更全的杂志信息网

淀粉在国内的研究论文

发布时间:2024-07-06 18:27:16

淀粉在国内的研究论文

它的合成方式主要是结合了化学以及生物。科研人员采用“搭积木” 的方式,通过“光能-电能-化学能”的能量转变,构建了11步反应的非自然固碳与淀粉合成途径,在实验室中首次实现从二氧化碳到淀粉分子的全合成。

[1]陶维屏,苏德辰.中国非金属矿产资源及其利用与开发.北京:地震出版社,2002.

[2]刘研,李宪洲.高岭土的深加工与新材料.世界地质,2004,23(2):195~200.

[3]孔浩.高岭土改性和层柱材料的制备与表征.天津:天津大学硕士论文,2002.

[4]中国矿床编委会编著.中国矿床.北京:地质出版社,1994.

[5]王怀宇,张仲利.世界高岭土市场研究.中国非金属矿工业导刊,2008,(2):58~62.

[6]吴铁轮.我国高岭土市场现状及展望.非金属矿,2004,27(1):1~4.

[7]张术根,刘小胡,丁俊.湖南辰溪仙人湾埃洛石型高岭土的矿物学特征与成因简析.岩石矿物学杂志,2006,25(5):433~439.

[8]张术根,刘小胡,丁俊.湖南辰溪仙人湾埃洛石型高岭土矿床特征及成因分析.矿物岩石,2006,26(4):1~7.

[9]张术根,丁俊,刘小胡,等.湖南辰溪仙人湾高岭土矿物学特征与应用途径探索.矿物学报,2006,26(4):357~362.

[10]李凯琦,刘钦甫,许红亮.煤系高岭岩及深加工技术.北京:中国建材工业出版社,2001.

[11] Frost R deformation in and Clay Minerals,1998,46(3):280~289.

[12] ,41:738.

[13]袁树来,等.中国煤系高岭岩(土)及加工利用.北京:中国建材工业出版社,2001.

[14] Ma C,Eggleton R layer types of kaolinite:Ahigh-resolution transmission electron microscope and Clay Minerals,1999,47:181~191.

[15] Frost R L,Kristof J,Schmidt J M,et spectroscopy of potassium acetate-intercalated kaolinites at liquid nitrogen Acta Part A,2001,57:603~609.

[16] Van Duin A C T,Steve R dynamics investigation into the adsorption of organic compounds on kaolinite Geochemistry,2001,32:143~150.

[17]刘摔摔,张培萍,吴永功.层状硅酸盐矿物填料在聚合物中的应用及发展.世界地质,2001,20(4):360~365.

[18]刘欣梅,潘正鸿,李国,阎子峰.用煤系高岭土制取白炭黑的研究.石油大学学报(自然科学版),2005,29(2):121~124.

[19]王万军,张术根,孙振家,刘纯波.用伊利石高岭石质煤矸石试制橡胶填料.中南大学学报(自然科学版),2004,35(5):769~773.

[20]张文良.非金属矿物高岭土在涂料中的应用.广东化工,2002,4:38~41.

[21]张怀彬,贾同文,等.沸石催化剂在精细化工中的应用.精细石油化工,1993,(1):6~11.

[22] Rong T J,Xia J catalytic cracking activity of the kaolin-group Letters,2002,57:297~301.

[23]王雪静,张甲敏,杨胜凯,杨风霞.偏高岭土水热合成NaY分子筛的机理研究.无机化学学报,2008,24(2):235~240.

[24]蒋荣立,孔德顺,夏小波,陈文龙.偏高岭石-碱-硅酸钠水热反应体系13X分子筛的合成.硅酸盐学报,2008,36(6):832~836.

[25]孙书红,马建泰,庞新梅,等.高岭土微球合成ZSM-5沸石及其催化裂解性能.硅酸盐学报,2006,36(4):757~761.

[26]蒋笃孝,魏红梅.由高岭土合成环境友好的无磷洗涤剂用沸石添加剂.现代化工,1999,19(12):27~28.

[27]沈水发,陈耐生,陈柽生,等.利用高岭土制备聚合氯化铝净水剂.无机盐工业,1999,31(5):33~35.

[28]陈国斌,唐课文,黄凯明.用高岭土制备聚氯化铝铁-淀粉复合絮凝剂及性能研究.湖南理工学院学报(自然科学版),2006,19(2):52~58.

[29]吴宏海,刘佩红,张秋云,何广平.高岭石对重金属离子的吸附机理及其溶液的pH条件.高校地质学报,2005,11(1):85~91.

[30]侯梅芳,崔杏雨,李瑞丰.沸石分子筛在气体吸附分离方面的应用研究.太原理工大学学报,2001,(3):135~139.

[31]刘燕.高岭土类粘土矿物材料对模拟核素Sr、Co、Cs的吸附性能研究.中国非金属矿工业导刊,2007,(5):25~28.

[32]李恒德.现代材料科学与工程词典.济南:山东科技出版社,2001:411~412.

[33] Bandyopadhyoy S,Mukerji of nitrogen content on the sintering behavior and properties of Sialon prepared from ,1993,19(3):133~139.

[34] Suvorov S A,Dolqushev N V,Zabolotskij A synthesis of dispersed sialon i Tekhnicheskaya Keramika,2002,4:2~5.

[35] Antsiferov V N,Gilev V materials from i Tekhnicheskaya Keramika,2001,2:2~8.

[36] Panda P K,Mariqppan L,Kannan T reduction of kaolinite under nitrogen Inter,2000,26(5):455~461.

[37] Panneerselvam M,Rao K microwave method for the preparation and sintering of β R Bull,2003,38(4):663~674.

[38]张海军,李文超,钟香崇.天然原料合成o′-Sialon-ZrO2-SiC复合材料.稀有金属,2000,34(1):25~29.

[39]张海军,李文超,钟香崇.粘土还原氮化合成o′-Sialon基复合材料.耐火材料,2000,34(3):137~140.

[40]李亚伟,李楠,王斌耀,等.β-赛隆(Sialon)/刚玉复合耐火材料研究.无机材料学报,2000,15(4):612~618.

[41]钱扬保,王福明,徐利华,等.粘土碳热还原氮化二步法制备β-Sialon结合刚玉复相材料.耐火材料,2002,36(2):77~69.

[42] Davidovits and geopolymeric Then Angl,1989(35):429~441.

[43] Miao J Y,Dennis W H,Chang C C,et carbon spheres of high purity prepared on kaolin by and Related Materials,2003,12:1368~1372.

[44]王银叶.天然矿高岭土制备莫来石复合纳米晶微观结构表征.硅酸盐学报,2000,28(2):68~71.

[45] Karch J,Birringer R,Gleiter at low ,1987,33(6148):556~559.

[46]吕凤柱,张宝砚,王文斌,窦臻.PA1010/高岭土杂化材料的制备和探讨.高分子材料科学与工程,2002,18(2):187~191.

[47]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.

[48]魏月琳,吴季怀.高岭土-丙烯酰胺系超吸水性复合材料表征.华侨大学学报(自然科学版),2002,23(4):412~416.

[49]王新.聚合填充法制备 UHMWPE/Kaolin复合材料的结构与性能.北京:中国科学院化学研究所博士论文,2001.

[50]朱秀林,顾梅,赵峰.高岭土-聚丙烯酸钠高吸水性复合树脂的合成及性能研究.高分子材料科学与工程,1994,(5):46~49.

[51]熊传溪,刘起虹,董丽杰,王雁冰.HDPE/高岭土复合材料的制备与性能.武汉理工大学学报,2002,24(1):1~3.

[52]陈汉周,刘钦甫,侯丽华,赵庆章.高岭土/PET纳米复合材料的制备与表征.非金属矿,2008,31(3):42~44.

[53]蔡会武,江照洋,王瑾璐,等.丙烯酸/淀粉/高岭土复合高吸水树脂的制备及性能研究.化工新型材料,2008,36(4):47~49.

[54]刘钦甫,杨晓杰,张鹏飞.中国煤系高岭岩(土)资源成矿机理与开发利用.矿物学报,2002,22(4):359~364.

[55]陆军.煤矸石发电是扩大煤矸石综合利用的有效途径.中国煤炭,2001,27(7):36~37.

[56]张术根,王万军,谭建农.湖南煤矸石资源环境评价与开发利用研究.长沙:中南大学出版社,2003.

[57]刘春荣,宋宏伟,董斌.煤矸石用于路基填筑的探讨.中国矿业大学学报(自然科学版),2001,30(3):294~297.

[58]刘俊尧,裴春平,刘晓惠,张淑娟.煤矸石做道路基层材料的应用分析.云南交通科技,2000,16(3):23~26.

[59]施龙青,韩进,尹增德,陆鸿.煤矸石改良土壤的应用研究.中国煤炭,1998(5):37~39.

[60]王刚.利用煤矸石生产肥料.煤炭加工与综合利用,1996,(6):10~11.

应该就是用两种不一样的物质进行合成,然后就变成了淀粉。

药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( , Oligo-l,6-glucosidase ),普鲁兰酶( ),异淀粉酶( , Isoamylose ),支链淀粉一6-葡聚糖酶( ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 蜡状芽抱杆菌覃状变种(Bacillus cereus ) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 嗜酸性分解普鲁兰多糖芽抱杆菌() 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸()。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于以上不长,在以普鲁兰糖为碳源的培养基(( ~)上生长良好。 枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为~,但在时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在~有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. Bacillusnaganoensis,Bacillus deramificans, 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, , Thermotoga maritime的最适温度和pH分别是90℃, , Thermurs caldopHilus的最适温度和pH分别是75℃,, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~,α~,α~,α~,α~,α~糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量(对碎米计),β~淀粉酶活性2,000单位/克以上,;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加,麦芽糖含量平均增加了,糊精含量平均减少了高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~和α~糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达,最佳发酵条件下产量可达 .酶的最适作用温度为600C,最适pH值,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全

