更全的杂志信息网

氨基树脂制造机理研究论文

发布时间:2024-07-08 04:52:44

氨基树脂制造机理研究论文

聚酰胺多胺环氧氯丙烷树脂(简称PAE树脂)属于一类水溶性、阳离子型、热固性树脂,具有湿增强效果好,无甲醛,用量少,且成纸返黄少,无毒害,使用方便,损纸回收容易,适合中碱性抄纸,且兼有助留、助滤作用等优点,该类产品成本较高。 湿强树脂应用于造纸工业,能显著地提高纸张的湿强度等性能,因为PAE树脂含有胺基、环氧基和氮杂丁烷型阳离子,而纤维表面有羟基、醛基和羧基等反应基团。PAE树脂分子与纤维表面反应基团产生交联作用。一般认为湿强的机理一种是“均交联”机理。这种机理认为,所加的树脂部分沉积于纤维之间或吸附于纤维表面,当纸页干燥时,这些树脂相互交联成网状结构。另一种是“共交联”理论,这种理论认为,湿强树脂的初期是一种低分子量能溶于水的树脂加入纸浆后渗入至纤维的表面和内部,与纤维分子发生有效的交联。 聚酰胺多胺环氧氯丙烷(PAE)是一类阳离子聚合物,多年来用作增湿强剂,作为抗水剂时因其含固量低,需在碱性条件下熟化因而受到限制。根据造纸涂布的实际需要,赵怀礼制备了高含固量、稳定性好的聚脲改性聚酰胺多胺环氧氯丙烷抗水剂(PUAE),它具有明显的增湿强和表面抗水效果,是新型的环境友好型抗水剂。

首先很高兴为您解答,背景和意义浅成低温热液脉型和角砾岩型金矿床有关的大气水为主的热液系统等。近年来花岗岩ISMA成因类型的划分研究发现,不同成因类型花岗岩产出的构造背景及在地壳中的部位不《聚氨酯合成及应用发展研究毕业论文》 聚氨酯(PU)树脂是由异氰酸酯与多元醇反应制成的一种具有氨基甲酸酯链段重复结构单元的聚合物研究背景是指论文课题在国内外现状、发展历程之类的;而意义主要是指这个东西在当下还不行,就诸多不足而言还存在着研究的价值和意义,那么论文研究背景和意义怎么写,您看这样可以不

聚氨酯树脂论文开题报告

试析《董卿主持风格》中央电视台的节目主持人,多年以来一直被各地的媒体公认为效仿的楷模,或者是追求的方向。可是就像萝卜青菜一样,央视的主持人风格不同,各有特点。而我则偏爱青菜的清新,喜欢即时尚又不乏营养的综艺节目主持人,这几年央视的领军人物当然就非董卿莫数了。 在观众的印象中董卿是一位专业的晚会节目主持人,大方得体,气质稳重,穿着成熟又不失风尚,在央视各套电视台的综艺节目中频频出现,成为中国观众最熟悉的主持人之一。我认为,央视的主持人从杨澜开始是我比较有印象的了,然后是倪萍,再后是周涛,一直到现在的董卿。除了董卿具有年龄优势以外,能在如此激烈的竞争与淘汰中站住脚,一定要有自己的特色。回头看,第一届比较著名的正大综艺主持人杨澜,当时的主持特点是比较阳光和知性。她一再证明着她被观众所喜爱。之后的倪萍,鲜明对比,主要是成熟稳重和亲切感强,易于带动现场气氛。经常用真情感染观众,把观众搞得眼泪汪汪,瞬时让观众耳目一新,也证明她获得了大多数观众的喜爱,可是这一特点,也有少数观众渐渐产生反感,随着时间的增长,观众们觉得这种过于煽情的主持风格已经看够看累了,需要新鲜血液。周涛正是当时观众眼中的新鲜血液,她外表时尚,和轻松干练的主持风格,正和大众的胃口,主持节目的时候,废话很少,语言干练,精巧。着实吸引了观众的眼球。而董卿,在我看来,她聪明的具备了以上三位的所有特点于自身,知性,时尚,又善于对着镜头抒发自身情感的她,在各种场合应变及时,大方得体,并且懂得看场合随时变换风格。比如《青歌大赛》时,她会让自己尽量轻松一些,和紧张的参赛选手形成对比,同时又可以缓和选手的情绪,却把握分寸不会因为自己的轻松,影响到赛场的严肃气氛,这里可以看见杨澜的知性。而《欢乐中国行》,正是一个半分百的娱乐节目,董卿拿出了自己一切的开朗活泼,尽量做到时尚又亲切,在台上表现活跃,却不像其他地方台的节目主持人在台上乱来,这里有一点周涛的时尚又精巧。我曾经还多次看过董卿主持的慈善类节目,比如说最近的《为了母亲的微笑》是一场为了灾区贫困儿童捐款的晚会。我想她有些效仿了倪萍的本事,在描述灾区儿童生活状态时动了真情,而感动了在场和电视机前的所有观众。而超越倪萍的是,恰到好处的只让眼泪在眼圈里打转。(这点是真本事!)另外,董卿的穿着时尚得体,身材苗条,所以在视觉上经常给人耳目一新的感觉,基本功扎实,虽然是上海人,但吐字归音非常清楚,是我最需要学习的,基本功是最最重要的,让观众听清楚,听明白是基本。因此在各种场合,她都可以展现她优秀的功底。这是我对董卿的基础了解,我印象中她没有出过书,所以了解不足,请师傅指正!

摘 要 : 采用有机硅氧烷单体与聚醚、二羟甲基丙酸 (DMPA) 和甲苯二异氰酸酯 ( TD I) 反应制备水性聚氨酯涂料。研究结果表明采用后添加有机硅氧烷单体的合成工艺 , 可制备贮存稳定好的水性聚氨酯乳液 ; 凝胶渗透色谱 (GPC) 分析表明有机硅氧烷改性水性聚氨酯提高了聚氨酯的相对分子质量 ; 性能测试表明有机硅氧烷改性水性聚氨酯涂料具有明显的优点 : 涂膜硬度高 , 耐沾污性、耐水性好和耐溶剂性好。 关键词 : 水性聚氨酯 ; 有机硅氧烷 ; 改性 ; 二羟甲基丙酸 0 引 言 聚氨酯具有耐磨性、耐低温、柔韧性好及粘合强度大等特点 , 其在弹性体、泡沫塑料、涂料及黏合剂中已获得了广泛的应用。水性聚氨酯以水为分散介质 , 具有不燃、无毒、不污染环境、节省能源和易加工等优点 , 日益受到人们的青睐。然而常用线型水性聚氨酯存在耐水性、耐沾污性及热稳定性较差等缺点 , 因此 , 往往需要对其进行改性。常用的改性方法是采用丙烯酸酯或环氧树脂进行改性 , 提高水性聚氨酯的交联密度 , 从而提高其耐水性 , 但对提高水性聚氨酯的耐沾污性和热稳定性作用不大。有机硅氧烷是一种可用于乳液合成和水性涂料体系的有机功能性硅氧烷化合物。具有优良的耐水性、耐化学品性、耐温变性、介电性、耐候性、生理惰性和低表面能。常用的硅氧烷改性是采用聚硅氧烷树脂与水性聚氨酯乳液进行物理共混 , 但聚有机硅氧烷与聚氨酯链段的溶解度 1. 2 水性聚氨酯树脂的合成 在氮气保护下 , 将聚醚二醇加入到装有温度计、搅拌装置和回流冷凝器的 1 000 mL 四口烧瓶中 , 加热至 90 ℃ 脱除水分后降温 , 加入 TD I 在 70 ~ 80 ℃反应 3 h, 再加入丁二醇在 70 ~ 80 ℃ 反应 1 h, 用正丁胺滴定法判断反应终点。再加入 DMPA 与 NMP 的混合物和有机硅氧烷单体 , 在 60 ~ 65 ℃ 反应至— NCO 含量达到理论值 , 然后降温至 40 ℃ , 加入三乙胺中和 , 添加丙酮稀释 , 在常温水中乳化 , 用乙二胺扩链 , 最后真空脱去丙酮得到水性聚氨酯分散体 (WPU ) 。在实验过程中 n ( — NCO) ∶ n ( — OH) = 1 . 60 ∶ 1 。

