更全的杂志信息网

一阶线性微分方程的解法研究论文

发布时间:2024-07-09 07:49:49

一阶线性微分方程的解法研究论文

形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。形如(记为式1)的方程称为一阶线性微分方程。其特点是它关于未知函数y及其一阶导数是一次方程。这里假设,是x的连续函数。若,式1变为(记为式2)称为一阶齐次线性方程。如果不恒为0,式1称为一阶非齐次线性方程,式2也称为对应于式1的齐次线性方程。式2是变量分离方程,它的通解为,这里C是任意常数。一阶线性微分方程的求解一般采用常数变易法,通过常数变易法,可求出一阶线性微分方程的通解。一阶齐次线性微分方程对于一阶齐次线性微分方程:其通解形式为:其中C为常数,由函数的初始条件决定。一阶非齐次线性微分方程对于一阶非齐次线性微分方程:其对应齐次方程:解为:令C=u(x),得:带入原方程得:对u’(x)积分得u(x)并带入得其通解形式为:其中C为常数,由函数的初始条件决定。注意到,上式右端第一项是对应的齐次线性方程式(式2)的通解,第二项是非齐次线性方程式(式1)的一个特解。由此可知,一阶非齐次线性方程的通解等于对应的齐次线性方程的通解与非齐次线性方程的一个特解之和。

解:

∵(x-2)*dy/dx=y 2*(x-2)³

(x-2)dy=[y 2*(x-2)³]dx

(x-2)dy-ydx=2*(x-2)³dx

[(x-2)dy-ydx]/(x-2)²=2*(x-2)dx

d[y/(x-2)]=d[(x-2)²]

y/(x-2)=(x-2)² C   (C是积分常数)

y=(x-2)³ C(x-2)

∴原方程的通解是y=(x-2)³ C(x-2)(C是积分常数)。

一阶微分方程的求法:

1、从方程组中消去一些未知函数及其各阶导数,得到只含有一个未知函数的高阶常系数线性微分方程。

2、解此高阶微分方程,求出满足该方程的未知函数。

3、把已求得的函数代入原方程组,一般来说。不必经过积分就可求出其余的未知函数。

其中一阶微分方程的表达式为y'+p(x)y=Q(x);二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x)。研究非齐次线性微分方程其实就是研究其解的问题,它的通解是由其对应的齐次方程的通解加上其一个特解组成。

举例说明:(x-2)*dy/dx=y 2*(x-2)^3

解:

∵(x-2)*dy/dx=y 2*(x-2)³

(x-2)dy=[y 2*(x-2)³]dx

(x-2)dy-ydx=2*(x-2)³dx

[(x-2)dy-ydx]/(x-2)²=2*(x-2)dx

d[y/(x-2)]=d[(x-2)²]

y/(x-2)=(x-2)² C   (C是积分常数)

y=(x-2)³ C(x-2)

∴原方程的通解是y=(x-2)³ C(x-2)(C是积分常数)。

扩展资料:

一阶线性微分方程解法

一般形式:dy/dx+P(x)y=Q(x)

先令Q(x)=0则dy/dx+P(x)y=0

解得y=Ce-∫P(x)dx,再令y=ue-∫P(x)dx代入原方程

解得u=∫Q(x) e∫P(x)dxdx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dxdx+C]

即y=Ce-∫P(x)dx+e-∫P(x)dx

∫Q(x)e∫P(x)dxdx为一阶线性微分方程的通解

参考资料来源:百度百科一阶线性微分方程

就跟一次方程一样很简单

一阶微分方程的积分因子研究论文

若方程是恰当方程,即 ,则它的通积分为

对一般的方程(),设法寻找一个可微的非零函数 ,使得用它乘方程()后,所得方程

成为恰当方程,即

这时,函数 叫做方程()的一个 积分因子

微分方程()有一个只依赖于 得积分因子得充要条件是:表达式

只依赖于 ,而与 无关;而且若把表达式()记为 ,则 是方程()的一个积分因子.

类似的有下面平行的结果:

微分方程()有一个只依赖于 得积分因子得充要条件是:表达式

只依赖于 ,则 是方程()的一个积分因子.

求解微分方程 可以用积分因子求解通积分

我们现在从另一种观点—— 分组求积分因子 将()左端分成两组

其中第二组 显然有积分因子: ,如果同时照顾到第一组的全微分形式,则 乃是两组公共的积分因子,从而是方程()的积分因子. 为了使这种分组求积分因子的方法一般化,我们需要下述定理.

