更全的杂志信息网

论文检测有检测文献综述吗

发布时间:2024-07-08 15:03:22

论文检测有检测文献综述吗

文献综述部分不查重。

一般而言文献综述是不参与论文查重的,但部分高校考虑到为了加强对学生学术规范的管理,对于文献综述部分也有去除引用文献重复率的部分,重复率一般以20%。因此,学生应当在撰写文献综述之前了解学校关于文献综述是否查重的规定,在撰写文献综述的过程中,应当用脚注的形式明确文献的的来源和引用的作者的观点。

什么是文献综述?

文献综述简称综述,是对某一领域,某一专业或某一方面的课题、问题或研究专题搜集大量相关资料,然后通过阅读、分析、提炼、整理当前课题、问题或研究专题的最新进展、学术见解或建议,对其做出综合性介绍和阐述的一种学术论文。

文献综述是在确定了选题后,在对选题所涉及的研究领域的文献进行广泛阅读和理解的基础上,对该研究领域的研究现状(包括主要学术观点、前人研究成果和研究水平、争论焦点、存在的问题及可能的原因等)、新水平、新动态、新技术和新发现、发展前景等内容进行综合分析、归纳整理和评论,并提出自己的见解和研究思路而写成的一种不同于毕业论文的文体。

文献综述一般是不参与论文的查重,但是很多高校认为,为了加强对学生的要求,提升学术规范管理,文献综述部分也会进行重复率查重。学生写一篇文献综述,我们需要了解学校的要求是否重要。在编写文献综述过程中要注意标明文件的来源和作者的意见。尽量让我们的文献综述标准化。

其次,如果学校明确指出文献综述参与论文查重,我们在写作的时候一定要注意重复率。一般不要超过20%的重复率。尽可能写原创。

综上所述,文献综述查重取决于是否和正文一起提交到论文查系统,而是否把参考文献放到正文要看学校的要求,如果学校不要求查重参考文献,那么重复率就会比较低。

文献综述的相关说明

文献综述简称综述,又称文献回顾,文献分析。是对某一领域,某一专业或某一方面的课题、问题或研究专题搜集大量相关资料,然后通过阅读、分析、归纳、整理当前课题、问题或研究专题的最新进展、学术见解或建议,对其做出综合性介绍和阐述的一种学术论文。

国内的论文,文献综述包括互联网参考文献、外文论文和专著等,文献综述对论文作者的归纳总结能力是一道考验。文献综述不仅仅是一个简单的文献清单,最重要的作用是能够支撑论文作者的观点。

由于文献综述有作者自己的评论分析,因此在撰写时应分清作者的观点和文献的内容,不能篡改文献的内容。引用文献不过多。文献综述的作者引用间接文献的现象时有所见。如果综述作者从他人引用的参考文献转引过来,这些文献在他人引用时是否恰当,有无谬误,综述作者是不知道的,所以最好不要间接转引文献。

以上内容参考:百度百科-文献综述

毕业论文查重会不会查文献综述?据我了解,不论是博士生、研究生的学术论文,还是本科生的毕业论文,论文都是需要进行查重检测的,很多高校在选择论文查重的时候,都会在知网上进行查重。由于专业的不同,撰写论文所需求的文献是不一样的,比如历史相关专业的,就一定要掌握大量的历史文献综述,同时也会写一些历史相关的故事作为论据,而相关论文的文献综述是不是也需要在知网上查重一下呢?如何避免文献综述论文查重率太高?文献综述是指作者在写某篇文章时,对别人写的文章或书籍或网络相关内容进行查看或借鉴,有些文综是国内的,有些是国外的,文献综述则是考查作者对文章进行归纳、分析的能力。作者不仅要对文献综述进行简单的编排和列举,更要通过文献中有关论点或论点的内容来说服读者。文献综述需不需要知网查重,各校对学生的学术要求不相同,因此对学术规范性要求较高的学校会进行文献综述的查重。学生在写论文时,可事先与老师沟通,弄清文综能否免于查重。有些检测是把文献综述中引用的一些观念内容去掉后再进行查重,这样可以有利于降低重复率,因此作者在进行引用写作时必须按照正规的操作,格式要保证正确无误。需要用脚注注明文献出处的小伙伴们,一定要注意标注。学校要求文献综述查重,那么作者也不用担心,只需做好相应的标注,并且不超过规定的字数,就不会出现重复率太高的问题。对于一个部分引用可以用学生自己的观点可以表达的,可以用通俗易懂的文字语言表达,只要少借鉴,用自己的话表达的内容多,就不会鉴定为重复内容。