各个学校都有不同的要求,手里有我自己的,也有别的学校的,你要要的话Email: 可以传给你做个参考!

聚氨酯树脂作为一种具有高强度、抗撕裂、耐磨等特性的高分子材料,在日常生活、工农业生产、医学等领域广泛应用。用来制备聚醚型聚氨酯。聚合方法随材料性质而不同。合成弹性体时先制备低分子量二元醇,再与过量芳族异氰酸酯反应,生成异氰酸酯为端基的预聚物,再同丁二醇扩链,得到热塑弹性体;若用芳族二胺扩链并进一步交联,得到浇铸型弹性体。

高分子树脂研究论文

高分子材料 macromolecular material 以高分子化合物为基础的材料。包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。 高分子材料的结构决定其性能,对结构的控制和改性,可获得不同特性的高分子材料。高分子材料独特的结构和易改性、易加工特点,使其具有其他材料不可比拟、不可取代的优异性能,从而广泛用于科学技术、国防建设和国民经济各个领域,并已成为现代社会生活中衣食住行用各个方面不可缺少的材料。 分类 高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料。①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。②高分子纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。 利用高分子材料制造的塑料制品 此外,高分子材料按用途又分为普通高分子材料和功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。 加工工艺 高分子材料的加工成型不是单纯的物理过程,而是决定高分子材料最终结构和性能的重要环节。除胶粘剂、涂料一般无需加工成形而可直接使用外、橡胶、纤维、塑料等通常须用相应的成形方法加工成制品。一般塑料制品常用的成形方法有挤出、注射、压延、吹塑、模压或传递模塑等。橡胶制品有塑炼、混炼、压延或挤出等成形工序。纤维有纺丝溶体制备、纤维成形和卷绕、后处理、初生纤维的拉伸和热定型等。 在成型过程中,聚合物有可能受温度、压强、应力及作用时间等变化的影响,导致高分子降解、交联以及其他化学反应,使聚合物的聚集态结构和化学结构发生变化。因此加工过程不仅决定高分子材料制品的外观形状和质量,而且对材料超分子结构和织态结构甚至链结构有重要影响