若 是方程()的一个积分因子,使得

则 也是()的一个积分因子,其中 是任意可微的非零函数

假设方程()的左端可以分成两组,即

其中第一组和第二组各有积分因子 和 ,使得

由定理 可见,对任意可微函数 和 ,函数 是第一组的积分因子,而函数 是第二组的积分因子. 因此,如果能适当选取 与 ,使得 ,则 就是方程()的一个积分因子.

若 是齐次方程,则函数 是一个积分因子

, ORDINARY DIFFERENTIAL EQUATIONS, Springer-Verlag,1998

研究线性方程的解论文

1 中国古代数学的发展 在古代世界四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。 与以证明定理为中心的希腊古典数学不同,中国古代数学是以创造算法特别是各种解方程的算法为主线。从线性方程组到高次多项式方程,乃至不定方程,中国古代数学家创造了一系列先进的算法(中国数学家称之为“术”),他们用这些算法去求解相应类型的代数方程,从而解决导致这些方程的各种各样的科学和实际问题。特别是,几何问题也归结为代数方程,然后用程式化的算法来求解。因此,中国古代数学具有明显的算法化、机械化的特征。以下择要举例说明中国古代数学发展的这种特征。 线性方程组与“方程术” 中国古代最重要的数学经典《九章算术》(约公元前2世纪)卷8的“方程术”,是解线性方程组的算法。以该卷第1题为例,用现代符号表述,该问题相当于解一个三元一次方程组: 3x+2y+z=39 2x+3y+z=34 x+2y+3z=26 《九章》没有表示未知数的符号,而是用算筹将x�y�z的系数和常数项排列成一个(长)方阵: 1 2 3 2 3 2 3 1 1 26 34 39 “方程术”的关键算法叫“遍乘直除”,在本例中演算程序如下:用右行(x)的系数(3)“遍乘”中行和左行各数,然后从所得结果按行分别“直除”右行,即连续减去右行对应各数,就将中行与左行的系数化为0。反复执行这种“遍乘直除”算法,就可以解出方程。很清楚,《九章算术》方程术的“遍乘直除” 算法,实质上就是我们今天所使用的解线性方程组的消元法,以往西方文献中称之为“高斯消去法”,但近年开始改变称谓,如法国科学院院士、原苏黎世大学数学系主任教授在他撰写的教科书[4]中就称解线性方程组的消元法为“张苍法”,张苍相传是《九章算术》的作者之一。 高次多项式方程与“正负开方术” 《九章算术》卷4中有“开方术”和“开立方术”。《九章算术》中的这些算法后来逐步推广到开更高次方的情形,并且在宋元时代发展为一般高次多项式方程的数值求解。秦九韶是这方面的集大成者,他在《数书九章》(1247年)一书中给出了高次多项式方程数值解的完整算法,即他所称的“正负开方术”。 用现代符号表达,秦九韶“正负开方术”的思路如下:对任意给定的方程 f(x)=a0xn+a1xn-1+……+an-2x2+an-1x+an=0 (1) 其中a0≠0,an<0,要求(1)式的一个正根。秦九韶先估计根的最高位数字,连同其位数一起称为“首商”,记作c,则根x=c+h,代入(1)得 f(c+h)=a0(c+h)n+a1(c+h)n-1+……+an-1(c+h)+an=0 按h的幂次合并同类项即得到关于h的方程: f(h)=a0hn+a1hn-1+……+an-1h+an=0 (2) 于是又可估计满足新方程(2)的根的最高位数字。如此进行下去,若得到某个新方程的常数项为0,则求得的根是有理数;否则上述过程可继续下去,按所需精度求得根的近似值。 如果从原方程(1)的系数a0,a1,…,an及估值c求出新方程(2)的系数a0,a1,…,an的算法是需要反复迭代使用的,秦九韶给出了一个规格化的程序,我们可称之为“秦九韶程序”, 他在《数书九章》中用这一算法去解决各种可以归结为代数方程的实际问题,其中涉及的方程最高次数达到10次,秦九韶解这些问题的算法整齐划一,步骤分明,堪称是中国古代数学算法化、机械化的典范。 多元高次方程组与“四元术” 绝不是所有的问题都可以归结为线性方程组或一个未知量的多项式方程来求解。实际上,可以说更大量的实际问题如果能化为代数方程求解的话,出现的将是含有多个未知量的高次方程组。 多元高次方程组的求解即使在今天也绝非易事。历史上最早对多元高次方程组作出系统处理的是中国元代数学家朱世杰。