光电检测综述论文

高分辨率光学显微术在生命科学中的应用【摘要】 提高光学显微镜分辨率的研究主要集中在两个方面进行,一是利用经典方法提高各种条件下的空间分辨率,如用于厚样品研究的SPIM技术,用于快速测量的SHG技术以及用于活细胞研究的MPM技术等。二是将最新的非线性技术与高数值孔径测量技术(如STED和SSIM技术)相结合。生物科学研究离不开超高分辨率显微术的技术支撑,人们迫切需要更新显微术来适应时代发展的要求。近年来研究表明,光学显微镜的分辨率已经成功突破200nm横向分辨率和400nm轴向分辨率的衍射极限。高分辨率乃至超高分辨率光学显微术的发展不仅在于技术本身的进步,而且它将会极大促进生物样品的研究,为亚细胞级和分子水平的研究提供新的手段。【关键词】 光学显微镜;高分辨率;非线性技术;纳米水平在生物学发展的历程中显微镜技术的作用至关重要,尤其是早期显微术领域的某些重要发现,直接促成了细胞生物学及其相关学科的突破性发展。对固定样品和活体样品的生物结构和过程的观察,使得光学显微镜成为绝大多数生命科学研究的必备仪器。随着生命科学的研究由整个物种发展到分子水平,显微镜的空间分辨率及鉴别精微细节的能力已经成为一个非常关键的技术问题。光学显微镜的发展史就是人类不断挑战分辨率极限的历史。在400~760nm的可见光范围内,显微镜的分辨极限大约是光波的半个波长,约为200nm,而最新取得的研究成果所能达到的极限值为20~30nm。本文主要从高分辨率三维显微术和高分辨率表面显微术两个方面,综述高分辨率光学显微镜的各种技术原理以及近年来在突破光的衍射极限方面所取得的研究进展。1 传统光学显微镜的分辨率光学显微镜图像的大小主要取决于光线的波长和显微镜物镜的有限尺寸。类似点源的物体在像空间的亮度分布称为光学系统的点扩散函数(point spread function, PSF)。因为光学系统的特点和发射光的性质决定了光学显微镜不是真正意义上的线性移不变系统,所以PSF通常在垂直于光轴的x-y平面上呈径向对称分布,但沿z光轴方向具有明显的扩展。由Rayleigh判据可知,两点间能够分辨的最小间距大约等于PSF的宽度。根据Rayleigh判据,传统光学显微镜的分辨率极限由以下公式表示[1]:横向分辨率(x-y平面):dx,y=■轴向分辨率(沿z光轴):dz=■可见,光学显微镜分辨率的提高受到光波波长λ和显微镜的数值孔径等因素的制约;PSF越窄,光学成像系统的分辨率就越高。为提高分辨率,可通过以下两个途径:(1)选择更短的波长;(2)为提高数值孔径, 用折射率很高的材料。Rayleigh判据是建立在传播波的假设上的,若能够探测非辐射场,就有可能突破Rayleigh判据关于衍射壁垒的限制。2 高分辨率三维显微术在提高光学显微镜分辨率的研究中,显微镜物镜的像差和色差校正具有非常重要的意义。从一般的透镜组合方式到利用光阑限制非近轴光线,从稳定消色差到复消色差再到超消色差,都明显提高了光学显微镜的成像质量。最近Kam等[2]和Booth等[3]应用自适应光学原理,在显微镜像差校正方面进行了相关研究。自适应光学系统由波前传感器、可变形透镜、计算机、控制硬件和特定的软件组成,用于连续测量显微镜系统的像差并进行自动校正。 一般可将现有的高分辨率三维显微术分为3类:共聚焦与去卷积显微术、干涉成像显微术和非线性显微术。 共聚焦显微术与去卷积显微术 解决厚的生物样品显微成像较为成熟的方法是使用共聚焦显微术(confocal microscopy) [4]和三维去卷积显微术(three-dimensional deconvolution microscopy, 3-DDM) [5],它们都能在无需制备样品物理切片的前提下,仅利用光学切片就获得样品的三维荧光显微图像。