★ ★ dfq0730(金币+2,VIP+0):资源不少,可以分享一下吗?也省得老是发邮件的 1-4 13:48高吸水性树脂(英文名为Super Absorbent Resin, 简写为SAR),或者称为高吸水性聚合物(英文名为Super Absorbent Polymer,简写为SAP),是一种含有羧基等强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。与传统吸水材料如海绵、纤维素、硅胶相比,它不溶于水,也不溶于有机溶剂,却又有着奇特的吸水性能和保水能力,同时又具备高分子材料的优点。高吸水性树脂的吸水量高,可达到自重的千倍以上,而且保水性强,即使在受热、加压条件下也不易失水,对光、热、酸碱的稳定性好,还具有良好的生物降解性能。 高吸水性树脂的开发与研究只有几十年的历史。是一种典型的功能高分子材料,具有一般高分子化合物的基本特性。它能够吸收并保持自身质量数百倍乃至数千倍的水分或都数十倍的盐水,并且能够保水贮水,即使加压也很难把水分离出来。这是由于其分子结构上带有大量具有很强亲水性的化学基团,而这些化学基团又可形成各种相应的复杂结构,从而赋予该材料良好的高吸水和高保水特性。 高吸水性树脂与水有很强的亲和力使它在个人卫生用品方面得到广泛应用,并在农业、土木建筑、保鲜材料、改造环境等方面的应用也显示出广阔的前景。如婴儿纸尿片、老年失禁纸尿片布、妇女用卫生巾等,广大发展中国家在这方面的需求不断增长,各国纷纷扩大生产,增加研究和开发力度。高吸水性树脂作为通讯电缆的防水剂、湿度调节剂、凝胶转动装置、活体酶载体、人造雪等方面也得到了大量的研究和应用。高吸水性树脂在农艺园林方面的应用也已表现出令人鼓舞的前景,它有利于节水灌溉、降低植物死亡率、提高土壤保肥保水能力、提高作物发芽率等。高吸水树脂在沙漠治理方面的应用更是具有无可估量的社会效益。由此可见进一步开发高吸水性树脂仍然有很重大的意义。 1.国外状况 高吸水树脂的研究开发始于20世纪60年代后期。1966年美国农业部北方研究所Fan-ta等进行了淀粉接枝丙烯腈的研究,从此开始了高吸水树脂的发展。Fanta等在论文中提出:淀粉衍生物的吸水性树脂具有优越的吸水能力,吸水后形成的膨润凝胶体保水性很强,即使加压也不与水分离,甚至还具有吸湿放湿性,这些材料的吸水性能都超过以往的高分子材料。该树脂最初在Henkel Corporation工业化成功,其商品名为SGP(Starch Graft Polymer)。1971年Grain Processing公司以硝酸铈盐作引发剂,采用丙烯腈接枝在淀粉或纤维素上的方法合成出高吸水树脂。在这一时期,美国Hercules、National Starch、General MillsChemical,日本住友化学、花王石碱、三洋化成工业等公司相继成功开发出了高吸水树脂,德国、法国等世界各国对高吸水树脂的制备、性能和应用等领域也进行了广泛的研究,并取得大量成果。其中成效最大的是美国和日本。此后,国外对SAP的研制、生产和应用便以惊人的速度发展起来。1978年日本实现了SAP工业化生产。 高吸水树脂的生产与消费增长很快,1980年,世界高吸水性树脂生产能力约为5 kt/a,1990年增加到207 kt/a,1999年猛增到1292 kt/a。目前,世界SAP的最大生产商是日本触媒化学公司,其次是Deggusa/Huels集团的Stockhausen公司,第三位是美国Amcol公司的全资子公司Chemdal公司,这3家公司合计能力约占世界总能力的%。欧洲高吸水性树脂的主要生产厂家有法国Atofina公司和SNF Floerger公司,比利时的BASF公司和Nippon Shokubai公司,德国BASF公司、Stockhausen公司和Dow化学公司、英国Industrial Zeolite公司等。 美国是世界上最大的高吸水性树脂消费国,消费量约为280 kt,约占世界总消费量的%。欧洲高吸水性树脂的消费量约为200 kt,约占总消费量的%;日本高吸水性树脂的消费量约为80 kt,约占世界总消费量的%;其他地区的消费量约占%。根据预测,2005年世界高吸水性树脂的消费量将达到1000~1100kt,消费量年均增长速度为%~%。 随着其产品多样化及性能的提高,高吸水树脂的应用领域也必将不断扩大。1973年美国UCC公司开始将高吸水树脂应用于农业方面,接着又扩展到农林园艺的土壤保水、苗木培育及输送、育种方面。接着日本、法国等也展开了吸水性树脂的应用研究。现在,高吸水树脂已经广泛应用于农林园艺、医疗卫生、建筑材料、石油工业、食品行业、日用品行业、人工智能材料等各个领域。 2 国内状况 国内高吸水性树脂的研究工作起步较晚,始于20世纪80年代初,与国外相比,我国高吸水性树脂的研究开发与应用相对比较缓慢,2004年我国高吸水性树脂的生产能力也只在30kt/a左右,生产企业近30家,但规模都不大,生产能力在1kt以上的仅7家。 国内有三十多家单位在从事高吸水性树脂的研究。例如上海大学、吉林石油化工研究所、中国科学院化学所、中国科学院兰州化学物理研究所、广州化学所、天津大学、北京化工大学、广东工业大学化工研究所等,这些单位的工作大都着重于水性树脂的合成研究。在应用方面,吉林、黑龙江、新疆、河南等省把高吸水性树脂应用于农业生产中取得了较为可喜的成就。目前,国内高吸水剂的研究工作绝大部分仍处于实验室阶段,有的已转入中试阶段,但工业化的很少,主要还是依靠进口。 目前,在我国高吸水性树脂大部分为进口产品,进口价为-万元/t。国内高吸水性树脂生产成本在-万元/t,售价为-万元/t。预计到 2010年国内高吸水性树脂的需求量将达到100kt。 在我国吸水树脂的消费主要以卫生用品应用为主。在今后我国吸水树脂应用方面卫生材料仍是主流,其需求量还将不断增大。由于我国水资源十分贫乏,水土流失严重,荒漠化土地日趋扩展;并且我国正处于工业化、城市化的加速发展阶段,城市草坪业和花卉业将有巨大的发展空间。