小麦淀粉的品质研究论文

(一)科研项目[1]. 2004-2006,杨凌基金—抗旱节水型小麦新品种选育与加工利;[2]. 2007-2009,陕西省攻关项目—冷冻面食质量控制技术研究;[3]. 2008-2010,西北农林科技大学博士启动基金—小麦粉食品质量控制及功能食品研究;(二)参加的科研项目参加科研项目20多项,包括国家农业部农业跨越计划项目,陕西省科技攻关项目,陕西省自然科学基金项目,杨凌基金项目、校级专项以及横向课题等,近年代表性项目。[1].~,农业跨越计划项目—优质面条小麦生产示范与面条生产技术;[2].~,陕西省攻关课题—高产、优质多抗及专用小麦新品种选育;[3].~,陕西省自然科学基金—小麦谷蛋白亚基的遗传规律研究;[4].~,农业跨越计划项目—优质专用小麦陕253、小偃22生产与加工;[5]. ~,陕西省科技攻关项目—高产优质高效小麦育种;[6]. ~,国家环保总局项目—中国重点农作物种质资源调查。(三)科研成果[1]“优质面条小麦生产示范与面条生产技术”,获陕西省农业科技推广2等奖,第10位[2] 小麦新品种“普冰143” ,通过陕西省作物品种审定委员会审定,第2位。[3]“ 一种冷冻面制品的复合改良剂”,申请国家发明专利。(四)发表论文近年来以第一作者公开发表论文20多篇,其中代表性论文如下:1. 梁灵,魏益民*,康立宁等。冷冻面片动态热机械性能研究(ei收录)。农业工程学报,2008,24(1):. 梁灵,董剑,高翔等。小偃22小麦粉面包加工技术研究,西北农业学报,2008,17(4):. 梁灵,董剑,高翔等。小偃22小麦粉馒头加工技术研究,麦类作物学报,2008,28(1):. 梁灵,魏益民*,康立宁等。 冷冻面片制作工艺的优化。食品与发酵工业,2007,33(8):. 梁灵,张正茂*,宋社果,张彦东.大豆蛋白对冷冻水饺质量的影响研究.西北农林科技大学学报(自然科学版),2006,34(10):. 梁灵,张正茂,汪勇攀,田晓琴. 食品质量与安全专业工艺学实验教学改革探讨.西北高等农林教育, 2006,2:.梁灵,张正茂,段许昌,杨公明,李国龙.高压对小麦种子发芽和幼苗生长的影响初探(ei收录).高压物理学报,2005,19(3):.梁灵,欧阳韶晖,罗勤贵, 王长勇,楚炎沛.专用面粉的几种主要成分分析. 粮食与饲料工业,2005,2:10-11, .梁灵,魏益民*,张国权,欧阳韶晖,罗勤贵.小麦淀粉凝胶质构特性研究. 中国食品学报, 2004,4(3):.梁灵,魏益民*,师俊玲,郭波莉.关中小麦品种籽粒糊化特性研究.中国粮油学报,2003,18(2):.梁灵,魏益民*,张国权,师俊玲,郭波莉.小麦淀粉膨胀体积和直链淀粉含量的研究. 麦类作物学报,2003,23(1):.梁灵,魏益民*,师俊玲.小麦淀粉研究概况. 西部粮油科,2003,28(3):.梁灵,叶可辉,李玲雀. 菠菜挂面护绿工艺研究. 西北农林科技大学(自然科学版),2002,30(1):39-42.(五)专著或著作1.副主编,国家“十一五”规划教材—食品安全导论,中国农业出版社,2009,.参著,谷物品质与食品加工-小麦籽粒品质与食品加工.中国农业科学出版社,2005,.参编,食品杀菌新技术. 科学技术文献出版社,2005,.参编,杂粮食品加工工艺与配方.科学技术文献出版社.2001,3.

共发表科技和教学研究论文100多篇,已主编、副主编、参编出版著作28部,撰写260余万字,其中主编、副主编国家级“十五”“十一五”规划教材、教育科学“十五”国家规划课题研究成果和高等教育百门精品课程教材、教育部面向21世纪课程教材11部,获国家级、省级和市、厅级优秀教材奖6部。一、论文(2005年以来)1. 2005,1月 流动注射化学发光法测定鲜酒糟中微量乙醇的研究中国卫生检验杂志(核心期刊) p49~512. 2005,1月 发芽豆乳面包的生产工艺研究粮油加工与食品机械 2005(1)p69~703. 2005,4月 改革本科实验教学提高学生创新能力中国教育教学杂志(高等教育版) 总 p74~744. 2005,4月 高效液相色谱法检测小麦粉中过氧化苯甲酰的含量粮油加工与食品机械(核心期刊) 2005(4)p67~685. 2005,6月 微波增压消解-流动注射化学发光法快速测定去离子水中微量有机物质 中国卫生检验杂志(核心期刊) p654~6566. 2005,7月 鸡腿菇保健饮料的工艺探讨食品工业科技(核心期刊)2005年第7期 p158~1597. 2005,7月 浓度直读法快速测定食用菌中微量氟的研究中国食用菌(核心期刊) 2005年第4期 VoL24,No4 p36~37,358. 2005,8月 海带粉的加工及其在面包中的应用粮食与饲料工业 . (中文核心) p18~199. 月 浅谈分析化学教学质量的提高中国教育科学通报 VoL2,No8 p105、10810. 2005,9月 浓度直读法快速测定碘盐中的微量碘食品科学(一级学报) p423~42511. 2005,9月 微波消解快速测定特殊粒色小麦中的10种金属元素麦类作物学报(核心期刊) . p140~14212. 2005,11月 南阳彩色小麦微量氟的分布及浓度直读快速分析方法研究食品科学(一级学报) p187~18913. 2005,11月 微波消解原子吸收法在南阳彩麦矿质元素测定中的应用河南农业大学学报(核心期刊) p365~367、38214. 月 浓度直读法快速测定蔬菜中的硝酸盐和亚硝酸盐含量中国卫生检验杂志(核心期刊) p1444~144615. 2006,3月 离子选择性电极浓度直读法测定小麦中的碘含量(通讯作者)食品与发酵工业(核心期刊) 2006年第3期 p89~, 3月 微波消解-浓度直读法快速测定南阳彩色小麦中的微量钙安徽农业科学(核心期刊)2006,34 p1048~1049,, 5月 南阳彩色小麦籽粒品质性状分析初报麦类作物学报(核心期刊) p164~16518. 2006,6 月 南阳彩色小麦中维生素含量的研究初报安徽农业科学(核心期刊) p2355~235719. 2006,7月 色泽异常肉及其产生的原因肉类工业(统计源期刊)2006(7)p38~,7月 南阳特殊粒色小麦部分品质指标的初步分析麦类作物学报(核心期刊) p161~月 高校食品化学实验课程的创新性教学中国教育教学研究杂志 总139期 p15~16中国教育教学研究会主办22.2006,10月 南阳彩色小麦面团拉伸性能测定及粉质评价研究初报食品科学(一级学报) p32~, 10月 离子选择性电极浓度直读法快速测定火棘果中的铜含量安徽农业科学(核心期刊) p4824~4825,月 海带挂面配方优化研究河南农业大学学报(核心期刊) p532~,10月 温室效应及其防治对策安徽农业科学(核心期刊) p5351~,11月 Luminol-KMnO4化学发光体系测定小麦中的微量砷*食品科学(一级学报) p412~,12月 微波高压快速消解-紫外分光光度法测定南阳彩色小麦中的微量元素硒 安徽农业科学(核心期刊) p6093~6095,月 标准加入直读法快速测定南阳彩色小麦面粉中硝酸根的研究 粮食储藏(核心期刊) p39~41,月 离子选择性电极浓度直读法快速测定火棘果中的微量钙*食品科学(一级学报) , p305~月 微波溶样快速测定南阳彩色小麦面粉中的微量镉安徽农业科学(核心期刊), p1893~1894、,5月 超声波诱导紫外光协同法降解苯酚化学通报(一级学报)第5期, p396~,5月 农产品中微量元素锗的分析方法研究安徽农业科学(核心期刊) ,No14 p4093~月 南阳彩色小麦面粉中微量铜的快速测定方法研究食品科学(一级学报) , p274~,7月 小麦中有害元素砷的测定及其生物吸收比的研究食品科学(一级学报) , p407~410全国食品与环境学术会议宣读论文 中国.贵阳2007年8月,8月 南阳彩色小麦中氨基酸含量的研究及初步评价粮食储藏(核心期刊) , p42~45,, 9月 郑州市火棘果红色素的提取及理化特性研究食品科学(一级学报) , p242~,11月 偶合化学发光法测定食用油中碘价的研究中国油脂(核心期刊) , p74~,11月 土壤样品中有效氮的化学发光法测定中国农学通报(核心期刊) , p228~,11月 反相HPLC法测定郑州地区火棘果中氨基酸含量的研究昆明理工大学学报(核心期刊) , p86~89,,11月 南阳特殊粒色小麦色素的提取及粗提溶液理化特性的研究昆明理工大学学报(核心期刊) , p99~,12月 微波压力消解-原子荧光法测定土壤及其小麦中有害元素砷的研究 河南科学(核心期刊) , p911~91442. 2008,2月 Luminol-SCN—体系测定土壤中有效钼安徽农业科学(核心期刊),2008,36(4):1300~130243. 2008,2月 Luminol-I2化学发光体系测定食用油中过氧化值的研究食品科学(一级学报)2008. , p318~,4月 超声波-中性甲醛浸提—固定pH法快速测定水果中的总酸度食品科学(一级学报) 2008. , p341~,8月 标准加入直读法快速测定南阳彩色小麦中的微量铜河南科学(核心期刊) 2008. , p920~,8月 微波程序消解-流动注射化学发光法快速测定彩色小麦中微量铬食品科学(一级学报) 2008. , p547~,8月 分光光度法快速测定酸奶中的钙安徽农业科学(核心期刊) , p9352~,9月 微波消解-浓度直读法快速测定食品中的蛋白质食品科学(一级学报) 2008. , p441~,10月 微波消解-恒pH滴定法快速测定粮食中的粗蛋白粮食储藏(核心期刊) ,p33~,11月 南阳彩色小麦中微量铅的快速测定技术研究农业工程学报(一级学报),~,12月 贮藏期间大蒜的生理特性变化研究江苏农业科学(核心期刊),2008,(6)p251~月 食品添加剂对南阳彩色小麦淀粉糊化黏度特性的影响[J].麦类作物学报(核心期刊), 2009, ,~25553. 2009,7月 超声波辅助-反相HPLC法测定火棘果中的有机酸河南科学(核心期刊) 2009. ~82354. 2009,8月 超声波浸提-加标浓度直读法快速测定大豆中的微量氟食品科学(一级学报) 2009. ,55. 2009,8月 郑州地区栾树果实理化参数的研究初报 900河南科学(核心期刊) 2009. ~108856. 2009,9月 栾树果实中粗脂肪、粗蛋白和粗纤维营养特性的初步研究经济林研究(核心期刊)57. 2009,8月 加标浓度直读法快速测定大蒜中微量氟的研究安徽农业科学(核心期刊)58. 2009,6月 南阳彩色小麦及其土壤中微量硒的相关性研究云南农业大学学报(核心期刊),10月 Luminol-K3Fe(CN)6流动注射化学发光体系测定恩诺沙星食品科学(一级学报) 2009. ,60. 2009,11月 黄山栾果与栾果中维生素含量的测定河南科学(核心期刊),12月 微波消解-流动注射化学发光法快速测定小麦中的稀土元素粮食贮藏(核心期刊),12月 超声波辅助-旋光法快速测定食品中蔗糖的研究安徽农业科学(核心期刊)二、著作(2004年以来)1. 月 新编仪器分析(第二版)ISBN 7-03-012731-5教育部国家级“十五”规划教材 高向阳(主编)科学出版社(北京)2. 月(上册 实验化学(上下册)(第二版)月(下册) ISBN7-04-016084-6(上册) ISBN7-04-016085-4(下册)高等教育出版社(北京)高向阳(副主编)获教育部2002年国家级优秀教材二等奖3. 2006 .5月 现代仪器分析 (第二版) ISBN 7-04-018709-4高等教育出版社(北京) 高向阳(副主编)教育科学“十五”国家规划课题研究成果高等教育百门精品课程教材建设计划研究成果4. 2006,7月 绿色食品 ISBN 7-5349-3290-4/河南科学技术出版社(郑州)高向阳(主编)教育部全国高中职业技能试用教材年10月 食品分析与理化检验ISBN 7-5026-2485-6/中国计量出版社(北京) 高向阳(主编)“十一五”高等学校通用教材(食品类)6. 2006年11月 绿色食品 教师教学用书 ISBN 7-5349-3592-X/河南科学技术出版社(郑州)高向阳(主编)教育部全国高中职业技能试用教材普通高中新课程实验教科书 通用技术(选修4)现代农业技术 专题一7. 2007,7月 现代仪器分析学习指导与问题解答 ISBN 9787040218046高等教育出版社(北京) 高向阳(副主编)教育科学“十五”国家规划课题研究成果高等教育百门精品课程教材建设计划研究成果8. 2008,8月 现代仪器分析 ISBN 978-7-04-018709-0高等教育出版社(北京) 高向阳(副主编)普通高等教育“十一五”国家级规划教材,1月 新编仪器分析实验 ISBN 978-7-03-022919-9科学出版社(北京) 高向阳(主编)普通高等教育“十一五”国家级规划教材,7月 新编仪器分析(第三版)ISBN 978-7-03-023312-7科学出版社(北京) 高向阳(主编)普通高等教育“十一五”国家级规划教材,7月 新编仪器分析学习指导 ISBN 978-7-03-024882-4科学出版社(北京) 高向阳(主编)普通高等教育“十一五”国家级规划教材国家专利1. 实用新型专利 一种微波炉用消解装置申请号: 专利号:申请日:2006年1月16日申请人:河南农业大学食品学院 高向阳2. 实用新型专利 一种移液管申请号: 专利号:申请日:2006年1月16日申请人:河南农业大学食品学院 高向阳3. 实用新型专利 一种高精度多功能环保型滴定装置申请号: 专利号:申请日:2006年1月16日申请人:河南农业大学食品学院 高向阳4. 实用新型专利 一种改进型定量分析用库仑测定液池申请号: 专利号:申请日:2006年12 月 8 日申请人:河南农业大学食品学院 高向阳5.国家发明专利 生物样品中微量元素及物质的快速分析方法申请号:申请日:2006年5 月 30 日申请人:河南农业大学食品学院 高向阳6. 国家发明专利 薯蔓越冬盆栽生产技术申请号:2006申请日:2006年12 月 8 日申请人:河南农业大学食品学院 高向阳公开公告号 101194592A国际学术交流情况1. 2004年 海峡两岸食品加工暨国际学术交流会议 中国.福州2. 2005年7月17~21日参加全国食品工程类专业教材编写会议 中国.杭州为我院争取主编、参编教材16部3. 2005年~25,中国农学会农产品贮藏与加工学会学术交流会 中国.开封4. ~21, 参加“功能食品与营养产业论坛”会议 中国.南京5. 2006年9月8~10日 食品安全与检测技术论坛 (中国.青岛)6. 2006年10月23-26日 第四届食品科学国际年会暨学术交流会 ,中国.厦门集美大学 4th FOOD SCIENCE INTERNATIONAL SYMPOSIUM October 23rd~26th,2006 Xiamen,China7. 2007年8月1~3日 全国食品与环境学术会议 中国.贵阳会议宣读论文:小麦中有害元素砷的测定及其生物吸收比的研究8. 2008年国际食品安全高峰论坛 中国.北京2008年1月12~13日9. 2008年8月15-20日 第五届食品科学国际年会暨学术交流会 ,中国.昆明 5th FOOD SCIENCE INTERNATIONAL SYMPOSIUM August 15rd~20th,2008 KunMing,China10.2009年8月13日~8月20日 高新技术在食品加工中的应用学术交流会,中国.南昌