朱世杰的《四元玉鉴》(1303年)一书中涉及的高次方程达到了4个未知数。朱世杰用“四元术”来解这些方程。“四元术”首先是以“天”、“地”、“人”、“物”来表示不同的未知数,同时建立起方程式,然后用顺序消元的一般方法解出方程。朱世杰在《四元玉鉴》中创造了多种消元程序。 通过《四元玉鉴》中的具体例子可以清晰地了解朱世杰“四元术”的特征。值得注意的是,这些例子中相当一部分是由几何问题导出的。这种将几何问题转化为代数方程并用某种统一的算法求解的例子,在宋元数学著作中比比皆是,充分反映了中国古代几何代数化和机械化的倾向。 一次同余方程组与“中国剩余定理” 中国古代数学家出于历法计算的需要,很早就开始研究形如: X≡Ri (mod ai) i=1,2,...,n (1) (其中ai 是两两互素的整数)的一次同余方程组求解问题。公元4世纪的《孙子算经》中已有相当于求解下列一次同余组的著名的“孙子问题”: X≡2(mod3) ≡3(mod5) ≡2(mod7) 《孙子算经》作者给出的解法,引导了宋代秦九韶求解一次同余组的一般算法——“大衍求一术”。现代文献中通常把这种一般算法称为“中国剩余定理”。 插值法与“招差术” 插值算法在微积分的酝酿过程中扮演了重要角色。在中国,早从东汉时期起,学者们就惯用插值法来推算日月五星的运动。起初是简单的一次内插法,隋唐时期出现二次插值法(如一行《大衍历》,727年)。由于天体运动的加速度也不均匀,二次插值仍不够精密。随着历法的进步,到了宋元时代,便产生了三次内插法(郭守敬《授时历》,1280年)。在此基础上,数学家朱世杰更创造出一般高次内插公式,即他所说的“招差术”。 朱世杰的公式相当于 f(n)=n△+ n(n�1)△2+ n(n�1)(n�2)△3 + n(n�1)(n�2)(n�3)△4+…… 这是一项很突出的成就。 这里不可能一一列举中国古代数学家的所有算法,但仅从以上介绍不难看到,古代与中世纪中国数学家创造的算法,有许多即使按现代标准衡量也达到了很高的水平。这些算法所表达的数学真理,有的在欧洲直到18世纪以后依赖近代数学工具才重新获得(如前面提到的高次代数方程数值求解的秦九韶程序,与1819年英国数学家W. 霍纳重新导出的“霍纳算法”基本一致;多元高次方程组的系统研究在欧洲也要到18世纪末才开始在E. 别朱等人的著作中出现;解一次同余组的剩余定理则由欧拉与高斯分别独立重新获得;至于朱世杰的高次内插公式,实质上已与现在通用的牛顿-格列高里公式相一致)。这些算法的结构,其复杂程度也是惊人的。如对秦九韶“大衍求一术”和“正负开方术”的分析表明,这些算法的计算程序,包含了现代计算机语言中构造非平易算法的基本要素与基本结构。这类复杂的算法,很难再仅仅被看作是简单的经验法则了,而是高度的概括思维能力的产物,这种能力与欧几里得几何的演绎思维风格截然不同,但却在数学的发展中起着完全可与之相媲美的作用。事实上,古代中国算法的繁荣,同时也孕育了一系列极其重要的概念,显示了算法化思维在数学进化中的创造意义和动力功能。以下亦举几例。 负数的引进 《九章算术》“方程术”的消元程序,在方程系数相减时会出现较小数减较大数的情况,正是在这里,《九章算术》的作者们引进了负数,并给出了正、负数的加减运算法则,即“正负术”。 对负数的认识是人类数系扩充的重大步骤。公元7世纪印度数学家也开始使用负数,但负数的认识在欧洲却进展缓慢,甚至到16世纪,韦达的著作还回避负数。 无理数的发现 中国古代数学家在开方运算中接触到了无理数。《九章算术》开方术中指出了存在有开不尽的情形:“若开方不尽者,为不可开”,《九章算术》的作者们给这种不尽根数起了一个专门名词——“面”。“面”,就是无理数。与古希腊毕达哥拉斯学派发现正方形的对角线不是有理数时惊慌失措的表现相比,中国古代数学家却是相对自然地接受了那些“开不尽”的无理数,这也许应归功于他们早就习惯使用的十进位制,这种十进位制使他们能够有效地计算“不尽根数”的近似值。为《九章算术》作注的三国时代数学家刘徽就在“开方术”注中明确提出了用十进制小数任意逼近不尽根数的方法,他称之为“求微数法”,并指出在开方过程中,“其一退以十为步,其再退以百为步,退之弥下,其分弥细,则……虽有所弃之数,不足言之也”。 十进位值记数制是对人类文明不可磨灭的贡献。