吸水树脂作为土壤改良剂,保水保肥剂,种子及苗木移植涂覆剂在农业、林业、园林绿化、改造沙漠等方面将起着重要的作用,有关专家认为,再经过七八年的努力作为保水剂的吸水树脂有可能成为继化肥、农药、地膜之后最受广大农民欢迎的农用化学品之一,其市场前景十分广阔。高吸水性树脂是一种发展迅速的新材料,在我国极具市场潜力。随着人们对SAP研究的深入,具有耐盐、保水、保肥等多功能SAP的研究已经取得了巨大的进展,但是我国SAP的生产及应用均落后于发达国家,迫切需要快速发展。我国地大物博,土壤沙漠化严重, SAP在农业上的应用具有巨大的潜力,加强对具有抗旱保墒,且具有缓释肥功能的绿色环保型SAP的研究,建立以多功能新型SAP为中心的完整化学抗旱、节水、保水技术体系,并开展大面积的示范推广也是今后研究的重点。此外,目前应用于工业化生产的SAP大多是丙烯酸盐类,原料成本高,不利于大范围应用。加强对非金属矿物/保水复合材料的研究,同时研究简化生产工艺,减少聚合后半成品水分含量从而减少产成品干燥时间和干燥能耗,对于降低SAP成本,扩大SAP应用范围具有重要意义。另外,应该尽快利用原料和市场需求两个优势,引进国外先进技术,并依托国内科研力量进行开发,建设经济规模工业化装置,以便迅速占领这一高增长的市场。

仅供参考;《功能高分子材料》课程是高分子材料、复合材料、材料化学和应用化学专业的核心主干课程,它是建立在高分子化学和高分子物理基础上,并与其它多种学科如物理学、生物学、医学、分离科学等交叉的综合性课程。由于涉及领域非常广泛,如涵盖了吸附分离功能高分子材料、反应型功能高分子材料、电功能高分子材料、光功能高分子材料、高分子功能膜材料、生物医用功能高分子材料、液晶高分子材料、环境敏感高分子材料等,该门课程教学质量的优劣对学生能否深入了解功能性高分子的设计、表征和应用非常重要。考虑到《功能高分子材料》课程一般是在大三的下学期或大四的上学期开设,这时学生面临着考研复习和找工作等问题,很难静下心来进行深入的学习。因此,采用传统的教学方式难以达到满意的教学效果。针对这些问题,结合我校高分子材料专业教学的实际情况,笔者对《功能高分子材料》课程的教学从教材选定、教学内容和教学方式方面进行了探索。下面,笔者就自己的点滴体会进行论述。1教材的选定和内容的精讲自高分子学科在我国诞生以来,功能高分子材料的发展非常迅速,目前为止国内所见的教材已有十多种。由于功能高分子材料发展非常迅速,为了获取最新的知识,不能选择那些出版年月较老的教材。另外,还要保证教材编写的质量。经过对不同教材的比较,结合我校实际,最终选用了赵文元和王亦军编著的由化学工业出版社于2008年出版的教材。该教材是在1996年版的基础上,加入了许多新的功能高分子方面的研究内容,并结合实际对一部分内容进行了一定的删改。经过对该教材一段时间的试用,我们发现效果较好。另外,针对课时有限而授课内容多的矛盾,应突出教学重点,选择最热门和重要的部分进行精讲,其它部分略讲或者学生自学。2多媒体教学与传统教学方式相结合多媒体教学是指运用计算机并借助于预先制作的教学课件来开展教学活动的过程。与传统教学方法相比,它具有课堂容量大、图文并茂、形象生动、易于突出教学重点和难点等优点。近几年来,越来越多的课程开始实行多媒体教学。功能高分子材料方面新概念多,涉及领域广,借助多媒体技术,不仅可向学生直观地展示有关功能高分子设计实例,而且可插入适当的生产生活实例,使抽象枯燥的功能高分子材料课程更加具体生动。同时,要注意的是多媒体教学效果的好坏,在很大程度上取决于教学课件的水平。因此,老师应努力提高教学课件的制作水平。另外,我们也注意到,多媒体教学的上课进度明显要快于传统的板书教学。这样,对于某些特别重要的理论公式的学习和推导,通过多媒体教学难以使学生在较短的时间内完全理解,这时就应该采用传统的板书教学方式。因此,我们应采取多媒体教学与传统教学相结合的教学方式,根据教学内容进行相应的调整,既保证学生对课程感兴趣,又能让学生真正深入的理解功能高分子材料的知识。3联系生活实际,引出所要讲述的功能高分子材料以生活中的实际例子或新闻报道中的最新科技进展为例子,引出将要介绍的功能高分子材料。这样既能让学生意识到功能高分子材料的重要性,提高学习的积极性,又能让学生了解到最新的研究成果,提高对科学研究的兴趣。如从全球都非常关注的环保问题出发,引出废水和废气处理方面的功能高分子材料,介绍这些功能高分子材料的设计思路和原理,让学生从理论和实际相结合的角度深入理解所学的功能高分子知识。同时,还可以提出一些生活中材料的不足,让学生发挥主观能动性,提出解决这些材料不足之处的方法或设计新的功能高分子材料的想法。这样,学生的学习兴趣会大大的提高,教学效果也会明显得到改善。4利用网络资源,紧跟最新研究进展,实时补充新的教学内容功能高分子材料是一门发展非常迅速的学科,每隔一段时间都有新的研究成果诞生,我们应根据情况实时的补充那些热门和重要的研究成果到教学内容中,让学生了解到最新的功能高分子知识,提高学生对功能高分子材料的兴趣。互联网上资源丰富,内容更新快,是老师补充教学内容的最佳途径。目前,利用网络资源作为课堂教学的辅助手段,是学生喜闻乐见的形式。老师可以制作一个功能高分子的网页,提供最新研究成果的链接,方便学生浏览。同时,还可以鼓励学生在网上搜索最新的研究成果,再在课堂上以口头报告的形式传达给同学。这样,既能让学生对功能高分子材料进行全面的了解,又能让学生主动的参与教学,达到较好的教学效果。5互动式教学,学生做“学术报告”课堂教学是教学的关键性环节,如何启发学生积极思考,调动学生的学习积极性,是老师们一直在探索的问题。针对功能高分子材料涵盖领域多,可以从热门的领域中选择几个作为报告题目,然后让学生分成若干个小组,共同完成查找资料和组织讲稿的工作。最后,从各小组中选出一人作为代表上台做“学术报告”,每个小组之间互相提问。