共聚焦显微术的主要特点是,通过应用探测针孔去除非共焦平面荧光目标产生的荧光来改善图像反差。共聚焦显微镜的PSF与常规显微镜的PSF呈平方关系,分辨率的改善约为■倍。为获得满意的图像,三维共聚焦技术常需使用高强度的激发光,从而导致染料漂白,对活生物样品产生光毒性。加之结构复杂、价格昂贵,从而使应用在一定程度上受到了限制。3-DDM采用软件方式处理整个光学切片序列,与共聚焦显微镜相比,该技术采用低强度激发光,减少了光漂白和光毒性,适合对活生物样品进行较长时间的研究。利用科学级冷却型CCD传感器同时探测焦平面与邻近离焦平面的光子,具有宽的动态范围和较长的可曝光时间,提高了光学效率和图像信噪比。3-DDM拓展了传统宽场荧光显微镜的应用领域受到生命科学领域的广泛关注[6]。 选择性平面照明显微术 针对较大的活生物样品对光的吸收和散射特性,Huisken[7]等开发了选择性平面照明显微术(selective plane illumination microscopy,SPIM)。与通常需要将样品切割并固定在载玻片上的方式不同,SPIM能在一种近似自然的状态下观察2~3mm的较大活生物样品。SPIM通过柱面透镜和薄型光学窗口形成超薄层光,移动样品获得超薄层照明下切片图像,还可通过可旋转载物台对样品以不同的观察角度扫描成像,从而实现高质量的三维图像重建。因为使用超薄层光,SPIM降低了光线对活生物样品造成的损伤,使完整的样品可继续存活生长,这是目前其他光学显微术无法实现的。SPIM技术的出现为观察较大活样品的瞬间生物现象提供了合适的显微工具,对于发育生物学研究和观察细胞的三维结构具有特别意义。 结构照明技术和干涉成像 当荧光显微镜以高数值孔径的物镜对较厚生物样品成像时,采用光学切片是一种获得高分辨3D数据的理想方法,包括共聚焦显微镜、3D去卷积显微镜和Nipkow 盘显微镜等。1997年由Neil等报道的基于结构照明的显微术,是一种利用常规荧光显微镜实现光学切片的新技术,并可获得与共聚焦显微镜一样的轴向分辨率。干涉成像技术在光学显微镜方面的应用1993年最早由Lanni等提出,随着I5M、HELM和4Pi显微镜技术的应用得到了进一步发展。与常规荧光显微镜所观察的荧光相比,干涉成像技术所记录的发射荧光携带了更高分辨率的信息。(1)结构照明技术:结合了特殊设计的硬件系统与软件系统,硬件包括内含栅格结构的滑板及其控制器,软件实现对硬件系统的控制和图像计算。为产生光学切片,利用CCD采集根据栅格线的不同位置所对应的原始投影图像,通过软件计算,获得不含非在焦平面杂散荧光的清晰图像,同时图像的反差和锐利度得到了明显改善。利用结构照明的光学切片技术,解决了2D和3D荧光成像中获得光学切片的非在焦平面杂散荧光的干扰、费时的重建以及长时间的计算等问题。结构照明技术的光学切片厚度可达,轴向分辨率较常规荧光显微镜提高2倍,3D成像速度较共聚焦显微镜提高3倍。(2)4Pi 显微镜:基于干涉原理的4Pi显微镜是共聚焦/双光子显微镜技术的扩展。4Pi显微镜在标本的前、后方各设置1个具有公共焦点的物镜,通过3种方式获得高分辨率的成像:①样品由两个波前产生的干涉光照明;②探测器探测2个发射波前产生的干涉光;③照明和探测波前均为干涉光。4Pi显微镜利用激光作为共聚焦模式中的照明光源,可以给出小于100nm的空间横向分辨率,轴向分辨率比共聚焦荧光显微镜技术提高4~7倍。利用4Pi显微镜技术,能够实现活细胞的超高分辨率成像。Egner等[8,9]利用多束平行光束和1个双光子装置,观测活细胞体内的线粒体和高尔基体等细胞器的精微细节。Carl[10]首次应用4Pi显微镜对哺乳动物HEK293细胞的细胞膜上离子通道类别进行了测量。研究表明,4Pi显微镜可用于对细胞膜结构纳米级分辨率的形态学研究。