淀粉接枝改性研究论文

★ ★ dfq0730(金币+2,VIP+0):资源不少,可以分享一下吗?也省得老是发邮件的 1-4 13:48高吸水性树脂(英文名为Super Absorbent Resin, 简写为SAR),或者称为高吸水性聚合物(英文名为Super Absorbent Polymer,简写为SAP),是一种含有羧基等强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。与传统吸水材料如海绵、纤维素、硅胶相比,它不溶于水,也不溶于有机溶剂,却又有着奇特的吸水性能和保水能力,同时又具备高分子材料的优点。高吸水性树脂的吸水量高,可达到自重的千倍以上,而且保水性强,即使在受热、加压条件下也不易失水,对光、热、酸碱的稳定性好,还具有良好的生物降解性能。 高吸水性树脂的开发与研究只有几十年的历史。是一种典型的功能高分子材料,具有一般高分子化合物的基本特性。它能够吸收并保持自身质量数百倍乃至数千倍的水分或都数十倍的盐水,并且能够保水贮水,即使加压也很难把水分离出来。这是由于其分子结构上带有大量具有很强亲水性的化学基团,而这些化学基团又可形成各种相应的复杂结构,从而赋予该材料良好的高吸水和高保水特性。 高吸水性树脂与水有很强的亲和力使它在个人卫生用品方面得到广泛应用,并在农业、土木建筑、保鲜材料、改造环境等方面的应用也显示出广阔的前景。如婴儿纸尿片、老年失禁纸尿片布、妇女用卫生巾等,广大发展中国家在这方面的需求不断增长,各国纷纷扩大生产,增加研究和开发力度。高吸水性树脂作为通讯电缆的防水剂、湿度调节剂、凝胶转动装置、活体酶载体、人造雪等方面也得到了大量的研究和应用。高吸水性树脂在农艺园林方面的应用也已表现出令人鼓舞的前景,它有利于节水灌溉、降低植物死亡率、提高土壤保肥保水能力、提高作物发芽率等。高吸水树脂在沙漠治理方面的应用更是具有无可估量的社会效益。由此可见进一步开发高吸水性树脂仍然有很重大的意义。 1.国外状况 高吸水树脂的研究开发始于20世纪60年代后期。1966年美国农业部北方研究所Fan-ta等进行了淀粉接枝丙烯腈的研究,从此开始了高吸水树脂的发展。Fanta等在论文中提出:淀粉衍生物的吸水性树脂具有优越的吸水能力,吸水后形成的膨润凝胶体保水性很强,即使加压也不与水分离,甚至还具有吸湿放湿性,这些材料的吸水性能都超过以往的高分子材料。该树脂最初在Henkel Corporation工业化成功,其商品名为SGP(Starch Graft Polymer)。1971年Grain Processing公司以硝酸铈盐作引发剂,采用丙烯腈接枝在淀粉或纤维素上的方法合成出高吸水树脂。在这一时期,美国Hercules、National Starch、General MillsChemical,日本住友化学、花王石碱、三洋化成工业等公司相继成功开发出了高吸水树脂,德国、法国等世界各国对高吸水树脂的制备、性能和应用等领域也进行了广泛的研究,并取得大量成果。其中成效最大的是美国和日本。此后,国外对SAP的研制、生产和应用便以惊人的速度发展起来。1978年日本实现了SAP工业化生产。 高吸水树脂的生产与消费增长很快,1980年,世界高吸水性树脂生产能力约为5 kt/a,1990年增加到207 kt/a,1999年猛增到1292 kt/a。目前,世界SAP的最大生产商是日本触媒化学公司,其次是Deggusa/Huels集团的Stockhausen公司,第三位是美国Amcol公司的全资子公司Chemdal公司,这3家公司合计能力约占世界总能力的%。欧洲高吸水性树脂的主要生产厂家有法国Atofina公司和SNF Floerger公司,比利时的BASF公司和Nippon Shokubai公司,德国BASF公司、Stockhausen公司和Dow化学公司、英国Industrial Zeolite公司等。 美国是世界上最大的高吸水性树脂消费国,消费量约为280 kt,约占世界总消费量的%。欧洲高吸水性树脂的消费量约为200 kt,约占总消费量的%;日本高吸水性树脂的消费量约为80 kt,约占世界总消费量的%;其他地区的消费量约占%。根据预测,2005年世界高吸水性树脂的消费量将达到1000~1100kt,消费量年均增长速度为%~%。 随着其产品多样化及性能的提高,高吸水树脂的应用领域也必将不断扩大。1973年美国UCC公司开始将高吸水树脂应用于农业方面,接着又扩展到农林园艺的土壤保水、苗木培育及输送、育种方面。接着日本、法国等也展开了吸水性树脂的应用研究。现在,高吸水树脂已经广泛应用于农林园艺、医疗卫生、建筑材料、石油工业、食品行业、日用品行业、人工智能材料等各个领域。 2 国内状况 国内高吸水性树脂的研究工作起步较晚,始于20世纪80年代初,与国外相比,我国高吸水性树脂的研究开发与应用相对比较缓慢,2004年我国高吸水性树脂的生产能力也只在30kt/a左右,生产企业近30家,但规模都不大,生产能力在1kt以上的仅7家。 国内有三十多家单位在从事高吸水性树脂的研究。例如上海大学、吉林石油化工研究所、中国科学院化学所、中国科学院兰州化学物理研究所、广州化学所、天津大学、北京化工大学、广东工业大学化工研究所等,这些单位的工作大都着重于水性树脂的合成研究。在应用方面,吉林、黑龙江、新疆、河南等省把高吸水性树脂应用于农业生产中取得了较为可喜的成就。目前,国内高吸水剂的研究工作绝大部分仍处于实验室阶段,有的已转入中试阶段,但工业化的很少,主要还是依靠进口。 目前,在我国高吸水性树脂大部分为进口产品,进口价为-万元/t。国内高吸水性树脂生产成本在-万元/t,售价为-万元/t。预计到 2010年国内高吸水性树脂的需求量将达到100kt。 在我国吸水树脂的消费主要以卫生用品应用为主。在今后我国吸水树脂应用方面卫生材料仍是主流,其需求量还将不断增大。由于我国水资源十分贫乏,水土流失严重,荒漠化土地日趋扩展;并且我国正处于工业化、城市化的加速发展阶段,城市草坪业和花卉业将有巨大的发展空间。吸水树脂作为土壤改良剂,保水保肥剂,种子及苗木移植涂覆剂在农业、林业、园林绿化、改造沙漠等方面将起着重要的作用,有关专家认为,再经过七八年的努力作为保水剂的吸水树脂有可能成为继化肥、农药、地膜之后最受广大农民欢迎的农用化学品之一,其市场前景十分广阔。高吸水性树脂是一种发展迅速的新材料,在我国极具市场潜力。随着人们对SAP研究的深入,具有耐盐、保水、保肥等多功能SAP的研究已经取得了巨大的进展,但是我国SAP的生产及应用均落后于发达国家,迫切需要快速发展。我国地大物博,土壤沙漠化严重, SAP在农业上的应用具有巨大的潜力,加强对具有抗旱保墒,且具有缓释肥功能的绿色环保型SAP的研究,建立以多功能新型SAP为中心的完整化学抗旱、节水、保水技术体系,并开展大面积的示范推广也是今后研究的重点。此外,目前应用于工业化生产的SAP大多是丙烯酸盐类,原料成本高,不利于大范围应用。加强对非金属矿物/保水复合材料的研究,同时研究简化生产工艺,减少聚合后半成品水分含量从而减少产成品干燥时间和干燥能耗,对于降低SAP成本,扩大SAP应用范围具有重要意义。另外,应该尽快利用原料和市场需求两个优势,引进国外先进技术,并依托国内科研力量进行开发,建设经济规模工业化装置,以便迅速占领这一高增长的市场。