你是要文献吗 发不过去 留下邮箱吧己酰壳聚糖/聚丙交酯共混膜的制备与表征 这个行不

石棉树脂刹车片研究论文

一位知名汽车行业分析师表示,刹车片在工作过程中会摩擦产生粉尘,释放有害物质污染环境。无论是鼓式刹车片,还是盘式刹车片都会产生粉尘,在当前的技术条件下无法解决这一污染源。 无石棉刹车片的成本要比石棉刹车片高出30%。由于成本低、重量轻,很多车企在生产货车、工程车之类的商用车时,仍在使用含石棉刹车片。由于国际上许多国家已经禁止使用石棉制品,我国刹车片出口受到了严重阻碍。

针对网友的质疑,毛大庆坦陈,关于所列数据,只是他转述的专家观点,希望借此提出呼吁。他说,该信息来源于与相关环保、医学专家的多次交流,“其中有协和医科大学的专家,还有中国工程院的院士,来源绝对靠谱。根据研究,石棉刹车片磨损产生的微颗粒,与车辆尾气、不合格餐厅排烟、工业燃煤等污染源一起并列为的六大元凶。” 他还透露,我国曾于2003年向世界承诺,遵照国际标准,禁用石棉刹车片,“事实上,发达国家早就改用有机复合材料,比如陶瓷刹车片了。国家应该按照标准办事,有令必行,有禁必止。”

一般分为粘结剂、增强纤维、摩擦性能调节剂、填料四大部份:粘结剂是摩擦材料中的一个最重要的组元,它可以影响材料的热衰退性能、恢复性能、磨损性能和机械性能。一般有热固性、热塑性、橡胶类、复合型类几种,汽车摩擦材料中一般采用的是热固化型粘结剂,具体应用的有酚醛树脂、三聚氰胺树脂、环氧树脂、硅树脂、聚酰胺树脂等。应用最广泛的是酚醛树脂及其改性树脂。改性的目的是改善树脂的高温性能。为了更大的提高粘结剂的高温性能,现在先进的汽车摩擦材料已经有些采用聚酰亚胺树脂,但目前这种树脂成本太高,普及不容易 。增强纤维是摩擦材料也是主要的摩擦组元起增强基的作用,传统材料用的是石棉等矿物纤维,半金属汽车摩擦材料中使用的是钢纤维,同时加入少量铜纤维及其少量矿物纤维。近年来,增强纤维的种类也越来越多,其中最引人注目的是芳纶(Kevlar)的应用。有机纤维的加入,可以降低材料的密度、减小其磨损量,但同时也会降低材料的摩擦系数。为了提高摩擦材料在各温度段的稳定性及其纤维和粘结剂的亲和性能,在实际应用中往往采用多种纤维混合使用。摩擦性能调节剂可以分为2类:(1)减摩材料:莫氏硬度一般小于2,它的加入可提高材料的耐摩性,减小噪音及降低摩擦系数。这类材料主要有:石墨、二硫化钼、铅、铜等。(2)摩阻材料:莫氏硬度一般大于4,它的加入可以增加材料的摩擦系数。大部分无机填料和部分金属及其氧化物属这一类。摩擦性能调节剂的加入主要是调节材料的热稳定性能以及其工作稳定性。填料主要以粉末的形式加入。填料的作用很多,比如说加入铜粉,它的作用是可以在摩擦材料和对偶间形成转移膜,既能提高摩擦力矩和稳定摩擦系数,有能减小对对偶件的损伤,提高整个摩擦副的耐摩性能。加入硫酸钡,可以提高材料的密度

现在石棉材质的基本已经淘汰完毕了。市面上主要有“多金属刹车片”、“少金属刹车片”、和“有机系刹车片”三大类。按照实际使用效果来说,目前最后一类,也就是“有机系刹车片”性能最优秀,比如现在流行的陶瓷纤维刹车片就是一个典型。

树脂砂制备及性能检测论文

原砂(100)+固化剂(树脂量的25-60%)+树脂(原砂量的),其中固化剂种类的选择根据温度变化确定,加入量根据温度、铸件大小、起模时间要求进行调节。以上顺序也是混砂时的加入顺序。

1、固化剂又名硬化剂、熟化剂或变定剂,是一类增进或控制固化反应的物质或混合物。

树脂固化是经过缩合、闭环、加成或催化等化学反应,使热固性树脂发生不可逆的变化过程,固化是通过添加固化(交联)剂来完成的。固化剂是必不可少的添加物,无论是作粘接剂、涂料、浇注料都需添加固化剂,否则环氧树脂不能固化。 固化剂的品种对固化物的力学性能、耐热性、耐水性、耐腐蚀性等都有很大影响。

2、固化剂加的比例需通过计算确定

固化剂用量计算方法:

(1)胺类作交联剂时按下式计算:

胺类用量=MG/Hn

式中:M=胺分子量;Hn=含活泼氢数目;;G=环氧值(每100克环氧树脂中所含的环氧当量数)

(2)用酸酐类作交联剂时按下式计算:

酸酐用量=MG()/100

式中:M=酸酐分子量;G=环氧值()为实验系数

扩展资料:

固化剂分类

固化剂按用途可分为常温固化剂和加热固化剂。环氧树脂高温固化时一般性能优良,但是在土木建筑中使用的涂料和粘接剂等由于加热困难,需要常温固化,所以大都使用脂肪胺、脂环映以及聚酰胺等,尤其是冬季使用的涂料和粘接剂不得不与多异氰酸酯并用,或使用具有恶臭气味的聚琉醇类。

至于中温固化剂和高温固化剂,则要以被着体的耐热性以及固化物的耐热性、粘接性和耐药品性等为基准来选择。选择重点为多胺和酸酐。由于酸酐固化物具有优良的电性能,所以广泛用于电子、电器等领域。

脂肪族多胺固化物粘接性以及耐碱、耐水性比较好。芳香族多胺在耐药品性方面也是优良的。由于氨基的氮元素与金属形成氢键,因而具有优良的防锈效果。胺质量浓度愈高,防锈效果愈好。酸酐固化剂和环氧树脂形成酯键,对有机酸和无机酸显示了高的抵抗力,电性能一般也超过了多胺。

参考资料:百度百科-环氧树脂

参考资料:百度百科-固化剂

专业一点好不好?这上面全由

给你一篇看看做参考,我有部分论文,也有自己写的。 漫谈湿砂型铸件表面缺陷 与其它铸造方法相比,湿型铸件是较容易产生粘砂、砂孔、夹砂、气孔等缺陷的。如果铸造工厂注意控制湿型砂的品质,这些缺陷本来是有可能减少或避免。以下用实例说明型砂性能与铸件表面缺陷的关系。 一.粘砂 研究工作表明,一般湿砂型铸件,不论铸钢还是铸铁,粘砂缺陷都是属于机械粘砂,而不是化学粘砂。机械粘砂的产生原因有多种,最多见的如下的实例: 1.砂粒太粗和透气性过高,金属液容易钻入砂粒间孔隙,使铸件表面粗糙,或将砂粒包裹固定在表面上。江苏某外资工厂的铸铁旧砂中不断混入大量30/50目粗粒芯砂,以致型砂透气性达到220以上,铸件表面极为粗糙。内蒙某工厂铸钢车间的气动微震造型机生产中、小铸件。使用主要集中在40目的40/70粗粒石英砂混制型砂,铸件表面产生严重粘砂。平时不检测型砂透气性,认为已经符合工艺规程规定的≥80。为了找到粘砂原因而专门检测一次,发现透气性居然高达1070左右,表明这就是产生粘砂的原因。因此型砂透气性必须有上限,型砂粒度粗细和透气性应当处于适宜范围内。一般震压机器造型单一砂最适宜的型砂粒度大多为70/140目,透气性大致为70~100,高密度造型的型砂粒度最好是50/140或100/50,透气性为80~140。有些生产发动机的铸造厂大量使用50/100目粗原砂制造砂芯,落砂时不断混入旧砂中,使型砂透气性可能达到180以上,就应加入100/140目细砂,或将旋流分离器中的细颗粒部分返回到旧砂中,以便纠正型砂粒度。 2.铸铁型砂中煤粉含量不足或煤粉品质不良。北京某铸造厂生产高速列车刹车盘,铸件材质符合要求,而表面有严重粘砂,需整体打磨后才能交货。型砂中所用煤粉来自郊区一家关系密切的私营小供应商。粘砂的产生原因可能是煤粉品质太差,还可能是型砂中有效煤粉量也不足够。安徽某阀门总厂使用的“煤粉”是生产焦炭洗选下来的废料,灰分高达76%。使用后整个型砂性能遭破坏,铸件废品超过一半。铸造工厂应该对购入的煤粉品质加强检验。优质煤粉要求灰分≤10%,挥发分30~37%,焦渣特征4~5级。型砂的有效煤粉含量可以用发气量进行检测。中小灰铁铸件震压造型应用普通煤粉的的型砂每1g的发气量大约在22~26mL,折合普通品质有效煤粉量约为6~7%,或优质煤粉5~6%,或增效煤粉4~5%。高紧实度造型用型砂发气量大体在18~24mL,折合增效煤粉含量3~4%。我国一些外资铸造工厂大多用灼减量(LOI)估计铸铁用湿型砂抗粘砂性能。例如江苏一汽车铸件厂的静压造型线规定面砂的灼减量为±。国内有多家造型材料公司供应各种“煤粉代用品”。铸造厂应先进行浇注试验,与优质煤粉或增效煤粉比较铸件表面效果、型砂性能变化以及铸件生产成本,然后确定是否选用。 二.砂孔 铸件表面的砂孔和渣孔通常合称为“砂眼”。渣孔大多是由于用了稻草灰或干砂当做聚渣剂形成的。关于砂孔的形成原因如以下几个实例: 1.天津某合资铸造厂手工造型生产电机壳等中、小灰铁铸件。主要缺陷是整个铸件上表面都可看到弥散分布的砂粒。分析这种砂孔形成原因是冲砂,是浇注系统和型腔被铁液冲蚀而掉落的零散砂粒漂浮在液面上形成的。该厂平常并不控制型砂品质,据云以前曾检测湿压强度只有25kPa。手工造型用型砂湿压强度最好在70~80kPa左右,震压机器造型应90~120kPa。如果是高密度造型,型砂湿压强度可以是140~180 kPa。大件可以再增高些。为了提高型砂的湿压强度,应避免使用劣质膨润土,膨润土吸蓝量最好在35mL以上。型砂还需要含有足够的有效膨润土,例如高密度造型的型砂5g吸蓝量大多在55~65mL。折合优质有效膨润土量6~7%。 2.山东某铸造工厂只有一台震压造型机,上班后先造下型铺满地面和下芯。半天以后更换模板制造上型和扣箱合型,准备浇铸。铸件经常出现砂孔等缺陷。其原因是湿砂型表面脱水干燥后表面强度急剧下降,表面砂粒很容易被冲蚀落入铁液中。天气干燥季节中“风干”现象更加严重。湿型砂下箱敞开时间最好不超过半小时。如果发觉砂型表面有干燥脱水的迹象,合型前应用喷雾器向砂型表面喷水使恢复潮湿状态。天津某日资汽车发动机厂过去曾用进口表面强化剂喷涂型腔表面,现也改用喷水。 3.四川某汽车件铸造厂使用静压造型机流水线生产汽缸体和汽缸盖,铸件表面都有多少不等的砂孔。该厂型砂采用本省品质不高的膨润土和煤粉,未对旧砂进行经常性除尘处理,致使旧砂中含泥量有时升高达到24%。为了保持型砂含水量%左右以防止产生气孔缺陷,不得不将型砂紧实率压低在27~32%范围内。型砂的湿压强度并不低,在170~210kPa,不是产生砂孔的原因。由于型砂的灰分过高和紧实率很低,影响韧性不足,破碎指数只有65~75%左右。这种型砂性能太脆,起模性差,砂型的棱角和边缘容易破碎,因而引起砂孔缺陷。该厂应当改用优质膨润土和煤粉;还应使用旧砂除尘设备,将旧砂含泥量控制在12%以下,型砂含泥量不超过13%;将型砂破碎指数控制为80~85%。在造型处的型砂紧实率提高为35~38%,含水量为,使(紧实率)/(含水量)的比例在10~12的范围内。这样就能提高型砂韧性和减少砂孔缺陷。上海、北京、哈尔滨有几家工厂在砂子中加入少量α-淀粉用来改善型砂韧性,降低起模摩擦阻力,增强表面风干强度。对防止砂孔缺陷和改善铸件表面光洁程度都有益处。 4.河南某拖拉机厂的发动机铸造分厂由于大量冷芯盒砂芯的混入,使型砂变脆,起模性能越来越差。不但砂型边棱易碎,而且吊砂易断。根据工厂规定,碾轮混砂机的周期时间只有3min,不能加长混砂时间以免影响造型机用砂需要。后来尽最大努力使混砂周期延长了1min,发现型砂的手感起了变化,起模性也有了改善。这说明原来的混砂时间太短,不能混制出优良的型砂性能。 三.夹砂(结疤、起皮) 自从国内有多家公司供应优质活化膨润土以来,湿型铸件表面夹砂缺陷已大为减少。但是个别湿型铸造工厂还会意外地产生夹砂缺陷。 1.江西一家小型汽车修配厂希望用湿型生产摩托车发动机铝铸件。开始时曾借来两只牛皮纸袋的仇山“陶土”供混砂使用。后来又到物资部门购买了两只麻袋包装的陶土。但是发现新购来陶土的型砂粘结力很低,砂型在火炉旁烘烤后开裂起皮,浇注铸件出现严重夹砂缺陷。当时用极为简陋的条件检查两种粘土的泥浆是否能用碱活化变稠。证明麻袋中不是膨润土而是真正陶土,不可用于湿型铸造。出现问题的原因是当初地质部门将呈微弱酸性的钙基膨润土称为“酸性陶土”。而很多铸造工厂又将“酸性陶土”简称为“陶土”。结果把以蒙脱石为主要矿物成分的膨润土与以高岺石为主要矿物成分的真正陶土(即普通粘土)混淆在一起。