(3)成像干涉显微镜(image interference microscopy, I2M):使用2个高数值孔径的物镜以及光束分离器,收集相同焦平面上的荧光图像,并使它们在CCD平面上产生干涉。1996年Gustaffson等用这样的双物镜从两个侧面用非相干光源(如汞灯)照明样品,发明了I3M显微镜技术(incoherent, interference, illumination microscopy, I3M),并将它与I2M联合构成了I5M显微镜技术。测量过程中,通过逐层扫描共聚焦平面的样品获得一系列图像,再对数据适当去卷积,即可得到高分辨率的三维信息。I5M的分辨范围在100nm内。 非线性高分辨率显微术 非线性现象可用于检测极少量的荧光甚至是无标记物的样品。虽有的技术还处在物理实验室阶段,但与现有的三维显微镜技术融合具有极大的发展空间。(1)多光子激发显微术:(multiphoton excitation microscope,MPEM)是一种结合了共聚焦显微镜与多光子激发荧光技术的显微术,不但能够产生样品的高分辨率三维图像,而且基本解决了光漂白和光毒性问题。在多光子激发过程中,吸收几率是非线性的[11]。荧光由同时吸收的两个甚至3个光子产生,荧光强度与激发光强度的平方成比例。对于聚焦光束产生的对角锥形激光分布,只有在标本的中心多光子激发才能进行,具有固有的三维成像能力。通过吸收有害的短波激发能量,明显地降低对周围细胞和组织的损害,这一特点使得MPEM成为厚生物样品成像的有力手段。MPEM轴向分辨率高于共聚焦显微镜和3D去卷积荧光显微镜。(2)受激发射损耗显微术:Westphal[12]最近实现了Hell等在1994年前提出的受激发射损耗(stimulated emission depletion, STED)成像的有关概念。STED成像利用了荧光饱和与激发态荧光受激损耗的非线性关系。STED技术通过2个脉冲激光以确保样品中发射荧光的体积非常小。第1个激光作为激发光激发荧光分子;第2个激光照明样品,其波长可使发光物质的分子被激发后立即返回到基态,焦点光斑上那些受STED光损耗的荧光分子失去发射荧光光子的能力,而剩下的可发射荧光区被限制在小于衍射极限区域内,于是获得了一个小于衍射极限的光点。Hell等已获得了28nm的横向分辨率和33nm的轴向分辨率[12,13],且完全分开相距62nm的2个同类的分子。近来将STED和4Pi显微镜互补性地结合,已获得最低为28nm的轴向分辨率,还首次证明了免疫荧光蛋白图像的轴向分辨率可以达到50nm[14]。(3)饱和结构照明显微术:Heintzmann等[15]提出了与STED概念相反的饱和结构照明显微镜的理论设想,最近由Gustafsson等[16]成功地进行了测试。当光强度增加时,这些体积会变得非常小,小于任何PSF的宽度。使用该技术,已经达到小于50nm的分辨率。(4)二次谐波 (second harmonic generation, SHG)成像利用超快激光脉冲与介质相互作用产生的倍频相干辐射作为图像信号来源。SHG一般为非共振过程,光子在生物样品中只发生非线性散射不被吸收,故不会产生伴随的光化学过程,可减小对生物样品的损伤。SHG成像不需要进行染色,可避免使用染料带来的光毒性。因其对活生物样品无损测量或长时间动态观察显示出独特的应用价值,越来越受到生命科学研究领域的重视[17]。3 表面高分辨率显微术表面高分辨率显微术是指一些不能用于三维测量只适用于表面二维高分辨率测量的显微技术。主要包括近场扫描光学显微术、全内反射荧光显微术、表面等离子共振显微术等。 近场扫描光学显微术 近场扫描学光显微术(near-field scanning optical microscope, NSOM)是一种具有亚波长分辨率的光学显微镜。