未来的展望科技论文篇二 对生物基塑料的未来展望 摘 要:随着经济社会的迅速发展,全球已经面临巨大的资源和环境压力,各种资源匮乏、气候变暖及环境污染问题让人们不得不探寻新的材料和能源,生物基塑料成为人们减轻环境污染、缓解资源矛盾的新方式,它也因此成为人们关注的焦点。本文分析了生物基塑料的概念、当前生物基塑料发展状况及发展过程中存在的主要问题,并对生物基塑料的发展前景进行了展望,从而为减轻资环环境压力,促进人类社会更好的发展。 关键词:生物基塑料 概念 存在问题 未来展望 近年来随着生物基塑料的研发和应用,一些传统的塑料制品已经被其替代,生物基塑料已经在解决资源和环境问题上发挥了重要作用。本文分析了生物基塑料的研究状况及当前发展中遇到的主要问题,并对生物基塑料的未来发展前景进行展望,以期为经济社会的可持续发展做出贡献。 一、生物基塑料的概念 1.生物基塑料的定义 2003年11月日本的生物塑料协会将生物塑料定义为生物分解塑料和生物基塑料。所谓生物分解塑料(BDP)是指,在一定环境条件下,这类塑料能够由细菌、藻类、真菌等微生物的作用分解,而不会带来环境问题,目前生物分解塑料既来源于石油又来自可再生资源。所谓的生物基塑料(BBP)是指可再生资源例如淀粉、蛋白质、纤维素、木质纤维素、生物聚合物及二氧化碳等,以这些材料为原料加工而成的塑料,就被称为生物基塑料。所谓生物塑料就是指绿色的生物材料,它不会对环境造成污染,或能够减轻对环境的污染,是给空气带来二氧化碳负担的“碳中性”材料。 2.具有代表性生物基塑料产品的特点比较 3.生物基塑料的检测标准 对生物基塑料的检测方法主要是通过对其进行C-14分子标记,然后测量其产品中各组分的碳原子是生物碳或化石碳及含量在总有机碳中的百分比(质量分数)。例如计算以淀粉为原料制造的淀粉基塑料的生物基含量: 50%淀粉与50%聚乙烯的淀粉基塑料,其中淀粉生物C含量为41%、聚乙烯生物C含量为82%,其生物基含量的计算方法为(50%×41%)÷(50%×82%+50%×41%)=。日本的生物含量的等级分为4个:25%~50%,50%~75%,75%~90%,>90%,其中25%~50%的产品所占的比例最大。 二、当前生物基塑料发展状况 随着,公众环保意识的逐步增强,探寻资源的可再生方法已经得到了越来越多人的关注,将一些常见的可再生资源例如谷物、木材、甜菜等制造成生物聚合物,实现资源的再生。目前,生物基塑料的研究已经完成了由初级研究到商业化、规模化方向的发展,截止到2012年全球生产制造的生物基塑料产量达500Kt左右,其所能带来的能量达1060kt,根据美国Fredonia集团的研究报告表明,生物基塑料的需求量在未来的几年里其增长率仍会大幅度提高。欧洲的生物塑料协会预测在未来的几年里生物基塑料的生产规模仍然会扩大,今后可被生物分解的生物基塑料中制造业产品如儿童玩具、汽车装饰用品、汽车零件及家用电器等的需求量最大且增长速度最快,预测增长速度会超过20%。目前生物基塑料在我国的应用主要是在以下5个行业:一包装行业;二制造业;三纺织业;四农用地膜;五医学业。 三、生物基塑料使用的主要技术 1.“生物成型”技术 作为世界知名的可口可乐公司承诺在2020年,本公司所使用的所有的PET容器都将使用生物材料,该产品主要是由美国著名的生物技术公司Virent、Gevo共同研发生物合成PX工艺,实现PTA的绿色化。Virent公司已经成功的采用了“生物成型”技术,将玉米、甘蔗等含糖作物与糠醛生物共同转化为PX,实现了完全由可再生材料合成生物基PET。 2.分子重组技术 目前,国际上知名的生物化工企业Virent、Gevo、Avantium等已经成功的应用生物技术从植物、农作物的废弃物等资源中进行分子重组转化为PX,并通过氧化技术生产出PTA,从而实现了100%的PET生物基产品。 3.“YXY”技术 美国生物化工Avantium公司与美国高校共同研发了“YXY”技术,该技术将植物源获得的呋喃糖通过生物技术转化为2,5-呋喃羧酸,从而与MEG酯化聚合生成PEF,目前 已经实现了PEF聚酯瓶的商业化生产。 四、几类生物基塑料的国内外研究进展 目前国内外研究较多且开发和技术相对成熟的生物基塑料主要有:淀粉基生物降解塑料、聚乳酸、聚丁二酸丁二醇酯等。 1.淀粉基生物降解塑料 淀粉基生物降解塑料是淀粉经过改性、接枝反应后与其他聚合物共混加工而成的一种塑料产品, 具有投资少、成本低、方便快捷、等特点。目前共研发出填充型、光-生物双降解型、共混型及全淀粉型四种可降解塑料。经过30年的研发历史,淀粉生物降解塑料已广泛应用于化工、农业以及化妆行业等。 2.聚乳酸生物降解塑料 聚乳酸是以乳酸为原料合成的材料,具有无毒、无害、高强度、易加工成型及可全降解性能等特点。因此,聚乳酸是一种能真正达到生态和经济双重效应的环保材料,是近年来国内外着重研究和关注的生物降解塑料。但价格较高对其大规模应用有一定的限制。 3.聚丁二酸丁二醇酯生物降解塑料 丁二酸和丁二醇经缩聚形成聚丁二酸丁二醇酯, 其具有优良的力学性能和耐热性,并且其加工定型和稳定性方面也比其他生物基塑料好。总体而言,其综合性能优异, 性价比合理, 具有良好的应用推广前景,。 另外,国内外正在研究开发一些新型生物基塑料。例如:美国农业部研究由柠檬酸和丙三醇制得的生物降解聚合物,美国加州大学正在推出的利用碳水化合物和肽合成生物材料以及国内相关研究部门研究以农产品为原料制造可塑淀粉生物降解材料,显示出未来生物技术塑料发展的前景巨大。 五、生物基塑料发展中存在的主要问题 1.生物基塑料的性能较石油基塑料有差距 目前形成产业的生物基塑料的性能(力学性能、稳定性、耐热性、燃烧性、阻隔性等)较石油基塑料的性能上还存在着一定的差距,在很多要求严格的领域中,生物基塑料不能够替代石油基塑料,因此必须通过对其性能进行改造的手段,尽量使其性能达到可利用的标准。 2.生物基塑料的生产投资大、成本高 相关国外《生物基生命周期对环境影响的全面分析》调查研究表明,生物基塑料的制造所使用的农作物,较普通的农作物而言使用的农药、化肥的量更大,其产品对环境污染的影响更大,因此在投资项目时一定要全面分析,慎重做决定。 六、展望生物基塑料的发展前景 1.生物基塑料替代传统能源 随着经济社会的发展,全球面临的资源和环境问题日趋加剧,环境污染、资源匮乏、能源短缺都迫使人们急切探寻新能源来替代传统的能源。用可再生资源替代石油资源已经成为人们关注的焦点,随着人们生活水平的提高,对石油资源的需求量只会与日俱增。随着全球气候变暖问题的日益严峻,美国能源情报署2006年初预测,到2025年,世界的二氧化碳排放量将达×107kt,而中国目前的二氧化碳排放量已经达到×106kt,因此中国面临的减排工作还是十分严峻的,同时相关研究表明,生物基塑料的节能减排效果显著,生物基塑料的二氧化碳排放量比石油基塑料的排放量少20%~30%。因此,生物基塑料的发展有巨大的市场潜力。 2.生物化学工艺技术发展为生物基塑料发展带来新革命 生物化学工艺技术的发展为生物基塑料的性能、生产工序、生产成本等都有了突破性的改变,其不仅能够使生物基塑料的性能达到最佳状态,而且能够大幅度的降低生产成本,提高淀粉及纤维素的含量,并且还能够直接或间接的使用非粮食淀粉,节约粮食资源。 3.生物基塑料产品种类不断增加,应用领域不断扩大 随着人们生活水平的提高对生活质量的要求越来越高,绿色食品、绿色包装都是人们追求的新事物,而生物基塑料就是绿色包装的典型资材。而且今后不会单单仅仅将生物基塑料的产品种类局限于包装上,会将生物基塑料的应用领域扩大到农业领域、医药领域、纺织领域等,他们都将在各自领域发挥着巨大的作用,实现资源替代和环境资源矛盾的缓解,更加有利于国家的可持续发展。 七、结语 近年来,生物基塑料的生产技术体系目前已经得到了确立,并且随着生物材料和生物生产技术的发展,其在节能减排和缓解资源环境压力发挥着显著的优势,通过对生物基塑料的研究和应用的现状进行综合分析,生物基塑料具有巨大的市场潜力。并且当前生物基塑料作为石油基的替代品使着我国的资源利用正朝着绿色、高效、高附加值、规模化、标准化的方向发展,从而为我国走经济可持续、能源可持续、资源可持续发展的道路奠定了基础,因此生物基塑料具有十分美好的发展前景。 参考文献 [1]唐赛珍.生物基材料发展前景展望[J].新材料产业,2013(03). [2] 李洋.研究报告称生物基材料具有巨大的市场潜力[J].印刷技术,2010(04). [3]张慧君.生物塑料在汽车上的应用与展望[J].橡塑资源利用[J].2013(04). [4]杨中文.生物基塑料带来绿色革命[J].国外塑料,2006(05). [5]王战勇,张晶,苏婷婷.可生物降解塑料的研究与发展[J].辽宁城乡环境科技,2003(08). [6]关文.生物塑料有望替代90%传统树脂[J].中国石化报,2009(12). [7]杨二.佳能产品应用阻燃性生物基塑料[J].中国质量报,2008(10). 作者简介:姓名:周毅;出生年:1976年10月;性别:男;籍贯:广东省普宁市;工作单位:广东楠洋职业安全事务有限公司;职务或职称:工程师;学位:学士;研究方向:化工。 看了“未来的展望科技论文”的人还看: 1. 未来人生规划的论文范文3篇 2. 对未来的展望的话 3. 展望未来的演讲稿3篇 4. 展望未来的发言稿3篇 5. 关于科技论文2000字