法国大数学家拉普拉斯曾盛赞十进位值制的发明,认为它“使得我们的算术系统在所有有用的创造中成为第一流的”。中国古代数学家正是在严格遵循十进位制的筹算系统基础上,建立起了富有算法化特色的东方数学大厦。 贾宪三角或杨辉三角 从前面关于高次方程数值求解算法(秦九韶程序)的介绍我们可以看到,中国古代开方术是以�c+hn的二项展开为基础的,这就引导了二项系数表的发现。南宋数学家杨辉著《详解九章算法》(1261年)中,载有一张所谓“开方作法本源图”,实际就是一张二项系数表。这张图摘自公元1050年左右北宋数学家贾宪的一部著作。“开方作法本源图”现在就叫“贾宪三角”或“杨辉三角”。二项系数表在西方则叫“帕斯卡三角”�1654年。 走向符号代数 解方程的数学活动,必然引起人们对方程表达形式的思考。在这方面,以解方程擅长的中国古代数学家们很自然也是走在了前列。在宋元时期的数学著作中,已出现了用特定的汉字作为未知数符号并进而建立方程的系统努力。这就是以李冶为代表的“天元术”和以朱世杰为代表的“四元术”。所谓“天元术”,首先是“立天元一为某某”,这相当于“设为某某”,“天元一”就表示未知数,然后在筹算盘上布列“天元式”,即一元方程式。该方法被推广到多个未知数情形,就是前面提到的朱世杰的“四元术”。因此,用天元术和四元术列方程的方法,与现代代数中的列方程法已相类似。 符号化是近世代数的标志之一。中国宋元数学家在这方面迈出了重要一步,“天元术”和“四元术”,是以创造算法特别是解方程的算法为主线的中国古代数学的一个高峰�。 2 中国古代数学对世界数学发展的贡献 数学的发展包括了两大主要活动:证明定理和创造算法。定理证明是希腊人首倡,后构成数学发展中演绎倾向的脊梁;算法创造昌盛于古代和中世纪的中国、印度,形成了数学发展中强烈的算法倾向。统观数学的历史将会发现,数学的发展并非总是演绎倾向独占鳌头。在数学史上,算法倾向与演绎倾向总是交替地取得主导地位。古代巴比伦和埃及式的原始算法时期,被希腊式的演绎几何所接替,而在中世纪,希腊数学衰落下去,算法倾向在中国、印度等东方国度繁荣起来;东方数学在文艺复兴前夕通过阿拉伯传播到欧洲,对近代数学兴起产生了深刻影响。事实上,作为近代数学诞生标志的解析几何与微积分,从思想方法的渊源看都不能说是演绎倾向而是算法倾向的产物。 从微积分的历史可以知道,微积分的产生是寻找解决一系列实际问题的普遍算法的结果�6�。这些问题包括:决定物体的瞬时速度、求极大值与极小值、求曲线的切线、求物体的重心及引力、面积与体积计算等。从16世纪中开始的100多年间,许多大数学家都致力于获得解决这些问题的特殊算法。牛顿与莱布尼兹的功绩是在于将这些特殊的算法统一成两类基本运算——微分与积分,并进一步指出了它们的互逆关系。无论是牛顿的先驱者还是牛顿本人,他们所使用的算法都是不严格的,都没有完整的演绎推导。牛顿的流数术在逻辑上的瑕疵更是众所周知。对当时的学者来说,首要的是找到行之有效的算法,而不是算法的证明。这种倾向一直延续到18世纪。18世纪的数学家也往往不管微积分基础的困难而大胆前进。如泰勒公式,欧拉、伯努利甚至19世纪初傅里叶所发现的三角展开等,都是在很长时期内缺乏严格的证明。正如冯·诺伊曼指出的那样:没有一个数学家会把这一时期的发展看作是异端邪道;这个时期产生的数学成果被公认为第一流的。并且反过来,如果当时的数学家一定要在有了严密的演绎证明之后才承认新算法的合理性,那就不会有今天的微积分和整个分析大厦了。 现在再来看一看更早的解析几何的诞生。通常认为,笛卡儿发明解析几何的基本思想,是用代数方法来解几何问题。这同欧氏演绎方法已经大相径庭了。而事实上如果我们去阅读笛卡儿的原著,就会发现贯穿于其中的彻底的算法精神。《几何学》开宗明义就宣称:“我将毫不犹豫地在几何学中引进算术的术语,以便使自己变得更加聪明”。众所周知,笛卡儿的《几何学》是他的哲学著作《方法论》的附录。笛卡儿在他另一部生前未正式发表的哲学著作《指导思维的法则》(简称《法则》)中曾强烈批判了传统的主要是希腊的研究方法,认为古希腊人的演绎推理只能用来证明已经知道的事物,“却不能帮助我们发现未知的事情”。因此他提出“需要一种发现真理的方法”,并称之为“通用数学”(mathesis universakis)。