由于光源与样品的间距接近到纳米水平,因此分辨率由光探针口径和探针与样品之间的间距决定,而与光源的波长无关。NSOM的横向分辨率小于100nm,Lewis[18]则通过控制在一定针尖振动频率上采样,获得了小于10nm的分辨率。NSOM具有非常高的图像信噪比,能够进行每秒100帧图像的快速测量[19],NSOM已经在细胞膜上单个荧光团成像和波谱分析中获得应用。 全内反射荧光显微术 绿色荧光蛋白及其衍生物被发现后,全内反射荧光(total internal reflection fluorescence,TIRF)技术获得了更多的重视和应用。TIRF采用特有的样品光学照明装置可提供高轴向分辨率。当样品附着在离棱镜很近的盖玻片上,伴随着全内反射现象的出现,避免了光对生物样品的直接照明。但因为波动效应,有小部分的能量仍然会穿过玻片与液体介质的界面而照明样品,这些光线的亮度足以在近玻片约100nm的薄层形成1个光的隐失区,并且激发这一浅层内的荧光分子[20]。激发的荧光由物镜获取从而得到接近100nm的高轴向分辨率。TIRF近来与干涉照明技术结合应用在分子马达步态的动力学研究领域, 分辨率达到8nm,时间分辨率达到100μs[21]。 表面等离子共振 表面等离子共振(surface plasmon resonance, SPR) [22]是一种物理光学现象。当入射角以临界角入射到两种不同透明介质的界面时将发生全反射,且反射光强度在各个角度上都应相同,但若在介质表面镀上一层金属薄膜后,由于入射光被耦合入表面等离子体内可引起电子发生共振,从而导致反射光在一定角度内大大减弱,其中使反射光完全消失的角度称为共振角。共振角会随金属薄膜表面流过的液相的折射率而改变,折射率的改变又与结合在金属表面的生物分子质量成正比。表面折射率的细微变化可以通过测量涂层表面折射光线强度的改变而获得。1992年Fagerstan等用于生物特异相互作用分析以来,SPR技术在DNA-DNA生物特异相互作用分析检测、微生物细胞的监测、蛋白质折叠机制的研究,以及细菌毒素对糖脂受体亲和力和特异性的定量分析等方面已获得应用[23]。当SPR信息通过纳米级孔道[24]传递而提供一种卓越的光学性能时,将SPR技术与纳米结构设备相结合,该技术的深入研究将有可能发展出一种全新的成像原理显微镜。【参考文献】[1] 汤乐民,丁 斐.生物科学图像处理与分析[M].北京:科学出版社,2005:205.[2] Kam Z, Hanser B, Gustafsson MGL, et adaptive optics for live three-dimensional biological imaging[J]. Proc Natl Acad Sci USA,2001,98:3790-3795.[3] Booth MJ, Neil MAA, Juskaitis R, et al. Adaptive aberration correction in a confocal microscope[J]. Proc Natl Acad Sci USA,2002, 99:5788-5792.[4] Goldman RD,Spector cell imaging a laboratory manual[J].Gold Spring Harbor Laboratory Press,2005.[5] Monvel JB,Scarfone E,Calvez SL,et deconvolution for three-dimensional deep biological imaging[J].Biophys,2003,85:3991-4001.[6] 李栋栋,郭学彬,瞿安连.以三维荧光反卷

