳水化合物和脂肪发生改性。例如,蛋白酶可以改善蛋白质的溶解性;新型食品酶制剂转谷氨酰胺酶可以使蛋白质分子间发生交联,因而可用于增加大豆蛋白的胶凝性能,使其具有更好的加工品质。在食品加工过程中,适量地添加一些酶类,可以改善产品的色泽、风味和质构,如用葡萄糖氧化酶可去除蛋液中的葡萄糖,改善蛋制品的色泽;葡萄糖苷酶可用于果汁和果酒的增香;木瓜蛋白酶可分解胶原蛋白,用于肉制品的嫩化。对于含有难消化成分的食品,可以通过添加一些酶类,改善这些食品的营养和消化利用性能。2.2 在食品检测中的应用生物技术检测方法具有特异的生物识别功能、极强的选择性,与现代的物理化学方法相结合,产生一些简单、结果精确、灵敏、专一、微量和快速的检测方法。生物技术检测方法的应用几乎涉及到了食品检验的各个方面,包括食品品质评价、质量监督、生产过程的质量监控及食品科学研究。目前常用的检测方法主要有:酶联免疫吸附测定(EUSA)、聚合酶链式反应(PCR)、DNA探针。2.3 在农副产品深加工方面的应用生物技术可以迅速提高农副产品加工能力和水平,使我国农副产品加工技术在整体上实现跨越式发展,甚至能在一些重大关键技术领域达到世界先进水平。利用遗传工程技术选择培育对乙烯敏感性低的新品种,从基因工程角度解决农副产品的保鲜问题,以便向食品行业、医药行业提供更多的易于贮藏的工业原料。肉类保鲜方面,重点在于提高综合品质以及瘦肉、嫩肉和肥肉的综合利用;奶制品方面重点是发酵乳制品、双歧杆菌发酵乳等;鱼类产品方面重点是从淡水鱼内脏、鱼眼、精卵巢中分离提取有效成分,不断推出保健制品和药物制品;将以前废弃不用的农副产品下脚料如麦秸、稻草、豆秸、木屑、枝叶、玉米秆、薯蔓等植物纤维素资源,通过生物转化,生产一些重要的生物产品。2.4 生产功能食品及新型食品用酵母或细菌等微生物菌体发酵得到的单细胞蛋白(SCP),含有丰富的蛋白质、碳水化合物、维生素、矿物质等,营养价值极高。而富硒酵母的生产开辟了发酵工艺应用于微量元素生产的新途径。利用转基因手段从目的供体物种体内获得带有特定优良遗传性状的DNA片段,直接或通过载体导入被改造物种即“受体物种” 的胚胎内,培育出优良的新品种,如生长速度快、抗病力强、肉质好的转基因兔、猪、鸡,这将大力推动畜牧业的发展,为改善人们的膳食结构提供一条新的思路和方法。利用发酵技术和酶技术可生产双歧杆菌增殖因子,如低聚果糖、低聚半乳糖、低聚甘露糖、低聚木糖等;利用酶技术,如木聚糖酶、B一葡聚糖酶、 一淀粉酶及其他降解细胞壁的酶类可生产膳食纤维素;还可生产各种活性肽,如降压肽、抗氧化肽、减肥肽、预防肝性脑病肽和心血管疾病肽等,提高人类的营养水平和健康状况 。3 展望生物技术的迅猛发展必将影响到工业、农业、医药、食品等众多领域,将有助于解决能源、粮食、疾病和环境污染等一系列全球性的重大问题,给人类带来难以估量的经济效益。我们要充分利用生物技术迅猛发展的契机,重视食品生物技术的研究,利用现代生物技术,促进我国食品工工业的改革,实现我国食品工业健康有序地发展。