笛卡儿在《法则》中描述了这种通用数学的蓝图,他提出的大胆计划,概而言之就是要将一切科学问题转化为求解代数方程的数学问题: 任何问题→数学问题→代数问题→方程求解而笛卡儿的《几何学》,正是他上述方案的一个具体实施和示范,解析几何在整个方案中扮演着重要的工具作用,它将一切几何问题化为代数问题,这些代数问题则可以用一种简单的、几乎自动的或者毋宁说是机械的方法去解决。这与上面介绍的古代中国数学家解决问题的路线可以说是一脉相承。 因此我们完全有理由说,在从文艺复兴到17世纪近代数学兴起的大潮中,回响着东方数学特别是中国数学的韵律。整个17—18世纪应该看成是寻求无穷小算法的英雄年代,尽管这一时期的无穷小算法与中世纪算法相比有质的飞跃。而从19世纪特别是70年代直到20世纪中,演绎倾向又重新在比希腊几何高得多的水准上占据了优势。因此,数学的发展呈现出算法创造与演绎证明两大主流交替繁荣、螺旋式上升过程: 演绎传统——定理证明活动 算法传统——算法创造活动 中国古代数学家对算法传统的形成与发展做出了毋容置疑的巨大贡献。 我们强调中国古代数学的算法传统,并不意味中国古代数学中没有演绎倾向。事实上,在魏晋南北朝时期一些数学家的工作中,已出现具有相当深度的论证思想。如赵爽勾股定理证明、刘徽“阳马”�一种长方锥体体积证明、祖冲之父子对球体积公式的推导等等,均可与古希腊数学家相应的工作媲美。赵爽勾股定理证明示意图“弦图”原型,已被采用作2002年国际数学家大会会标。令人迷惑的是,这种论证倾向随着南北朝的结束,可以说是戛然而止。囿于篇幅和本文重点,对这方面的内容这里不能详述,有兴趣的读者可参阅参考文献�3�。 3 古为今用,创新发展 到了20世纪,至少从中叶开始,电子计算机的出现对数学的发展带来了深远影响,并孕育出孤立子理论、混沌动力学、四色定理证明等一系列令人瞩目的成就。借助计算机及有效的算法猜测发现新事实、归纳证明新定理乃至进行更一般的自动推理……,这一切可以说已揭开了数学史上一个新的算法繁荣时代的伟大序幕。科学界敏锐的有识之士纷纷预见到数学发展的这一趋势。在我国,早在上世纪50年代,华罗庚教授就亲自领导建立了计算机研制组,为我国计算机科学和数学的发展奠定了基础。吴文俊教授更是从70年代中开始,毅然由原先从事的拓扑学领域转向定理机器证明的研究,并开创了现代数学的崭新领域——数学机械化。被国际上誉为“吴方法”的数学机械化方法已使中国在数学机械化领域处于国际领先地位,而正如吴文俊教授本人所说:“几何定理证明的机械化问题,从思维到方法,至少在宋元时代就有蛛丝马迹可寻,”他的工作“主要是受中国古代数学的启发”。“吴方法”,是中国古代数学算法化、机械化精髓的发扬光大。 计算机影响下算法倾向的增长,自然也引起一些外国学者对中国古代数学中算法传统的兴趣。早在上世纪70年代初,著名的计算机科学家就呼吁人们关注古代中国和印度的算法�5�。多年来这方面的研究取得了一定进展,但总的来说还亟待加强。众所周知,中国古代文化包括数学是通过著名的丝绸之路向西方传播的,而阿拉伯地区是这种文化传播的重要中转站。现存有些阿拉伯数学与天文著作中包含有一定的中国数学与天文学知识,如著名的阿尔·卡西《算术之钥》一书中有相当数量的数学问题显示出直接或间接的中国来源,而根据阿尔·卡西本人记述,他所工作的天文台中就有不少来自中国的学者。 然而长期以来由于“西方中心论”特别是“希腊中心论”的影响以及语言文字方面的障碍,有关资料还远远没有得到发掘。正是为了充分揭示东方数学与欧洲数学复兴的关系,吴文俊教授特意从他荣获的国家最高科学奖中拨出专款成立了“吴文俊数学与天文丝路基金”,鼓励支持年轻学者深入开展这方面的研究,这是具有深远意义之举。 研究科学的历史,其重要意义之一就是从历史的发展中获得借鉴和汲取教益,促进现实的科学研究,通俗地说就是“古为今用”。吴文俊对此有精辟的论述,他说:“假如你对数学的历史发展,对一个领域的发生和发展,对一个理论的兴旺和衰落,对一个概念的来龙去脉,对一种重要思想的产生和影响等这许多历史因素都弄清了,我想,对数学就会了解得更多,对数学的现状就会知道得更清楚、更深刻,还可以对数学的未来起一种指导作用,也就是说,可以知道数学究竟应该按怎样的方向发展可以收到最大的效益”。数学机械化理论的创立,正是这种古为今用原则的硕果。我国科学技术的伟大复兴,呼唤着更多这样既有浓郁的中国特色、又有鲜明时代气息的创新。