建议去科技论文网去查,你去你们学校图书馆问问,有没有买什么数据库,一般学校都有的。然后输入你的关键字去查都能查到。透光脉动传感器的影响因素研究 论文透光脉动传感器是一种非接触式光电检测装置,通过对混凝过程中形成的絮体颗粒的检测,可以得到反映颗粒聚集状态的检测参数R。其检测不受混凝剂种类以及原水水质等条件的限制,其输出值不受取样管管壁的粘污以及电子元件老化、漂移等不利因素的影响,广泛适用于饮用水处理以及工业废水处理中混凝过程的在线连续检测[1]。以该传感器为核心的透光脉动混凝投药控制系统在高浊度水的混凝剂自动投加控制方面得到了良好的应用[2],近年来开始在常规浊度水的混凝剂自动投加控制方面得到应用[3]。在实际使用中,透光脉动传感器的检测性能受诸多因素的限制。作者在综合实践应用经验和试验结果的基础上对透光脉动传感器的主要影响因素进行了研究,并确定了其最优工作参数。1 透光脉动传感器 透光脉动传感器由水样检测部分和信号处理部分构成,分别完成信号的检测和处理,其工作原理如图1所示。由光源发射一束狭窄的光照射到传感器取样管中流动的悬浮液,透过光由光检测器接收并转换成电信号,然后通过后续的信号处理电路完成对电信号的处理,输出透光脉动检测值。检测值可以通过数码显示器(LED)显示,也可以通过输出端子输出,通过接口与计算机等连接,以实现检测值的在线采集和分析处理。式中:L—取样管管径; A—光柱有效照射面积; Ni—第i种颗粒的数量浓度; Ci—第i种颗粒的散射截面积。 从表达式可以看出,在被检测对象即悬浮液中颗粒的性质一定的情况下,检测值受光源的有效照射面积及取样管管径等因素的影响。在实际应用中,取样流速和传感器信号处理部分的放大倍数等因素也对检测值有明显影响,下面将对这些影响因素进行具体分析。2 影响因素分析 光源的影响 对于透光脉动传感器来说,光源的选择无疑是至关重要的。受透光脉动检测技术的限制,只有当被测水样体积足够小时,颗粒的脉动现象才能被传感器检测到。在实际应用中为保证检测效果,必须尽量减小光柱的有效照射面积,因此应选择发射角小的光源,如激光二极管。 在水处理领域,国际标准化组推荐使用波长为860nm的近红外光和550nm的紫外光作为光源[4]。为了保证传感器的灵敏度,光源发射光的波长应随着被测颗粒尺寸的增大而增大,对于透光脉动传感器来说,它检测的是尺寸较大的絮体颗粒,因此宜选择发射波长为860nm的光源。在860nm处水中的溶解性物质对光的吸收非常弱,这一点对于没有色度补偿的透光脉动传感器来说很重要。 取样流速的影响 由透光脉动检测技术特性可知[5],颗粒的脉动频率与取样流速有关,只有在保证最低取样流速,使得被检测水样能及时得到一定程度的更新的前提下,经过处理后的检测信号才能真实地反映出颗粒的脉动情况,且此时检测值应与取样流速无关。为了验证取样流速对检测值的影响,用内径为3mm的取样管分别对未混凝和混凝的悬浮液进行了连续检测。对于未混凝的悬浮液,当取样流量小于20mL/min时,此时水样流速太小,脉动信号的频率过低,其在信号处理过程中被滤波电路滤掉一部分,从而导致检测值偏小。取样流量在20mL/min左右时检测值波动较大,而当取样流量大于25mL/min时检测值比较稳定,仅当取样流量达到100mL/min时,检测值才略有下降。从试验结果可得,当取样流量在25mL/min以上即取样流速在以上时,检测值与取样流速无关。对于混凝的悬浮液,当取样流量为25~40mL/min即取样流速为时,流量变化对检测值的影响很小,而当取样流量大于50mL/min后,取样管中层流剪切力造成絮体明显破碎,导致检测值随流量的增大有明显的下降趋势,当取样流量降低后,絮体破碎程度降低,检测值则重新升高。 试验结果表明,当取样管管径为3mm时,对于未混凝的悬浮液,取样流速在以上时检测值与取样流速无关;而对于混凝的悬浮液,为了保证检测值能反映絮体颗粒真实的聚集情况,应尽量避免絮体在取样过程中的破碎,将取样流速合理的控制在。 取样管管径的影响絮体在取样管中层流剪切力的作用下会有一定程度的破碎,检测值将受到影响。研究表明,层流的平均剪切率和管径的立方成反比,和流速成正比,因此除通过适当降低取样流速外,还可以通过增大取样管管径的方式来减小剪切率。