我国常用食品分析与安全检测技术化工仪器网2016-11-10 · 优质财经领域创作者【中国化工仪器网 本网原创】导读:食品分析与安全检测技术作为食品质量安全管理体系的技术支撑,是国家开展食品安全监测、实施安全风险评估、执行食品安全标准、加强食品安全管理的重要手段,是维护国际贸易利益、保障人民生命健康的重要工具。随着经济全球一体化,我国食品产业亟待加快分析检测技术的创新,通过研究和掌握前沿的检测方法和技术手段,有效破除国际技术壁垒,为我国食品质量安全提供强有力的保障。我国常用食品分析与安全检测技术色谱、质谱技术色谱技术实质上是一种物理化学分离方法,即当两相作相对运动时,由于不同的物质在两相(固定相和流动相)中具有不同的分配系数(或吸附系数),通过组分在两相之间进行反复多次的溶解、挥发或吸附、脱附过程,从而达到各物质被分离的目的。目前,色谱技术已经发展成熟,具有检测灵敏度高、分离效能高、选择性高、检出限低、样品用量少、方便快捷等优点,已被广泛应用于食品工业的安全检测中。色谱中常用的方法有气相色谱法、高效液相色谱法、薄层色谱法和免疫亲和色谱法、色谱-质谱联用法。气相色谱法和高效液相色谱法气相色谱法是英国科学家1952年创立的一种极有效的分离方法,是色谱技术仪器化、成套化的先驱。具有高效能、高选择性、高灵敏度、高分辨率、用量少、速度快等特点,主要用于沸点低、具有挥发性成分的定性定量分析。近年来毛细管气相色谱法以其分离效率高,分析速度快,样品用量少等特点,在食品农药残留等的分析检测上广泛应用。高效液相色谱法是在经典液相色谱法基础上发展起来的。高效液相色谱法是在高压条件下溶质在固定相和流动相之间进行的一种连续多次交换的过程,它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同引起排阻作用的差别使不同溶质得以分离。经过近30年的发展,现在高效液相色谱法在分析速度、分离效能、检测灵敏度和操作自动化方面,都达到了与气相色谱相媲美的程度,并保持了经典液相色谱法对样品适用范围广、可供选择的流动相种类多和便于制备色谱等优点。其主要优点概括如下:采用高效微粒固定相使色谱分离效能大大提高;采用新型高压输液泵使分离时间大大缩短;采用高灵敏度的检测器使仪器的检测灵敏度大大提高;由于HPLC 具有高柱效、流动相可以控制和改善分离过程的特点,故其选择性高。薄层色谱法和免疫亲和色谱法薄层色谱法(thin layer chromatography)是 20 世纪30年代发展起来的一种分离和分析方法,仪器操作简单、方便、应用广泛,但灵敏度不高。目前,薄层色谱广泛的应用于农药、毒素、食品添加剂等方面,在定性、半定量以及定量分析中发挥着重要作用。免疫亲合色谱(Immunoaffinity Chromatography ,IAC)是一种根据抗原抗体的特异性可逆结合,从复杂的待测样品中捕获目标化合物的方法,能够快速检测食品中的诸如农药等化合物,且成本较低。基于可以生产出任何一种化合物的抗体,免疫亲和色谱成为最流行的纯化方法。目前,免疫亲和色谱技术可以作为样品前处理手段,也可以与一些常规的仪器色谱分析法结合,应用于化合物残留分析。Moretti 等利用在线高效液相免疫亲和色谱系(HPLIAC)系统对牛奶和猪肉中的氯霉素在 280nm 波长处进行检测,色谱检测后无杂质干扰,牛奶和肉中氯霉素的检测限分别为1μg/kg和10μg/kg。液相-质谱和气相-质谱联用技术质谱分析是一种测量离子荷质比的分析法,质谱作为理想的色谱检测器,不仅特异,而且具有极高的检测灵敏度。色谱与质谱联用技术结合了两者的优点,成为分析化学的研究热点。其中,气相色谱-质谱联用技术(GC-MS)与液相色谱-质谱技术(LC-MS)已广泛应用,前者用于有机物的定性定量分析,后者通常用于极性较大,热稳定性强、难挥发的样品分析。光谱分析法光谱分析法是利用物质发射、吸收电磁辐射以及物质与电磁辐射的相互作用而建立起来的一种方法,通过辐射能与物质组成和结构之间的内在联系及表现形式,以光谱测量为基础形成的方法,是一种无损的快速检测技术,分析成本低。其中,近红外光谱、荧光光谱及拉曼光谱等在食品安全检测中应用较为广泛。近红外光谱近红外光是指波长介于可见区与中红外区之的电磁波,波数范围为 4000~12500cm-1。近红外光谱(Near Infrared Spectroscopy,NIR)分析技术是一种间接的分析技术,通过建立校正模型对样品进行定性或者定量分析,近红外光谱技术速度快、无需制备样品以及成本低等优势,已经广泛应用于食品安全分析方面。荧光光谱荧光光谱(Fluorescence Spectroscopy)是一项快速、敏感、无损的分析技术,能在几秒钟内提供物质的特征图谱,基于食品内部含有大量的荧光团,因此荧光光谱广泛应用食品检测研究中,如黄酒、淀粉、胭脂红等在紫外波长的激励下能够产生荧光光谱 。拉曼光谱拉曼光谱(Raman Spectroscopy)技术是一门基于键的延伸和弯曲的振动模式,利用散射光的强度与拉曼位移作图获取信息,在食品安全检测分析中,可以定性分析待测物质,也可以定量检测食品成分中含量的多少。生物检测技术生物检测技术是近年来飞速发展,且在食品检测中备受关注。由于食品多数来源于动植物等自然界生物,因此自身天然存在辨别物质和反应能力。利用生物材料与食品中化学物质反映,从而达到检测目的的生物技术在食品检验中显示出巨大的应用潜力,具有特异性生物识别功能、选择性高、结果精确、灵敏、专一、微量和快速等优点。目前应用较广泛的方法有酶联免疫吸附技术、PCR 技术、生物传感器技术以及生物芯片技术等。酶联免疫吸附分析和 PCR 技术酶联免疫吸附技术(enzyme-linked immuno sorbent assay,ELISA)是建立在免疫酶学基础上,将抗原抗体反应的高度特异性和酶的高效催化作用相结合而发展建立的一种免疫分析方法。基本原理是利用酶标记的抗原或酶标记的抗体作为主要试剂,通过复合物中的酶催化底物呈色反应来对待测物质进行定性或定量,在农药和兽药残留、违法添加物质、生物毒素、病原微生物、转基因食品等食品安全检测方面广泛应用,如恩诺沙星、瘦肉精以及嗜碱耐盐性奇异变形杆菌等的测定。生物传感器技术和生物芯片技术生物传感器是一种将生物识别元素与目标物质结合的物理传感器,具有高特异性和灵敏度、反应速度快、成本低等优点,也已经成为食品检测中的重要工具,主要应用于食品添加剂、致病菌、农药和抗生素、生物毒素等方面的检测。随着生物传感器应用领域的不断扩展,已经出现了不少与食品安全检测相关的生物芯片,该类传感器已逐步走向了产业化,主要包括以下几个方面:(1)在食源性致病微生物检测方面的应用。(2)在动物疫病病原菌检测方面的应用。(3)在兽药残留检测方面的应用。(4)抗生素耐药检测。(5)转基因食品的检

通过碱基互不配对原则,可以检验出食品中病毒

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2