令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关,若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。

通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关。通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的,若向量组的秩小于向量的个数,则该向量组是线性相关的。

定义

若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

这种比较研究类的题目最好写了首先找一些方程新解法的论文,尽量研究一下看能不能改进,不能改进的话就比较优劣,当然要辩证的比较,如果一种方法全面优于另一种那就不要比了,如果不要求是新解法,而只要求典型解法的话,就更简单了,随便找一本常微分方程和偏微分方程的教材,上面一般都有解法的比较,自己举点例子,最后总结一下就行了,如果审查严格的话,最好多思考,形成一些自己的结论与观点。

关于线性方程解法研究论文

(1)如何选取这r个方程?证明如下:方程组(1)的系数矩阵为A,如下所示 : a11 a12 … a1n �0�1= a21 a22 … a2n ……………………………… a m1 am2 … amn 方程组(1)的增广矩阵为: a11 a12 … a1n b1B= a21 a22 … a2n b2 …………………………………………a m1 am2 … amn bm 由于方程组(1)的系数矩阵A的秩是r,所以A至少含有一个r阶子式D≠0(不等于号).为了叙述方便,我们不防假定D位在A的左上角,因而也位在增广矩�0�1的左上角 a11 … a1r a1,r+1 … a1n b1 … D … ………………… �0�1= a r+1, 1 a r r a r, r+1….. a rn b r a r+1. 1 ……a r+1, r a r+1, r+1…a r+1, n b r+1 ………………………………………… am1… amr am,r … amm b m现在我们证明,方程组(1)的后m-r个方程组中的每一个都是(1)的前r个方程a11x1+…+a1rxr+a1,r+1xr+1+…+a1nxn=b1 a21x1+…+a2rxr+a2,r+1x r+1+…+a2nxn=b (3) ……………………………………………………………….a r1x1+…+arrxr+ar,r+1xr+1+…+arnxn=br 的结果 看(1)的后m-r个方程中的任一个,例如第i(r≦i≦m)(用小于等于号)个方程 a i1x1+…+airxr+ai,r+1xr+1+…+ainxn=bi我们需要证明,存在r个数k1, k2,…, kr,使得Gi= k1G1+ k2G2+…+ krGr, 亦即使a11k1+a21k2+…+ar1 kr =ai1 ,…………………………..a1rk1+a2rk2+…+arr kr =air ,…+ar,rkr+1 =ai,r+1 , (4)………………………………….a1nk1+a2nk2+…+arnkr =ain ,b1k1+b2k2+…+brkr =bi ,为此我们把k1, k2,…, kr,看作位知量,而来证明线性方程组(4)有解,从而可知方程组(4)的增广矩阵是 a11 a21 … ar1 ai1 …………………………. a1r a2r … arr air B= a2,r+1… ar,r+1 ai,r+1 ……………………………………… a1n a2n … arn ain b1 b2 … br bi而B(的前r列作成(4)的系数矩阵B。我们要计算B和B的秩。我们要注意的是,B的列刚好是方程组(1)的增广矩阵A的某些行。这样,矩阵B的左上角的r阶子式刚好是A的子式D的转置行列式,因而不等于零a11 … ar1| ……………….. D≠0 = a1r … arr由于D`也是矩阵B的子式,所以矩阵BB和B的秩都至少是r,另一方面,矩阵B的任一个r+1阶子式D1+r都是A的某一个r+1阶子式的转置行列式。由于A的秩是r,所以A的所有r+1阶子式都等于零,由此得D1+r必然等于零。但B和B的秩都是r,而方程组(4)有解。这样我们就证明了,方程组(1)的后m-r个方程组都是前r个方程的结果,而解方程(1)归结为解方程组(3) 故方程组(1)的公式解;(2):若是r=n,那么(3)就是方程个数等于未知量个数的一个线性方程组,并且它的系数行列式D(≠0) 。所以(3)有唯一解,这个解可由克拉默规则给出,这个解也就是方程组(1)的唯一解。现在设r