取样管管径可以根据使用目的以及所检测水样的絮凝情况综合考虑,例如在实验室小试研究中,为了尽量节约试验用水,取样管管径宜选择得小一些,如3mm,在适当控制取样流速的情况下,可以保证絮体基本不破碎。从图4可看出,当取样管管径小至1mm时管中的平均剪切率变得非常大,例如当取样流量仅为时,剪切率即达到约300s-1,这样高的剪切率很容易造成絮体的破碎。因此,在实际应用中往往不是用1mm的取样管来检测颗粒的聚集过程,而是充分利用层流剪切力对悬浮液中颗粒的破碎作用,将其用于研究絮体颗粒的抗剪性能或者颗粒物质在悬浮液中的分散过程等[6]。 在水处理工艺中,混凝效果良好时形成的絮体颗粒粒径较大,絮体强度相对较小,特别是在原水浊度较高、投药量较大的情况下;另外,为了保证在长时间运行时取样管不易被沉积物堵塞,必须保证较大的取样流速,这样都容易导致絮体的破碎。当取样管管径仅为3mm时,颗粒破碎程度明显增大,此时需要选择管径较大的取样管。生产实践表明,当取样管管径增加到5mm左右时,就可以保证水样流过取样管时絮体基本不会破碎,当然,也可以根据原水性质选用直径更大的取样管,如在高浊度水絮凝过程的检测中则建议使用内径为8mm左右的取样管 放大倍数的影响 透光脉动传感器直接检测到的脉动信号很微弱,必须经信号处理部分放大和滤波等处理后才能参与控制。为了研究信号处理部分的放大倍数对检测值的影响,选取放大倍数分别为K1和K2的两个传感器进行了试验研究,在改变水样的絮凝程度时的检测 传感器的放大倍数K1较小,其检测值的变化幅度相当小,仅在之间变化,而2号传感器的放大倍数K2较大,检测值在之间变化,由此可见放大倍数对于检测值的输出具有相当大的影响。把两条曲线绘于不同的坐标下时发现其变化规律非常接近,说明两个传感器的检测性能基本相同,只是由于信号处理部分的放大倍数不同,导致输出值差异很大。对于投药控制系统来说,传感器信号处理部分的放大倍数过高,检测值波动太大,导致系统稳定性差;放大倍数过低,检测值无法准确反映出絮体颗粒的变化情况,控制系统无法调节投药量,因此在控制系统投入运行之前必须调节好放大倍数。一般来说,放大倍数可以根据所检测水样的性质现场调节,其调节可以分为两步:首先将絮凝充分的水样通过传感器,调节放大倍数使得检测值在40%左右,然后较大幅度地改变取样流速或者水样的絮凝程度,使检测值大约在20%~80%之间变化即可。3 结论通过对传感器的工作参数进行优化,可以改善传感器的检测性能,使其在生产中获得更加良好的应用,主要应注意以下几个方面: (1)光源应选择发射光的波长范围窄、发射角小的激光二极管等,波长宜选择860nm; (2)对于混凝的悬浮液,其检测值受取样流速的影响,在生产中应合理控制取样流速; (3)为了减小絮体在取样管中的破碎,应根据悬浮液的絮凝程度合理选用取样管,试验研究中一般选用1~3mm,生产应用中则选用5~8mm; (4)传感器信号处理部分的放大倍数对检测值的输出有很大影响,为了保证控制系统的控制性能,必须合理确定好放大倍数,其值可根据被检测水样的性质在现场调节确定。参考文献:[1] Gregory, J. , Nelson, . A New Optical Method for Flocculation Monitoring[A]. Solid-Liquid Separation[C]. Chichester,Ellis Horwood:.[2] 于水利, 李邦宜, 曹世杰, 李虹, 李圭白. 新型在线光学絮凝检测仪的原理、设计与制造[J]. 传感器技术, 1997, 16(1):18-20.[3] 孙连鹏. 透光率脉动混凝投药控制系统的应用研究及系统优化[D]. 哈尔滨:哈尔滨工业大学, 2001.[4] ISO qulity-Determination of turbidity[S].[5] Gregory, J. Laminar dispersion and the monitoring of flocculation processes[J]. J. of Colloid Interface Sci., 1987,118(2):397-409.[6] 李星, 张正磊, 齐文明. 颗粒分散和破碎过程在线检测研究[J]. 哈尔滨建筑大学学报, 1999,32(6):31-34. [来源:论文天下论文网 ] 论文天下 希望对你有帮助