淀粉抗消化处理研究论文

(1)消化酶发挥最好效果的温度是与人体的温度相同的,即37℃左右.因此在实验中要将装置放在0℃的温水中.在该温度下,唾液淀粉消化酶的基本无活性,淀粉基本不会被分解.再向c试管中滴加一滴稀碘液,c试管中变蓝,ab则无变化(2)消化酶发挥最好效果的温度是与人体的温度相同的,即37℃左右.因此在实验中要将装置放在37℃的温水中.在该温度下,唾液淀粉酶的活性最高.淀粉会被分解为麦芽糖,c试管蓝色褪去,a、b试管由于未加稀碘液,都无明显变化.(3)经过(2)步骤b中淀粉会被分解为麦芽糖,a中由于没有唾液淀粉酶,淀粉不会被分解.再向a、b试管中各加入一滴稀碘液,a试管的变化是变蓝,b试管的变化是无明显变化.(4)在这个实验中,a试管未作任何处理,其对照作用.(5)消化酶发挥最好效果的温度是与人体的温度相同的,即37℃左右.假如没有温水,可以手握10min左右.故答案为:(1)无变化 无变化 变蓝 (2)蓝色褪去 无明显变化 (3)变蓝 无明显变化 淀粉在唾液的作用下,发生了分解 (4)作对照 (5)人体的体温是37℃,可以手握10min左右

抗性淀粉(resistant starch)又称抗酶解淀粉,难消化淀粉,在小肠中不能被酶解,但在人的肠胃道结肠中可以与挥发性脂肪酸起发酵反应。

抗性淀粉存在于某些天然食品中,如马铃薯、香蕉、大米等都含有抗性淀粉,特别是高直链淀粉的玉米淀粉含抗性淀粉高达60%。这种淀粉较其他淀粉难降解,在体内消化缓慢,吸收和进入血液都较缓慢。其性质类似溶解性纤维,具有一定的瘦身效果,近年来开始受到爱美人士的青睐。

淀粉是葡萄糖的高聚体,水解到二糖阶段为麦芽糖,完全水解后得到葡萄糖。淀粉有直链淀粉和支链淀粉两类。直链淀粉含几百个葡萄糖单元,支链淀粉含几千个葡萄糖单元。在天然淀粉中直链的约占22%~26%,它是可溶性的,其余的则为支链淀粉。当用碘溶液进行检测时,直链淀粉液呈显蓝色,而支链淀粉与碘接触时则变为红棕色。淀粉是植物体中贮存的养分,存在于种子和块茎中,各类植物中的淀粉含量都较高,大米中含淀粉62%~86%,麦子中含淀粉57%~75%,玉蜀黍中含淀粉65%~72%,马铃薯中则含淀粉12%~14%。淀粉是食物的重要组成部分,咀嚼米饭等时感到有些甜味,这是因为唾液中的淀粉酶将淀粉水解成了二糖--麦芽糖。食物进入胃肠后,还能被胰脏分泌出来的唾液淀粉酶水解,形成的葡萄糖被小肠壁吸收,成为人体组织的营养物。支链淀粉部分水解可产生称为糊精的混合物。糊精主要用作食品添加剂、胶水、浆糊,并用于纸张和纺织品的制造(精整)等。淀粉粒可分为单粒淀粉、复粒淀粉和半复粒淀粉。问题补充:淀粉不能被吸收并且能够进入结肠具有重要的生理功效。很早以前,耦合淀粉就被当作食品添加剂使用,尤其使用在需要高度稳定粘度的食品中,因为这种淀粉有着使用量少并且安全性高的特点。而且,这种淀粉也可被当作医学成分使用,比如填充物,包扎物,分解质和增稠物质。目前研究发现,这种特殊的消化特点被大量使用于控制药物载体的稀释上面。在许多领域中这种淀粉消化特点是很重要的,但是淀粉在生物体外的因退化而改变的数据却很少出现在文献中。众所周知,碳水化合物又称多糖,人们食用碳水化合物后要在体内被胃酸及酶消化分解为单糖——葡萄糖以后才能吸收并进入血液,抗性淀粉由于消化吸收慢,食用后不致使血糖升高过快,也就是可以调节血糖水平,因此成为一种功能性淀粉,特别适宜糖尿病患者食用,食用抗性淀粉后不容易饥饿,有助于糖尿病人维持正常的血糖,减少饥饿感(特别是午夜)。抗性淀粉存在于某些天然食品中,如马铃薯、香蕉、大米等都含有抗性淀粉,特别是高直链淀粉的玉米淀粉含抗性淀粉高达60%。还可添加脂肪使淀粉变性以增加抗性淀粉含量,因脂肪可使淀粉分子内部的螺旋结构凝固而趋于稳定,可抵抗酶的侵蚀。答案补充抗性淀粉(resistant starch)又称抗酶解淀粉及难消化淀粉,这种淀粉较其他淀粉难降解,在体内消化缓慢,吸收和进入血液都较缓慢。抗性淀粉本身仍然是淀粉,其化学结构不同于纤维,但其性质类似溶解性纤维.抗性淀粉的定义为:在小肠中不能被酶解,但在人的肠胃道结肠中可以与挥发性脂肪酸起发酵反应的一类淀粉结构。

近日,看到国外一篇报道,一个澳洲小伙,放弃其它食材,专吃土豆一年,体重减轻了117磅,约100斤。同时根据他自己所述:自己的抑郁焦虑症状也得到了缓解。那么土豆真的这么神奇吗?

这个精神小伙名叫 Andrew Flinders Taylor,是一名澳洲的胖子,下定决心后,他就开始了自己的花式土豆之旅。同时,他定期与医生沟通,补充身体所必须的营养素,一年后,Taylor的多项 健康 指标都有改善,胆固醇、血压、血糖都降到了正常水平!关键是他的体重竟然减轻了53kg。

看到这样的新闻,多少会被震惊到,但是成功自有成功的道理,我认为他能这么成功,有以下几个原因。

第一,只吃土豆,加以补充身体必须的其它营养。

没错,每天都吃土豆,我只想说,老兄,你是有多么爱吃土豆,你真的是个人才。

第二,土豆的烹饪方式,或煮或烤,但都不算精加工,并且土豆不沾油,调料也只用甜辣椒或烧烤酱。这种食用方式能够较好的保存土豆中的抗性淀粉,抗性淀粉有很多 健康 益处。(下面会讲)

第三,这样的饮食方式,食欲不会很好,吃的比较少。土豆中的抗性淀粉会让人更有饱腹感,吃的更少。

肥胖是很多疾病的诱因,当他瘦下来,自然很多疾病会得到改善, 健康 指标也会更 健康 。

但是,这种过激的饮食我是不推荐,对于常人来说,也很难做到365天只吃土豆的。而且还需有指导医生进行指导。

不过,值得说明的是,土豆,作为一个重要的蔬菜兼主食,自古就很受大众的喜爱。相比较精加工的米面,它也是有很多 健康 优势的。

其实,土豆减肥法由来已久,很多人都尝试过,单纯只吃土豆,还真的能瘦。

下面,我给大家好好科普一下土豆的优势在哪里?

土豆富含多种营养素

在传统的烹饪食谱中,土豆的出镜率是非常高的,新疆大盘鸡、土豆红烧肉、酸辣土豆丝…口感可面可脆,烹饪起来可蒸可煮可煎,可切丝、块、泥,还能整个啃着吃…

除了我们熟知的三大营养物质,土豆含有许多维生素和矿物质,一个中等烤土豆(173g)中有:

(RDI:每日推荐营养素的摄入量标准)

此外,土豆中还有丰富的 抗氧化剂 ,这些抗氧化剂,可能降低心脏病,糖尿病和某些癌症等慢性疾病的风险。

最重要的是:土豆中抗性淀粉的含量很高,这种淀粉对 健康 的益处几乎是全方位的,当然也有一定的减肥功效。

我们平时食用的大多数碳水化合物都是淀粉。

淀粉是在谷物,土豆和各种食品中发现的葡萄糖的长链。换句话说,一个葡萄糖一个葡萄糖分子串起来就形成了淀粉。

但是,并非我们食用的所有淀粉都能被消化。

有一部分淀粉在经过消化道时,是不能被消化的,换句话说,它抗消化。这种淀粉称为抗性淀粉,其功能类似于可溶性纤维。

人体的许多研究表明,抗性淀粉具有强大的 健康 益处。

这包括改善胰岛素敏感性,降低血糖水平,降低食欲以及各种消化益处。

1) 可以平衡血糖

在饮食中补充抗性淀粉有助于控制超重个体的血糖水平。

一项研究发现,每天食用抗性淀粉六周可改善18名超重成年人的葡萄糖平衡。 葡萄糖平衡是维持正常血糖水平的过程。

根据初步研究,抗性淀粉可以通过多种方式帮助血糖正常化,包括:

2) 可能改善代谢综合症

代谢综合症是增加心脏病,糖尿病和中风风险的一组因素。 这些包括大腰围,低HDL胆固醇,高血压,高甘油三酸酯和血糖水平。

在一项针对20名 健康 成年人的研究中,抗性淀粉减少了食物摄入后释放的胰岛素量,这使其成为治疗代谢综合征的有前途的补充方法。

在代谢综合征患者的饮食中添加抗性淀粉可改善胆固醇,甘油三酸酯水平和胰岛素敏感性。

当添加到标准治疗中时,抗性淀粉降低了19名代谢综合征患者的LDL和总胆固醇水平,同时增加了HDL 。

3) 有益心脏 健康

在一项针对86位个体的双盲研究中,抗性4型淀粉降低了血液中的异常脂肪水平。

血管硬化通常是心脏病的先兆。抗性淀粉潜在地减少了超重个体血管硬化所涉及的危险因素。

在多项动物研究中,抗性淀粉降低了胆固醇和甘油三酸酯的水平。

4) 可以保护肾脏

在饮食中补充抗性淀粉可降低56例肾透析患者的有毒代谢产物(硫酸吲哚酚和对甲酚硫酸盐)水平。

高直链玉米淀粉饮食可以通过降低氧化应激,减少炎症反应和预防大鼠结肠内膜损伤来减缓慢性肾脏病(CKD)。

5) 有益于体重控制

下面我们看看抗性淀粉有益减肥的可能机制

在容易肥胖的大鼠中,饮食抗性淀粉和定期运动可通过减少能量(食物)需求来防止体重增加。

它减少了脂肪的积累和血糖水平,并通过肠道中的发酵增加了脂肪的分解,因此有可能改善体重控制。

抗性淀粉可通过以下方式刺激脂肪燃烧:

减少饭后脂肪堆积并增加脂肪氧化。

通过降低血糖来迫使身体燃烧脂肪。

减少脂肪的产生,同时增加磷脂的产生。

食用抗饮食淀粉会增加食欲降低激素肽YY(PYY),从而促进饱腹感和饱胀感。

一项对20名 健康 成年人的研究发现,在24小时内食用抗性淀粉会显着减少食用的食物量。尽管食物摄入量较低,但食物消耗与受试者的食欲评估之间没有关联。

6) 充当益生元

益生元刺激益生菌在肠道的生长。

通过增加大肠中有益细菌的数量,抗性淀粉可以提供一些 健康 益处,例如改善免疫功能,防止有害细菌的生长以及使能量产生正常化。

7) 增加胃酸度

抗性淀粉的发酵产生短链脂肪酸,从而增加肠道的酸度。

肠道酸度的增加可能会改善营养物质的吸收并抑制有害细菌的生长。

8) 支持肠道功能

短链脂肪酸丁酸酯(抗性淀粉的发酵产物)为结肠细胞提供能量,对促进大肠功能至关重要。 患大肠疾病的风险较低的人群抗性淀粉摄入量和丁酸水平都比较高。

土豆中的抗性淀粉可增加肠中丁酸的浓度,从而有益于肠道菌群。 丁酸盐还可以保护肠壁并减少炎症。

9) 帮助改善腹泻

食用抗性淀粉有助于减少肠道中的有害细菌,从而治疗人类和动物的传染性腹泻。

抗性淀粉增加了短链脂肪酸的浓度,从而改善了5岁以下儿童急性腹泻的治疗。

10) 可能有助于“漏肠”