真正的陶土主要用来烧制陶瓷,不适合湿型铸造使用。铸造工厂也可以用吸蓝量来鉴别两种不同的粘土矿物,膨润土吸附亚甲基蓝在25~45mL,而普通粘土吸蓝量只有膨润土的十分之一。 2.水质的影响:天津的一家台资铸造工厂,使用挤压造型机生产出口铸铁煎锅。用优质活化膨润土混砂,型砂的湿压强度200~250kPa,紧实率35~38%,含水量3%左右。但是后来铸件靠近内浇道处产生夹砂缺陷,怀疑混砂所用井水有问题。该厂原来混砂用深井水的井管被堵塞。老板为了节约,打了一口20m浅井供混砂加水之用。工人发现这口井的水咸不能喝,洗手搓肥皂也不起泡沫。经化验这种浅井水中含有大量钠、镁、氯离子,对活化膨润土有强烈的反活化作用,用来混砂生产铸件容易产生夹砂缺陷。从邻近工厂引来饮用水混砂后,仍不能完全消除原来水质的影响。江苏有一家挤压造型生产冰箱压缩机铸件工厂,使用流经工厂外面小河中的河水混砂,适逢河水上游有化工厂向水中排废水而引起铸件产生夹砂缺陷,其原因也是由于废水的反活化效应。如果怀疑水质是否适合混砂,可以取2g或3g膨润土分别用纯净水和待试水测定膨润值,或膨胀倍数和自由膨胀量,如果待试水的测试结果比纯净水低很多,就表明待试水的品质不可用。 四. 气孔 铸件的气孔缺陷主要有裹携气孔、侵入气孔、析出气孔和反应气孔四个类型。以下举例说明工厂中常见气孔的生成原因和防止措施。 1.鉴别气孔的类型和生成原因都是不容易的。根据生产经验,提高浇注温度30~50℃经常可以减少任何类型气孔缺陷的发生。应当注意每包铁液浇注最后一两个砂型的温度,因为这时包中铁液温度已然下降而容易产生气孔缺陷。天津某台资铸造厂生产工业缝纫机壳体,每台铁液本可以浇注7个砂型,但是只浇5个砂型。剩在包中铁液倒回电炉中,然后再重新接一满包铁液去浇注砂型,就是为了保持浇注温度,减少气孔缺陷。 2.北京某日资工厂曾发现一个有气孔缺陷的铸件,锯开后看到气孔呈一个个连续上浮状态。估计在产生气孔的界面上背压力超过了铁液的静压力引起侵入气孔,但已无法判断气源是何物。有的工厂将旧砂堆当做垃圾堆,香烟头、冰棍捧、废纸团、瓜籽皮……扔到旧砂,混入型砂中都可能形成气孔缺陷。有些外资铸造工厂严格禁止在厂区中吸烟也是预防气孔的有效措施之一。 3.山东某厂生产中等大小出口阀门铸铁件,用震击造型机造型,冷芯盒制砂芯。该厂采取两天连续造型和下芯、合型,每隔一天冲天炉开炉浇注一次。所生产铸件气孔废品率极高。分析其原因是砂芯吸潮发气进入铁液中造成的侵入气孔。冷芯盒砂芯长时间放置在相对湿度极高的砂型中很容易吸潮。浇注时不仅粘结剂发气,而且砂芯吸收的水分也发出大量水汽,因而容易产生气孔缺陷。应当将隔日开炉攺为每日开炉,或者造型后先合空型,待开炉日再开箱下芯、合箱浇注。既可以防止砂芯吸潮,又可以减少砂型风干脱水,使气孔缺陷大为减少。多开出气冒口,增大排气能力。适当提高浇注速度,迅速建立静压力抵制界面气体侵入,也对防止侵入气孔有好处。 4.从河南、山东、辽宁、吉林…等发动机铸造工厂的气孔缺陷生成情况来看,所遇到的气孔仍多属于砂芯发生气体的侵入气孔缺陷,很少是析出性的氮针孔。因为所用砂芯的粘结剂都改为含氮量较低的树脂,而且必要时在芯砂中和涂料中加入适当的氧化铁。因此首先应当加强砂芯的排气能力。砂芯中间应开通畅的排气孔。对于厚大断面砂芯可以抽成空心或分半挖成网格形内腔而后粘合。树脂自硬砂芯最常用的排气办法是使用尼龙编织管,制芯时可以方便地沿砂芯的任意形状预埋在砂芯中。热芯盒、冷芯盒和壳芯都是整体射制的,不能预埋排气管路,可以安放通气针或棒,在取芯之前或之后抽出。但是更多的是在砂芯硬化后用硬质合金钻头从芯头钻孔帮助排气。例如山西某液压件厂生产形状极为复杂的液压阀,将壳芯所有芯头都角钻头钻盲孔帮助排气。西班牙有一家生产小轿车的铸造工厂,制出气缸盖的水套砂芯用专门多头钻床自下向上地将水套砂芯的各个冷却水通道芯头同时钻出盲孔。较大砂芯下芯时,如果芯头与芯座的间隙过大,会出现铁液钻入砂芯通气孔现象。应当用耐火纤维毡垫、泥条、石棉绳等密封材料围封砂芯芯头。还要注意高温快浇,迅速建立起铁水压力超过发气点背压力使气体不能钻入铁液中成为气泡。即使气体已经钻入铁液中,也能漂浮和随着铁液进入排气冒口排出。另外,采用低发气量粘结剂对防止气孔缺陷是必要的,例如北京某工厂生产英国的煤气炉燃烧圈只有一个芯头,排气困难,就尽量将壳芯的发气量控制在12mL/g以下,而且高温快速浇注。 5.山西某厂使用挤压造型机生产灰铸铁曲轴,在铸件表面和皮下形成宻集的小气孔。一般为直径1~3mm的小孔,大多存在于表皮内1~3mm处,抛丸清理或粗加工时露出。此工厂不用树脂砂芯,不会产生氮气孔,缺陷应当属于反应气孔。即金属液与铸型在界面处发生化学反应,产生的气体溶解在金属液中。冷却时溶解度降低析出成气泡。铸件材质为灰铁,也排除掉铁液中镁或稀土与砂型中水分引起反应。怀疑是炉料和孕育剂有可能将铝、钛带入铁液中。因为铝、钛与水反应放出极易溶入铁液层中的原子态[H]。该层凝固时氢的溶解度降低而以分子态气相析出和长大成氢气泡。由该厂硅铁孕育剂的分析报告中看到含铝量达到,可能是产生皮下气孔的主要原因。硅铁孕育剂的含铝量最好为左右,最多不可超过%。对于随流孕育用硅铁,不但要控制较低的含铝量,而且要限制加入量一般不超过%。为了防止铝、钛等元素与水的反应,挤压造型的型砂含水量也必须控制在不高于4%。 6.球墨铸铁的铁液浇注入湿砂型后,残留镁同水分子中氧强烈反应而产生原子态[H],是产生皮下气孔缺陷的主要原因。必须采取冶炼和工艺两方面的措施才能防止反应气孔的产生。河北某球墨铸铁工厂是生产载重汽车离合器压盘等球墨铸铁件的专业厂,铸件无皮下气孔。从该厂冶炼角度来分析其避免气孔的原因是各项指标都未超出常规范围。例如使用优质铸造焦,冲天炉出炉温度在1480℃以上,球化处理包的内腔深度为直径的倍,浇包和型腔表面抖冰晶石粉,铁水含硫,残留镁量为。但是从工艺角度来分析:面砂含水量高达,远远超过通常认为的最多不可超过。分析其不出气孔的原因可能是:(1)型砂加入了大量煤粉,灼减量高达。超过通常的4~5%。未测型砂发气量,估计在35mL/5g以上。浇注后露出的铸件表面呈现深蓝色,表明浇注时型腔中为大量强烈还原性气氛,将型腔中水汽冲淡。(2)砂型透气性100,并扎有大量排气孔,浇注生成的水汽大部分排出型腔以外,减少了可能参与反应的水汽。(3)面砂含水量虽然相当高,但含泥量高达21%。因此测得紧实率只有36%左右,说明型砂并不潮湿。可能泥分吸收了大量水分,减缓了化学反应的速度。因此可以设想产生反应气孔缺陷主要取决于紧实率(即型砂干湿程度),而不是含水量。 五. 讨论 1.获得优质型砂的条件首先是选用优质原材料,也还需要应用优良的混砂过程。一些技术管理比较严格的湿型砂铸造工厂要求在每班结束前将混砂机中的砂子完全清除干净。美国主要的湿型铸造厂大多要求混砂机刮板与底盘的距离为一个硬币厚度。日本几家使用碾轮式混砂机的汽车件铸造工厂的混砂周期都是6min。但是我国有的铸造厂的混砂机碾盘中和碾轮上的砂子都长期不清理,刮板磨损也不调整,碾轮混砂时间最多3min。这怎样能够混制出优良品质的型砂呢? 2.型砂品质表现在于性能如何,加强型砂性能的检测和控制才能制备出优等型砂。江苏某日资汽车件铸造工厂静压造型线用面砂的日常检测项目有二十余种,还未包括背砂和原材料的检测项目在内。我国有的铸造工厂的型砂实验室中仪器设备简陋,湿型砂性能的日常检测项目可能只有三、四种。怎能根据测得结果说明铸件表面缺陷产生原因呢?又怎能用来降低铸件废品率呢?