您学过“线性代数”么?这是大学的课程给个网址您: 解要通过矩阵的变换才能算得出来,没办法直接说这个的解

代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。

问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解

一阶常微分方程论文参考文献

[1] 北京大学数学系几何与代数教研代数小组 编《高等代数》(第二版)北京高等出版社,1988[2] 熊廷煌 主编《高等代数简明教程》武汉湖北教育出版社,1987[3] 霍元极 主编《高等代数》北京师范大学出版社,1988[4] 丘维声 主编《高等代数》(上册)高等教育出版社,1996[5] 关治,陈精良《数学计算方法》北京清华大学出版社,1990[6] 邓建中,刘之行 《计算方法》西安交通大学出版社,2001[7] 张元达 《线性代数原理》上海教育出版社,1980[8] 蒋尔雄,等《线性代数》人民教育出版社,1978

微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。偏微分方程是分析波动、二维受力分析等常见的方程了。如果你要写论文,可以考虑以下两方面的应用:1 牛顿定律分析2 波动分析

一阶微分方程的应用【1】

摘 要:微分方程在实际中应用广泛。简单介绍了一阶微分方程的几种应用。

关键词:微分方程;应用;研究

微分方程是与微积分一起形成并发展起来的重要的数学分支,它已成为研究自然科学和社会科学的一个强有力的工具.一阶微分方程是我院学生必修的内容,为了激发学生们学习的兴趣,让他们觉得学有所用,下面将介绍一阶微分方程在实际中的几种简单应用.

一、在力学中的运用

动力学是微分方程最早期的源泉之一.动力学的基本定律是牛顿第二定律F=ma,这也是微分方程来解决动力学的基本关系式.上式的右端含有加速度a,a是位移对时间的二阶导数.列出微分方程的关键在于找到合外力F和位移及其对时间的导数――速度的关系.在求解这些问题时,要特别注意问题中的定解条件,如初始条件等.

例1.物体由高空下落,除受重力作用外,还受到空气阻力的作用.在速度不太大的情况下(低于音速的■),空气阻力可看做与速度的平方成正比.试求出在这种情况下,落体存在的极限速度v1.

解:设物体质量为m,空气阻力系数为k.又设在时刻t物体的下落速度为v,于是在时刻t物体所受到的合外力为

F=mg-kv2

由牛顿第二定律列出微分方程

m■=mg-kv2

因为是自由落体运动,所以有v(0)=0.

求解上述微分方程的特解即得:

v=■

当t→+∞时,有

v1=■=■.

据测定,k=aρs,其中a为与物体形状有关的常数;ρ为介质的密度;s为物体在地面上的投影面积.

人们正是根据上述公式,为跳伞者设计保证安全的降落伞的直径大小,在落地速度v1,m,a,ρ一定时,就可定出s来.

二、流体混合问题

中学数学中有这样一类问题:某容器中装有浓度为c1的含某种物质A的液体V升.从其中取出V1升后,加入浓度为c2的液体V2升,要求混合后的液体以及物质A的含量.这类问题用初等代数就可以解决.

但是在生产中还经常遇到如下的问题:容器内装有含物质A的流体.设时刻t=0时,流体体积为V0,物质A的质量为x0(浓度显然已知).现在以速度v2(单位时间的流量)放出流体,而同时又以速度v1注入浓度为c1的流体.试求时刻t时容器中物质A的质量及流体的浓度.

这类问题称为流体混合问题,它是不能用初等数学解决的,必须利用微分方程来计算.

我们利用微元法来列方程.设在时刻t,容器内物质A的质量为x=x(t),浓度为c2.经过时间dt后,容器内物质A的质量增加了dx.于是有

dx=c1v1dt-c2v2dt=(c1v1-c2v2)dt.