肠壁屏障受损导致的肠通透性影响免疫功能,使个人处于其他疾病的风险中,例如炎症性肠病,腹腔疾病,自身免疫性肝炎和1型糖尿病[49]。

肠道菌群可将抗性淀粉分解为短链脂肪酸,从而增强结肠内壁:一种保护性屏障,可使营养物质进入结肠,同时将有害病原体拒之门外。

了解完抗性淀粉的这么多好处,是不是明白这个澳洲小伙一年前吃土豆也没事了吧,毕竟土豆的抗性淀粉含量是真的很高。

就烹饪方式而言:

不建议:油炸、焖

代表性食物:薯条、薯片

这样的油炸食品会产生很多 健康 有害的物质

建议:煮、烤和蒸

代表性食物:烤土豆

参考食谱:

烤土豆片

土豆切成薄片,加上一些特级初榨橄榄油,然后放入烤箱,出炉后加入一些海盐,注意土豆皮可以吃,土豆皮含有丰富的维生素和矿物质。

蒸土豆

整个放入锅里蒸,带皮蒸的蒸土豆营养损失最少,维生素C保留得更多,是最营养的吃法。

土豆泥

土豆洗净,切成薄薄的颗粒,包上厨房用纸,放入微波炉(塑料制品不能进微波炉)10分钟,用勺子碾成泥,加入无糖酸奶或海盐搅拌后,即可使用。

所以,建议土豆的烹饪方式,蒸煮烤,不煎土豆的烹饪方式,油炸,油焖。

不能吃的土豆

土豆暴露在光照下,或受伤时,为了避免细菌、真菌和昆虫的损害,会产生大量毒素,来保护“自身安全”。

遗憾的是,这些毒素也让土豆错过了变成美味的机会,因为人食用了,很有可能中毒。

这种毒素就是 ,又名茄碱、龙葵毒素、马铃薯毒素,毒性很强,轻微的会引起胃部灼痛、呕吐、腹泻,严重的会导致死亡,中毒一般在进食后8至12小时发作,但在极端高剂量摄入的情况下,可能在10分钟内就出现症状。

所以,长牙、变绿的土豆真的不能吃!

#了不起的医生##抗性淀粉##减肥#

淀粉酶提取工艺研究论文

淀粉酶是蛋白质,可以根据其特点选择适当的蛋白质提取纯化方法! 选择材料及预处理 以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、碱、高温,剧烈机械作用而导致所提物质生物活性的丧失。蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。 微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:(1)得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体含有的生化物质,如蛋白质、核酸和胞内酶等。植物材料必须经过去壳,脱脂并注意植物品种和生长发育状况不同,其中所含生物大分子的量变化很大,另外与季节性关系密切。对动物组织,必须选择有效成份含量丰富的脏器组织为原材料,先进行绞碎、脱脂等处理。另外,对预处理好的材料,若不立即进行实验,应冷冻保存,对于易分解的生物大分子应选用新鲜材料制备。蛋白质的分离纯化一,蛋白质(包括酶)的提取 大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。(一)水溶液提取法 稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。下面着重讨论提取液的pH值和盐浓度的选择。1、pH值 蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。2、盐浓度 稀浓度可促进蛋白质的溶,称为盐溶作用。同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以摩尔。升浓度为宜。缓冲液常采用磷酸盐和碳酸盐等渗盐溶液。(二)有机溶剂提取法 一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。但必须在低温下操作。丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为)不会引起酶的变性失活。另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。二、蛋白质的分离纯化蛋白质的分离纯化方法很多,主要有:(一)根据蛋白质溶解度不同的分离方法1、蛋白质的盐析 中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。 影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在。 蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。 其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为,即767克/升;0度时饱和溶解度为,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH常在之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。 蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。2、等电点沉淀法 蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用。3、低温有机溶剂沉淀法 用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行。(二)根据蛋白质分子大小的差别的分离方法1、透析与超滤 透析法是利用半透膜将分子大小不同的蛋白质分开。 超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质。2、凝胶过滤法 也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一。柱中最常用的填充材料是葡萄糖凝胶(Sephadex ged)和琼脂糖凝胶(agarose gel)。(三)根据蛋白质带电性质进行分离蛋白质在不同pH环境中带电性质和电荷数量不同,可将其分开。1、电泳法 各种蛋白质在同一pH条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开。值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH位置就停止,此法可用于分析和制备各种蛋白质。2、离子交换层析法 离子交换剂有阳离子交换剂(如:羧甲基纤维素;CM-纤维素)和阴离子交换剂(二乙氨基乙基纤维素;DEAE?FONT FACE="宋体" LANG="ZH-CN">纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来。(详见层析技术章)(四)根据配体特异性的分离方法-亲和色谱法 亲和层析法(aflinity chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合。其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用。细胞的破碎1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。对超声波敏感和核酸应慎用。4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好。 无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酥活力,但不是全部,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。浓缩、干燥及保存一、样品的浓缩 生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。常用的浓缩方法的:1、减压加温蒸发浓缩 通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。2、空气流动蒸发浓缩 空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩。3、冰冻法 生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的。如蛋白质和酶的盐溶液用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液。4、吸收法 通过吸收剂直接收除去溶液中溶液分子使之浓缩。所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开。常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积。5、超滤法 超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点。应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用。另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响。Diaflo 超滤膜的分子量截留值:膜名称 分子量截留值 孔的大的平均直径 XM-300 300,000 140 XM-200 100,000 55 XM-50 50,000 30 PM-30 30,000 22 UM-20 20,000 18 PM-10 10,000 15 UM-2 1,000 12 UM05 500 10用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动。然后将纤维管浸入待透析的蛋白质溶液中。当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能。这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍。二、干燥 生物大分子制备得到产品,为防止变质,易于保存,常需要干燥处理,最常用的方法是冷冻干燥和真空干燥。真空干燥适用于不耐高温,易于氧化物质的干燥和保存,整个装置包括干燥器、冷凝器及真空干燥原理外,同时增加了温度因素。在相同压力下,水蒸汽压随温度下降而下降,故在低温低压下,冰很易升华为气体。操作时一般先将待干燥的液体冷冻到冰点以下使之变成固体,然后在低温低压下将溶剂变成气体而除去。此法干后的产品具有疏松、溶解度好、保持天然结构等优点,适用于各类生物大分子的干燥保存。三、贮存 生物大分子的稳定性与保存方法的很大关系。干燥的制品一般比较稳定,在低温情况下其活性可在数日甚至数年无明显变化,贮藏要求简单,只要将干燥的样品置于干燥器内(内装有干燥剂)密封,保持0-4度冰箱即可,液态贮藏时应注意以下几点。1、样品不能太稀,必须浓缩到一定浓度才能封装贮藏,样品太稀易使生物大分子变性。2、一般需加入防腐剂和稳定剂,常用的防腐剂有甲苯、苯甲酸、氯仿、百里酚等。蛋白质和酶常用的稳定剂有硫酸铵糊、蔗糖、甘油等,如酶也可加入底物和辅酶以提高其稳定性。此外,钙、锌、硼酸等溶液对某些酶也有一定保护作用。核酸大分子一般保存在氯化钠或柠檬酸钠的标准缓冲液中。3、贮藏温度要求低,大多数在0度左右冰箱保存,有的则要求更低,应视不同物质而定。