壁厚会使球化衰退,给个论文给你:厚大断面铸件专用球化剂、孕育剂的开发与应用王万超(宏德铸造材料有限公司 广州 510000)随着我国进入WTO和工业飞速的发展,厚大断面球墨铸铁件如风力发电铸件、大功率柴油机曲轴、冶金轧辊铸件等的需求量不断增加,厚大断面球铁件在生产时,由于断面过厚,冷却速度缓慢,因而凝固时间过长,在铸件厚壁中心或热节处容易造成石墨畸变、球数减少、组织粗大、石墨飘浮、化学成分偏析和晶间碳化物等问题。因而导致铸件的机械性能下降,尤其是韧性更为明显,给大断面铸件的生产带来困难。因此我司依据中国特有的实际状况开发了厚大断面铸件专用球化剂、孕育剂。1 球化剂 Mg使球墨圆整,对大断面球铁能减缓球化衰退,Mg阻碍石墨析出,残Mg量高,增加收缩和脆性,Mg易氧化,在铁水表面形成氧化膜,进入砂型易使铸件产生夹渣和皮下气孔。残Mg量应控制在保证球化的前提下越低越好,但我们考虑大件凝固时间长,应提高抗衰退能力,Mg量应高些,使最终铁液控制在。 RE是通过抵消干扰元素的有害作用,而间接地起球化作用,但在厚大铸件中,RE留量高容易造成碎块状石墨增多,我们一般控制在以下。为了提高抗衰退能力,我司特别设计专用球化剂,既可以保证起球化作用的Mg的含量,同时也可以保持较高的抗衰退能力,高碳孕育良好时,亦不会出现渗碳体。另外,这专用球化剂可使磷共晶减少并弥散,从而进一步提高球铁的延伸率。在球化处理时,为了提高镁的吸收率,控制反应速度及提高球化效果,采用特有的球化工艺。对球化处理的控制,主要是在反应速度上进行控制,控制球化反应时间在2-3分钟左右,综合范围,原则是低稀土,依据炉料的组成及纯净度调整其含量。 厚大断面铸件的特点是低温处理、低温浇注, Ca元素可以比常规产品较低,在冲天炉和电弧炉熔炼的条件下,可控制在以下,以适当地脱氧、脱硫,而在感应电炉条件下,Ca元素可以更低,因为我司的专用球化剂反应时比较平稳,同时Ca的溶解性差,很容易形成夹渣等铸造缺陷;因此,必须有针对性的成份考虑,一方面延缓球化衰退,另一方面促进异质形核。厚大断面铸件专用球化剂的特色是:高镁、低稀土、低钙、低硅、适度的钡。2 孕育剂孕育剂要求具有强烈的促进石墨化作用,并能维持时间较长,吸收率高而稳定,所以孕育分为炉前孕育和瞬时孕育,两者缺一不可。炉前使用含Ba的防衰退,长效孕育剂,浇注随流使用特殊成分的孕育剂,主要是表面活性元素的应用,其中应用于风力发电铸件时配入适量Bi元素,即改善断面中心部位的球化状况,使得球径小,球数多,并能提高铁素体含量,提高铸态性能。当应用于大功率柴油机曲轴、冶金轧辊等珠光体型铸件时,配入适量Sb元素,即改善断面中心部位的球化状况,使得球径小,球数多,提高铸态性能。粒度根据铁水量而定,炉前使用一般有3-8mm和5-12mm的两种粒度,而随流使用一般有和1-3mm的两种粒度。3 专用球化剂、孕育剂在实际生产中的应用 在风力发电球铁件生产中的实际应用风力发电球铁件的材质为欧洲标准EN-GJS-400-18LT,抗拉强度≥400Mpa,屈服强度≥240Mpa,延伸率≥18%,低温冲击值-20℃,三个试样平均值12 J/cm2,个别值允许9 J/cm2,铸件重量一般在10吨以上,壁厚大约在100-180mm渐变, 金相基体组织要求: 球化率应在90%以上;球状石墨数应大于100个/mm2;100%的铁素体,生产中选择高纯的原材料是非常必要的,原材料中的Si、Mn、S、P含量要少(Si<, Mn< S<, P<),对Cu、Cr、Mo、Ti、Sn、V、W等一些合金元素要严格控制含量。钛对球化影响很大应加以控制在以下,钛高是我国生铁的特点,解决的方法是在炉料中配入一定比例的QIT生铁,来稀释铁水的钛含量,同时也稀释所有促进碳化物的正偏析元素,为增加铁素体的含量,添加适量的镍元素,同时消除低硅的副作用。化学成分方面,必须是低CE量,大致成分为:,,Mn≤,S≤,P≤, ,RE≤,,以及适量Bi。①炉料组成:国内生铁、20-30%的QIT生铁、废钢;②原铁水成分:、、Mn≤、S≤、P≤、;③球化剂与孕育剂的成分:成分 Mg RE Ca Ba Si Bi球化剂 适量 40/42 炉前孕育剂 适量 65/70 瞬时孕育剂 微量 适量 65/70 微量备注:瞬时孕育剂中的微量RE是与Bi元素复合,起增加形核,细化石墨的作用;④熔炼铁液共计吨,15吨的铁水处理包; ⑤球化孕育处理过程:球化处理前,用清渣剂进行扒渣处理,并进行原铁水成分化验。将15-35mm粒度的球化剂放入用15吨的处理包底的一侧的凹槽内,加入量,略加紧实,上面覆盖铁屑覆盖剂。铁水冲入另一侧,处理温度在1400℃-1450℃,冲入约2/3的铁水,进行球化处理,反应时间应在3分钟以上,待反应结束后将再冲入剩余1/3的铁水,同时将粒度为5-12mm炉前孕育剂随铁水流入冲入铁水包,加入量,进行铁水孕育,然后扒渣2-3次,用保温覆盖剂覆盖。在铸件设置设置浇口杯,开设了2个浇口进行浇注,浇注温度:1320℃-1360℃,一边浇注,一边将粒度为1-3mm瞬时孕育剂通过特制的漏斗随流加入,加入量,依据浇注时间控制瞬时孕育剂的加入速度,浇注结束后在48小时,即铸件温度约500℃以下开箱。⑥铸件成分结果:,,,,,残余,残余;⑦金相检测结果:球化等级2级,石墨大小6-7级,铁素体99%;⑧机械性能检测结果:抗拉强度432 Mpa、423 Mpa、428Mpa,平均 Mpa;屈服强度248 Mpa、 Mpa、253Mpa,平均 Mpa;延伸率、、,平均;低温冲击值-20℃,三个试样、、 J/cm2,平均值; 在冶金轧辊铸件中应用冶金轧辊铸件一般QT600-3,抗拉强度≥600Mpa,屈服强度≥370Mpa,延伸率≥3%,铸件壁厚大约在100mm以上, 金相基体组织要求: 球化级别应在2-3,石墨大小6-7级,75%以上的珠光体,20%左右的铁素体,允许极少数的碳化物,但应呈弥散状、棒状,颗粒状分布,生产的重点是强化孕育,多次孕育。①国内生铁、回炉料以及废钢;②熔炼铁液共计吨,6吨的铁水处理包,铸件最大直径300mm,重量4吨;③原铁水成分:、、、S≤、P≤、、④球化剂与孕育剂的成分:成分 Mg RE Ca Ba Si Sb球化剂 适量 40/42 炉前孕育剂 适量 65/70 瞬时孕育剂 微量 ≤ 适量 65/70 微量瞬时孕育剂中的微量RE是与Sb元素复合,起增加形核,细化石墨的作用;⑤球化孕育处理过程:球化处理前,用清渣剂进行扒渣处理,并进行原铁水成分化验。将15-35mm粒度的球化剂放入用15吨的处理包底的一侧的凹槽内,加入量,略加紧实,上面覆盖铁屑覆盖剂,铁水冲入另一侧,处理温度在1400℃-1450℃,冲入吨的铁水,进行球化处理,反应时间应在3分钟以上,待反应结束后将铁水包吊至5吨的电炉前,冲入5吨的铁水,同时将粒度为5-12mm炉前孕育剂随铁水流入冲入铁水包,加入量,进行铁水孕育,然后扒渣2-3次,用保温覆盖剂覆盖。浇注温度:1350℃-1400℃,一边浇注,一边将粒度为1-3mm瞬时孕育剂通过特制的漏斗随流加入,加入量,依据浇注时间控制瞬时孕育剂的加入速度,浇注结束后在600℃左右开箱风冷。⑥铸件成分结果:,,,,P≤,残余,残余;、⑦金相检测结果:球化等级2-3级、石墨大小6级、珠光体76%、铁素体22%、碳化物约2%,而且呈细条状、棒状,极少数呈颗粒状;⑧机械性能检测结果:抗拉强度653 Mpa、707 Mpa、698Mpa,平均686 Mpa;屈服强度443 Mpa、395 Mpa、403Mpa,平均 Mpa;延伸率、、,平均;4 应用过程中的分析与总结(1) 应选用纯净度高的炉料,铁液中杂质越少越好;(2) 铁水成分方面:生产风力发电铸件时,控制要点是低CE、低Mn、S、P以及尽可能低的Cu、Cr、Mo、Ti、Sn、V等,残余Mg要高、残余RE要低;生产厚大断面珠光体铸件时,控制要点是低CE、低S、P、Cr、Ti、Sn、V等,残余Mg要高、残余RE比风力发电铸件略高,适量的的Mn 、Cu、Mo等元素;(3) 球化处理方面:低温处理、低温浇注、多次孕育、瞬时孕育是关键;(4) 厚大断面铸件专用球化剂、孕育剂比使用单一的轻稀土球化剂以及常规孕育如硅铁,球化率、石墨数量提高,尤其是中心部位的石墨畸变几率大大减少,组织相对致密,铸件综合机械性能相应提高;(5) 厚大断面铸件专用球化剂、孕育剂是技术组合型配套使用,不得单一使用,否则将严重影响使用效果。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2