因为c2=■,

代入上式有

dx=(c1v1-■)dt,

或■=-■x+c1v1.

这是一个线性方程.于是求物质A在时刻t时的质量问题就归结为求上述方程满足初始条件x(0)=x0的特解问题.

例2.某厂房容积为45×15×6m3,经测定,空气中含有的CO2.开动通风设备,以360m3/s的速度输入含有的CO2的新鲜空气,同时排出同等数量的室内空气.问30分钟后室内所含CO2的百分比.

解:设在时刻t,车间内CO2的百分比为x(t)%.经过时间dt后,室内CO2的改变量为45×15×6×dx%=360××dt-360×x%×dt.

于是有4050dx=360()dt,

即dx=■()dt,

初始条件为x(0)=.

将方程分离变量并积分,初值解满足

■■=■■dt,

求出x有x=■t.

t=30分钟=1800秒代入得x=.

即开动通风设备30分钟后,室内CO2的含量接近,基本上已是新鲜空气了.

三、牛顿冷却定律的应用

牛顿冷却定律:把温度为T的物体放入处于常温T0的介质中,T的变化速率正比于物体的'瞬时温度与周围介质温度T0之差.

设物体的温度为T(t),于是可列微分方程

■=-k(T-T0),k>0.

例3.某小镇发生凶杀案,法医于下午6点到达现场,测得此时尸体的温度为34度,1小时后又测得尸体的温度为32度.假设室温为常温21度,警方经过反复排查,圈定了两名犯罪嫌疑人张某和李某,但二人均辩称自己无罪,并陈述了各自当日下午的活动情况:张某称,他下午一直在办公室,5点下班后离开;李某称,下午一直上班,4点30分左右接到电话后离开.二人所说均被证实,从二人上班地点到案发现场只需要10分钟,试分析两人能否都排除嫌疑?

解:设尸体在t时刻的温度为T(t),由牛顿冷却定律可得定解问题

■=-k(T-21)T(0)=34T(1)=32,

解得T(t)=21+.

设死者死亡时为正常体温37度,即T=37,由上式求出死亡时间

t=■・ln■≈小时.

由此推断出,死者的死亡时间为6:00-1:15=4:45,即下午4:45左右,因此李某有作案时间不能排除嫌疑,张某无作案时间.

四、医学中的应用

例4.有一种医疗手段,是把示踪染色体注射到胰脏里去检查其功能,正常胰脏每分钟吸收染色的40%.现有一内科医生给某人胰脏注射了克染色,30分钟后还剩下克,试问此人的胰脏是否正常.

解:正常情况下,设S(t)表示注射染色体后t分钟时人胰脏中的染色量,则每分钟吸收的染色为■=,本题可知S(0)=,故得到定解问题

■=(0)=,

通过分离变量法,解得S(t)=,则30分钟后剩余的染色量为

S(30)=×30≈0,

而实际此人剩余克,由此可知,此人的胰脏不正常,应该接受治疗.

参考文献:

[1]东北师范大数学系.常微分方程.高等教育出版社,2001,3.

[2]姜启源,叶金星.数学模型.高等教育出版社,2004,12.

[3]刘增玉.高等数学.天津科学技术出版社,2009,6.

一阶高次微分方程的求解【2】

【摘 要】本文通过讨论一阶二次微分方程和一阶三次微分方程的解法的相关问题,来归纳讨论一阶高次微分方程的求解,并给出相关的例子进行说明。主要是一阶二次微分方程与一阶三次微分方程有一些解法,但由于某些方法的局限性,对于某些方程不合适,所以探讨一阶二次微分方程与一阶三次微分方程有必要。

本文给出了一阶二次微分方程与一阶三次微分方程的主要定理,主要是根据方程在极坐标变换下的求解定理,提供了求解这两种微分方程的另一种解法跟途径,并且也能更好地了解一阶高次微分方程的求解。

【关键词】一阶二次微分方程 一阶三次微分方程 极坐标的变换 求解

一 引言

微分方程是常微分方程和偏微分方程的总称。数学上把联系着自变量、未知函数以及它的导数(或微分)的关系式叫做微分方程。微分方程差不多是和微积分同时产生的,但它的形成和发展与力学、天文学、物理学以及其他科学技术的发展密切相关。

常微分方程的概念、解法以及相关理论很多。求通解在历史上曾作为微分方程的主要目标,不过求出解的情况不多,在实际应用中多求满足某种指定条件的特解。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2