食品添加剂糖化酶制剂的发酵制取技术 作者:| 来源:中国食品科技网| 编辑:王治华|2006-6-23| 点击:242 本标准适用于由发酵法生产,经提纯制取,供食品生产作添加剂用的糖化酶制剂。 1、技术要求 外观:固体时,粉状,无结块。液体时,黄褐色,允许有少量凝集物。 项目和指标表1 项目 指标 固体 30000,40000,20000,30000 液体 50000,60000,40000,50000 酶活力,u/g(ml)80000,100000,60000,80000 150000,200000, 水分,%不小于 细度(通过40目铜网筛)%不小于80 酶活力保存率(室温,半年),%不小于80 重金属(以pb计),%不超过 铅,%不超过 砷(以as计),%不超过 黄曲霉毒素b1,%不超过 大肠菌群,个/100g(ml)不超过30 沙门氏菌不得检出 2、试验方法 外观:用目视判定。 酶活力测定 试剂 乙酸-乙酸钠缓冲溶液():称取乙酸钠(ch3coona·3h2o),吸取冰乙酸,用蒸馏水溶解定容至1000ml,上述缓冲溶液应以酸度计校正ph值。 硫代硫酸钠溶液:按gb601《化学试剂标准溶液制备方法》中执行。 碘液:按gb601《化学试剂标准溶液制备方法》中执行。 氢氧化钠溶液:按gb601《化学试剂标准溶液制备方法》中执行。 硫酸溶液:量取分析纯浓硫酸(比重)缓缓加入适量蒸馏水中,冷却后用蒸馏水定容至100ml,摇匀。 %氢氧化钠溶液:称取20g分析纯氢氧化钠,用蒸馏水溶解定容至100ml。 %可溶性淀粉溶液:称取可溶性淀粉,然后用少量蒸馏水调匀,徐徐倾入已沸的蒸馏水中,煮沸至透明,冷却,用蒸馏水定容至100ml,此溶液需当天配制。注:可溶性淀粉应符合hg3-3095质量标准要求。 测定程序 待测酶液的制备:称取酶粉(或酶液),倒入50ml烧杯中,用少量的乙酸-乙酸钠缓冲溶液()溶解,并用玻璃棒捣碎,将上层清液小心倾入适当的容量瓶中,沉渣再加入少量上述缓冲溶液,如此反复捣研3~4次,最后全部移入容量瓶中,用缓冲溶液定容至刻度,摇匀,通过4层纱布过滤。再用滤纸滤清,滤液供测定用。浓缩酶液可直接吸取一定量于容量瓶中,用缓冲溶液稀释定容至刻度。注:制备酶液时,酶液浓度最好控制在消耗硫代硫酸钠(空白-样品)的差数为3~6ml左右(以每毫升酶活力约50~90单位为宜)。 测定:于甲、乙两支50ml比色管中,分别加入2%可溶性淀粉溶液25ml,乙酸-乙酸钠缓冲溶液()5ml,摇匀。于40±℃的恒温水浴中预热5~10min。在甲管中加入酶制备液(酶的总活力约110~170单位)立即记时,摇匀。在此温度下准确反应1h后,立即在甲、乙两管各加20%氢氧化钠溶液,摇匀,将两管取出迅速用水冷却,并于乙管中补加酶制备液(作为对照)取两管中上述反应液各5ml放入碘量瓶中,准确加入碘液10ml,再加氢氧化钠溶液15ml(边加边摇晃),放置暗处15min,加入2n硫酸2ml,用硫代硫酸钠溶液滴定至无色为终点。 计算1g酶粉或1ml酶液在40℃、的条件下,1h分解可溶性淀粉产生1mg葡萄糖的酶量为一个酶活力单位。 x=(a-b)×n××━━×━━×n………………(1) 25 式中:x--酶活力单位,μ/g(ml);a--空白试验消耗硫代硫酸钠溶液的毫升数;b--样品消耗硫代硫酸钠溶液的毫升数;n--硫代硫酸钠溶液的当量浓度;n--稀释倍数;硫代硫酸钠相当葡萄糖毫克数;1/2--折算成1ml酶液的量;反应液总体积,毫升数;5--吸取反应液的毫升数。为计算方便,可按稀释倍数参考表计算,系数乘以滴定空白和样品所消耗硫代硫酸钠溶液的差值(a-b)为酶活力单位。稀释倍数参考表2。 表2 稀释倍数参考表 稀释倍数 系数 稀释倍数 系数 原数 35 2 29 40 580 5 45 1014550725 15 100 1450 20 25 250 3625 30 435 水分 测定程序于已知恒重的40mm×25mm称量皿中,称取酶粉约,在105~110℃恒温干燥箱内烘2h,移至干燥器中冷却,称重,再在干燥箱内烘干,直至恒重。 计算 w1-w2 x1=━━━━×100………………………………………(2) w1-w 式中:x1--样品中水分的含量,%;w--称量皿质量,g;w1--烘干前皿加样品质量,g;w2--烘干后皿加样品质量,g。 细度 测定程序称取100g酶粉用40目标准分样筛(铜网)筛分,称其未通过的酶粉质量。 计算 m-m x2=━━━━×100………………………………………(3) m 式中:x2--酶粉样品细度,%;m--原酶粉质量,g;m--筛后留存酶粉质量,g。 酶活力保存率 e1 x3=━━━━×100………………………………………(4) e 式中:x3--酶活力保存率,%;e--原酶粉(液)活力;e1--检测酶活力。 重金属 试剂 硝酸:分析纯。 硫酸:分析纯。 盐酸:分析纯。 6n盐酸:量取500ml盐酸,用蒸馏水稀释至1000ml。 1n盐酸:量取83ml盐酸,用蒸馏水稀释至1000ml。 氨水:分析纯。 5n氨水:量取333ml氨水,用蒸馏水稀释至1000ml。 1n氨水:量取66ml氨水,用蒸馏水稀释至1000ml。 的乙酸盐缓冲液:称取乙酸铵溶于25ml蒸馏水中,加6n盐酸45ml,用稀盐酸或稀氨水调节ph至,用蒸馏水稀释至100ml。 %酚酞指示液:按gb603配制。 饱和硫化氢水:按gb603配制(此溶液于使用前制备)。 铅标准溶液(每毫升含铅):按gb602配制,临用前用蒸馏水稀释10倍。 测定程序 样品处理称取样品置于250ml凯氏烧瓶或三角烧瓶中,加10~15ml硝酸浸润样品放置片刻(或过夜)后,缓缓加热,待作用缓和后稍冷,沿瓶壁加入5ml硫酸再缓缓加热,至瓶中溶液开始变成棕色,不断滴加硝酸(如有必要可滴加些高氯酸)至有机质分解完全,继续加热,至生成大量的二氧化硫白色烟雾。最后溶液应呈无色或微带黄色。冷却后将溶液移入50ml容量瓶中,用水洗涤三角烧瓶,将洗液并入容量瓶中,加蒸馏水至刻度,混匀,每10ml该溶液相当于1g样品。取同样重的硝酸、硫酸按上述方法作试剂空白试验。 样品测定 溶液a:吸取含铅标准液1ml于50ml纳氏比色管中,加水至25ml混匀,加1滴1%酚酞指示液;用稀盐酸或稀氨水调节ph至中性(酚酞红色褪去)。加入的乙酸盐缓冲液5ml,用蒸馏水稀释至40ml,混匀备用。 溶液b:取一支与溶液a所配套的纳氏比色管,加入20ml样品液,加蒸馏水至25ml混匀,加1滴1%酚酞指示液,用稀盐酸或稀氨水调节ph至中性(酚酞红色褪去),加入的乙酸盐缓冲液5ml,用蒸馏水稀释至40ml,混匀备用。 溶液c:取一支与溶液a、b所配套的纳氏比色管,加入与溶液b相同量的样品液,再加入与溶液a相同量的铅标准液,加蒸馏水至25ml,混匀,加1滴1%酚酞指示液,用稀盐酸或稀氨水调节ph至中性(酚酞红色刚褪去),加入的乙酸盐缓冲液5ml,用蒸馏水稀释至40ml,混匀备用。 向各管中加入10ml新鲜制备的硫化氢饱和液,混匀,放置10min后在白色背景下观察,溶液b的色度不得深于溶液a的色度,溶液c的色度应与溶液a的色度相当或深于溶液a的色度。 铅按《食品中铅的测定方法》中的双硫腙单色法执行。样品处理采用硝酸-硫酸法。 砷按《食品中总砷的测定方法》中的银盐法执行。样品处理采用硝酸-硫酸法。 黄曲霉毒素b1按《食品中黄曲霉毒素b1的测定方法》执行。 大肠菌群按《食品卫生微生物学检验大肠菌群测定》执行。 沙门氏菌按《食品卫生微生物学检验沙门氏菌检验》执行。 3检验规则 产品需经生产厂技术部门检验,并签发合格证方可出厂。生产厂以每一生产班次或每一罐进库的量为同一批次的产品。 订货单位若需抽样检验,应从该酶制剂中提取两份,按本标准规定的试验方法进行检验。若有一个样品或一项指标不符合标准的要求,应与生产厂协商。再取一倍量的同批样品共同进行复验,如仍不合格时,则全批产品作为不合格品,退交生产厂处理。若产品经复验合格,订货方应承担试验费用。如不合格,应由生产厂家承担试验费用。 4标志、包装、运输、贮存 酶制剂的外包装箱,除注明品名、生产厂名、规格、注册商标外,还应注明食品添加剂。箱里并应附有产品检验合格证,合格证上印有品名、批号、数量、规格、生产日期、检验员等。 内包装为食品用塑料袋,包装分为2kg、3kg,应印有注册商标、产品名称、规格、重量、生产厂名。 本品含有生物活性物质,对光线、温度、湿度易引起失活。在运输途中应避免日光曝晒和雨淋。贮存仓库应保持清洁、阴凉、干燥、通风。 附加说明: 本标准由中华人民共和国轻工业部、卫生部提出。 本标准由轻工业部食品发酵工业科学研究所、卫生部食品卫生监督检验所归口。 本标准由无锡酶制剂厂、轻工业部食品发酵工业科学研究所、天津市卫生防病中心、无锡市卫生防疫站负责起草。 表面上看,糖化酶生产的发酵技术,后提取工艺及设备等较其它发酵制品简单,再加上我国糖化酶用量大,生产糖化酶设备投资 ... 食品袅或工业袅) 包装(食品袅) (工业级) 匣1 冀化蘸成品制备流翟五、结论1.采用正交试验法进行摇瓶发酵试验,确定了最佳摇精制液体糖化酶的开发研制*曾 辉 何新民 张新武 刘仲敏摘 要 根据高转化率糖化酶发酵成熟醪的特性,对生产液体酶的絮凝剂和絮凝方法进行了筛选研究,形成了一套独特且适用于工业化生产的絮凝工艺。采用先进的板框预涂工艺和超滤膜浓缩分离技术,高效回收了产品,使单罐回收率达到80%,综合平均回收率达75%以上,比传统盐析工艺平均提高7%。关键词 糖化酶 絮凝 回收率 通常,在发酵行业中人们往往注重于提高菌种发酵活力而忽视提高产品的回收率,其结果是丰产不丰收。本研究采用独特的絮凝工艺,以板框预涂、超滤膜浓缩法生产精制液体糖化酶,提高了产品质量档次(由工业级跨入食品级),减少了滤液对环境的污染,比传统盐析工艺回收率平均提高7%,综合平均回收率达到75%以上。产品各项技术指标完全符合工业用糖化酶制剂优等品标准,3个月酶活力保存率大于95%。1 材料与设备 (1)絮疑剂:APAM、苯甲酸钠、硅藻土、硫酸锌、黄血盐等。 (2)防腐剂:醋酸钙、青霉素、山梨酸钾、苯甲酸钠等。 (3)絮凝罐:V=20 m3,转速:50~70 r/min。 (4)聚丙烯板框压滤机:60 m2。 (5)滤布洗涤机。 (6)预涂罐:V=3 m3,转速:80 r/min。 (7)进口UF809型卷式膜超滤机。 (8)贮罐:V=20 m3。 (9)成品处理罐:V=3 m3,转速:50 r/min。2 精制浓缩液体糖化酶提取工艺研究 工艺路线的确定 确定本工艺的核心是选择浓缩方法和确定絮凝工艺。目前国内同类产品采用的浓缩方法有2种,一种为依靠热源来蒸发产品中的水分;另一种为利用渗透膜超滤除去产品中的水分。比较上述2种方法,前者设备投资大、耗能多;而后者投资少、耗能低,且操作简单、清洗方便、维修及更换成本低,产品收率高。因此,我们选择了先进的渗透膜超滤浓缩方法。絮凝工艺是提取工艺中最关键的一步,直接决定板框过滤等工序的工作与产品的质量。近年来,对絮凝工艺的研究都集中在絮凝剂的选取上,我们根据实际情况选取了几乎不含无机金属离子的絮凝剂和高效的过滤方法。 工艺流程酶发酵液 → 絮凝 → 板框压滤 → 滤液 ↓ ↓ 滤饼 超滤浓缩 ↓ ↓ 干燥后作填充剂或饲料 防腐和标准化处理 ↓ 成品 酶发酵液的质量 酶发酵液的质量直接决定产品的质量和收率。我们对发酵液质量制订的指标见表1。表1 酶发酵液质量指标项目 镜检情况 酶活力(u/ml) pH DE值 指标 镜检正常无杂菌 >×104 ~ <10 对于个别批次发酵液达不到上述指标要求的,均改为生产固体粉剂。 絮凝工艺的研究 精制浓缩液体糖化酶的生产过程中,絮凝工艺是最关键的一步。如果絮凝效果不好,将导致处理时间长,增加染菌的可能性。 采用絮凝工艺对发酵液进行预处理可除去发酵液中的菌体和其它不溶性粒子,从而大大改善了发酵液的过滤性,提高了澄清度。对于絮凝的作用机理有如下解释: (1)絮凝剂中和了悬浮粒子表面上的电荷(菌体细胞表面上亦存在着羧基和氨基,故带有电荷),最终导致了这些粒子的絮凝。 (2)絮凝剂的包埋或吸附作用,把菌体及其它不溶性粒子机械地吸附并包埋在其中。 絮凝小试对比试验 每次取100 ml样品按下述絮凝方法进行絮凝,然后用漏斗内衬滤纸进行常压过滤。 方法1:取原样直接用滤纸过滤。 方法2:加水1/3、麸皮1%、硅藻土2%。 方法3:加水1/3、APAM适量。 方法4:加水30%~40%、加膨润土、硅藻土、苯甲酸钠、APAM适量。 方法5:加水1/3、木屑1%、依次加入适量硫酸锌、黄血盐、APAM。其结果见表2。 从表2可知,方法4、5为最理想的絮凝方法,其滤液清澈透亮,滤速快,滤饼水分少,可应用于大规模生产。方法4更符合食品卫生标准。方法1、2、3存在不同程度的问题,应淘汰。表2 絮凝方法小试结果方法 滤速(s/10滴) 滤液颜色 滤液亮度 滤饼状况 结果分析 1 40 深红棕色 透 亮 滤饼未挤前不分离,成糊状。 难过滤型,此方法不采纳。 2 14 浅黄色 亮度不够 滤饼未挤前成疏松状,分离好。用纱布包滤饼进行挤压,饼成块状,易挤干,水分少。 易过滤型, 此法加快滤速后可采纳。 3 8 浅黄色清液 透 亮 未挤前滤纸上无糊状,外观分离程度不如方法2。用纱布包滤饼进行挤压,用力大,水分多,饼成软团状。 过滤效果好,但饼难挤干,不疏松,饼水分大。 4 6 浅黄色清液 透 亮 滤饼未挤前成疏松状,分离好。用纱布包滤饼进行挤压,饼成块状,易挤干,水分少。 较好的一种过滤方法,应采纳。 5 7 浅黄色清液 清澈透亮 同 4较好的一种过滤方法,应采纳。 工业化生产 在小试基础上,我们又采用4种方法对4批次发酵液进行了工业化絮凝过滤处理 (按6m3发酵液计算加量)。 方法1:发酵液不经任何处理,直接过滤。 方法2: 加入1%的木屑和2%的硅藻土后进行过滤。 方法3: 加入1/3的纯净水,1%的木屑,依次加入适量的硫酸锌 、黄血盐、APAM后进行过滤。 方法4: 加入1/3的纯净水,1%的硅藻土,适量膨润土、苯甲酸钠、APAM。加入絮凝剂后搅拌30 min(转速50~80 r/min)后进行过滤。其结果见表3。 从表3可以看出,方法1、方法2处理时间长,滤液也没有后两种方法清亮,而且滤饼含水量高。方法3、方法4的处理效果基本相同,但考虑到方法3的滤液由于含有黄血盐等表3 絮凝方法工业化试验结果项目 方法19602018批 方法29602007批 方法39603001批 方法49602025批 放罐酶活力(u/ml) 28 466 30 428 29 214 29 018 絮凝后直接观察 稀、稍粘 稀、有粗颗粒 稀、有明显絮状物 同方法3 过滤液时间(h) 22 16 6 5 滤液酶活力(u/ml) 22 772 23 646 24 540 24 566 滤饼酶活力(u/g) 7 759 6 432 5 648 5 489 滤饼水分(%) 62 58 53 52 滤液颜色 棕红色、较亮 棕红色、亮 浅棕红色、亮 浅棕红透亮 得滤液体积(m3) 得成品体积(m3) 成品酶活力(u/ml) 104 170 106 437 105 448 104 766 成品感官鉴别 褐色、粘度大 棕色、稍粘 棕色、稍粘 棕色、稍粘 化合物,可能对成品质量有影响,因而我们选用方法4进行生产。 在絮凝处理的试验研究和工艺操作中,我们的经验是: (1)絮凝剂的使用效果与多种因素有关,其中最重要的是絮凝剂的浓度,搅拌转速和搅拌时间。 (2)絮凝剂的添加量从零开始增加时,被絮凝的悬浮粒子的量相应增加,但超过一定浓度后,已絮凝的粒子又发生分散。因此,要通过试验确定絮凝剂的最佳添加量。 (3)添加的絮凝剂与悬浮液中的粒子接触是发生絮凝的前提条件,因此需要进行搅拌。但是,生成的絮凝物是很脆弱的,过分的搅拌会使絮状物破碎倾向大于生成倾向,因此,又必须控制搅拌转速和时间。我们根据实际生产情况,采用了搅拌30 min,转速50~80 r/min的操作,取得了良好的絮凝结果。 板框过滤工序的工艺操作 液体酶的生产,需要的是滤液,因此,滤液的清浊直接影响液体酶的品质及超滤设备的使用。开始进料时,由于滤布比较干净,应靠罐内的压差自然进料。如果一开始就加压进料,会造成滤液的浑浊。待一段时间,当滤液很清,且滤速恒定时,缓缓加压进料。在此特别强调,板框的接收槽的放液口要有一个使浑浊液重回絮凝罐的装置,一旦发现滤液浑浊,便能及时打回。每批滤完后,要把滤布洗净,安放整齐,以待下次再用。 板框过滤出的滤饼,各厂家应根据实际情况进行处理。我们厂由于还生产固体酶,在其生产过程中,需要一部分填充料进行标准化处理,因此,我们将滤饼烘干处理后做填料。烘干物还有2万余单位的酶活力,这样处理比较理想。 超滤浓缩工艺的研究 超滤是加压膜过滤方法的一种,其工作原理是在一定压力下,把大溶质分子阻留在膜的一侧(留在原来溶液中);而小溶质分子透过至膜的另一侧,从而达到分离纯化、浓缩产物的目的。超滤法适用于生物大分子发酵产品(如糖化酶、α-淀粉酶)等的提取纯化和浓缩。该工艺具有成本低、操作方便、条件温和、较好地保持酶活力、产品回收率高等优点。 我们选用了进口UF809型卷式超滤膜,并根据产品质量和工艺要求,采用了每组3支、3组并联的形式安装超滤机。超滤器的进口压力为4××104 Pa左右,出口压力2~4××104 Pa左右,进出料口之压差以1××104 Pa左右为宜。操作温度在40℃以下。酶液的浓缩倍数根据需要而定,一般在4~5倍左右。运行过程中定时测定超滤液的流量及酶活力,以确认超滤器运行是否正常。超滤浓缩结果见表4。表4 超滤浓缩统计结果批号 发酵液酶活力(u/ml) 取发酵液体积(m3) 滤液体积(m3) 超滤时间(h) 超 滤 浓 缩 结 果 对发酵液收率(%) 成品酶活力(u/ml) 成品体积(m3) 浓缩倍数(v/v) 浓缩倍数(u/u) 酶活力收率(%) 9507-01 29 871 8 120 301 98 9507-02 27 232 8 110 380 97 9503-04 28 431 8 115 182 97 9508-10 30 781 8 123 124 98 9509-07 31 232 8 128 429 99 9509-09 30 231 8 111 718 98 从表4可看出,每处理8t左右清液所需时间基本在 h左右,浓缩酶总收率在75%以上。 精制浓缩液体酶的保存实验 将浓缩酶(10万u/ml)加入适量的防腐剂,于常温保存3个月后,测定酶活残存率,其结果见表5。表5 精制浓缩液体酶的保存实验添加防腐剂量(%) 残存酶活力(%) 不 加 一星期后出现霉变、有恶臭味 醋酸钙、青霉素180万单位/m3 97 苯甲酸钠、青霉素180万单位/m3 96 苯甲酸钠、山梨酸钾 98 由表5可知,3个月酶活力保存率均高于95%。由山梨酸钾和苯甲酸钠组成的防腐剂,酶活残存率为98%,为上述3种防腐剂中最理想的,适合工业化生产。 作者单位:曾 辉 何新民 张新武 三门峡发酵厂,卢氏,472200 刘仲敏 河南省科学院生物研究所,郑州,450008参考文献 [1] 张树政主编.酶制剂工业.北京:科学出版社,1984 [2] 曹友声、刘仲敏主编.现代工业微生物学.长沙:湖南科学技术出版社,1998

真菌α—淀粉酶是由曲霉属微生物发酵产生的一种α—淀粉酶。与细菌α—淀粉酶不同的是,真菌α—淀粉酶的最适作用温度为55℃左右,超过60℃开始失活;其水解淀粉的产物主要是高含量的麦芽糖和一些低聚糖及少量的葡萄糖。而细菌α—淀粉酶最适作用温度高(中温α—淀粉酶70~80℃,耐高温α—淀粉酶为95~105℃),水解淀粉的主要产物是糊精。因此,细菌α—淀粉酶只能用于发酵工业,而真菌α—淀粉酶则广泛地应用于淀粉糖浆、低聚糖、啤酒、烘焙食品、面制品等的生产,具有十分广阔的市场前景。目前,世界上仅有诺维信、丹尼斯克等少数几家大型酶制剂公司拥有真菌α—淀粉酶生产技术与产品,而国内真菌α—淀粉酶的生产还是空白。近年来,浙江、江苏等地的几家高校相继开展了真菌α—淀粉酶的研究工作,但仍处于实验室阶段。国内报道的真菌α—淀粉酶的发酵单位仅为200~600u/g,而世界上处于领先地位的几家酶制剂公司真菌α—淀粉酶的发酵单位已达到1500~2000u/g。对于我国来讲,一方面食品与发酵工业的发展对真菌α—淀粉酶的需求量不断增加;另一方面,由于我国目前不能自主生产真菌α—淀粉酶,每年都要大量进口,且价格昂贵,其市场售价一般在350~400元/Kg(9000u/g)。因此,研制开发真菌α—淀粉酶,尽快实现国产化生产,对于满足市场需求,调整我国酶制剂工业的产业结构,节约外汇支出等都具有十分重要的意义。真菌α—淀粉酶生产菌株诱变选育路线图谱出发菌株~米曲霉2197产酶148u/g↓紫外线突变株~米曲霉ZLA16产酶324u/g↓硫酸二乙酯突变株~米曲霉ZLB35产酶416u/g↓钴60γ—射线突变株~米曲霉ZLC06产酶685u/g↓微波突变株~米曲霉ZLD14产酶788u/g↓亚硝酸突变株~米曲霉ZLE09产酶801u/g↓离子束突变株~米曲霉ZLF13产酶946u/g真菌α—淀粉酶提取工艺流程图水麸曲(粗酶)—→浸提—→压滤—→滤渣—→饲料↓超滤浓缩←—稀酶液↓乙醇沉析↓过滤—→酶泥(饼)↓低温烘干↓标准化—→成品?--------------------------------------耐高温α-淀粉酶的生产工艺,向成熟的发酵液中加入占发酵液重量1%-3%的钙离子保护剂或2%-5%淀粉中的至少一种,在70-90℃的条件下,进行热处理。将制得的纯化的耐高温。-淀粉酶送至压力喷雾塔进行喷雾干燥,制得酶粉,将酶粉调配后,分装即得成品。该耐高温。-淀粉酶呈固体状态,酶活力达2万单位/g以上,具有较高的稳定性,易贮存和运输。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2