光电检测技术具有数字化、智能化的特点,而且检测精度高、速度快,是一种非接触式的检测,可以遥测遥控。最重要是寿命长,工作可靠,对被检测物体无形状和大小要求。

论文检测需要检测文献吗

一般不会。

要查重论文,就需要借助专业的论文查重系统进行检测,查重系统主要是将大家上传的论文与系统中的数据库资源进行比对,检测出是哪些内容有重复,从而计算出论文的整体重复率。

一般情况下,论文中的参考文献是不会查重的,论文上传到查重系统之后,查重系统是会自动识别出论文中的参考文献的,不参与正文检测。不会将其计算进重复率,当然,系统自动识别出参考文献的前提是论文的格式都是正确的,可以使论文检测系统能够自动识别出来;如果格式不正确,系统可能自动识别不出,从而导致最后的查重结果不太准确。

所以有些人在查重检测时,发现自己的论文查重报告中参考文献部分被标记成红色,也就是被检测出为重复内容,这就是因为大家提交的论文存在着参考文献设置不规范、脚注非自动插入、参考文献格式错误等问题,这表示论文存在较多不规范的地方,从而导致检测时这些地方出现重复,所以大家一定要按照规范正确的论文格式进行撰写。

一般情况下论文中参考文献是不会查重的,如果检测时参考文献标红,还有一种情况就是选择的论文查重系统不专业正规,论文本身没有问题,是论文查重系统存在着问题,所以要挑选正规的论文查重网站。

可以放的,查重系统会识别参考文献,参考文献不参与查重。其他格式内容也是不参与查重的。论文查重有的内容不查,有的内容查重,具体如下:不查的内容包括:封面,授权声明,原创声明,目录,脚注,尾注,参考文献。查重的内容包括:中英文摘要,绪论,引言,综述,正文,致谢,附录。不查不代表不会查重,如果排版格式不规范,导致系统不能识别查重内容,不该查重的会被查重,这样查重结果就不准了。注意排版格式要规范正确。

论文检测包括论文正文、原创说明、摘要、图标及公式说明、参考文献、附录、实验研究成果,以及各种表格。正文部分是论文中最重要的部分,也是查重要求最高的部分,还是论文查重率和查重比重最高的部分,这部分查重率几乎是论文的查重率,PaperFree在线改重功能实现了一边修改论文,一边论文查重,改哪里检测那里;按实际修改句子收费,不改的内容不收费;享受论文智能降重带来的美妙体验。

论文查重需要把参考文献放进去吗?它可以反映真正的科学依据,表明这篇论文是科学准确的。可以体现严肃科学的态度,让读者知道自己的观点和成果是别人的观点和成果,一目了然。表示对前人科学成果的尊重,明确指出资料来源,使自己和他人的检索变得容易。论文应坚持科学严谨的态度。如果文章有引用前人的劳动成果,应按顺序表现在参考文献部分。

维普论文检测文献综述参与查重吗

论文的文献综述要查重吗介绍如下:

文献综述一般是不参与论文的查重,但是很多高校认为,为了加强对学生的要求,提升学术规范管理,文献综述部分也会进行重复率查重。学生写一篇文献综述,我们需要了解学校的要求是否重要。在编写文献综述过程中要注意标明文件的来源和作者的意见。尽量让我们的文献综述标准化。

其次,如果学校明确指出文献综述参与论文查重,我们在写作的时候一定要注意重复率。一般不要超过20%的重复率。尽可能写原创。

综上所述,文献综述查重取决于是否和正文一起提交到论文查系统,而是否把参考文献放到正文要看学校的要求,如果学校不要求查重参考文献,那么重复率就会比较低。

文献综述的相关说明

文献综述简称综述,又称文献回顾,文献分析。是对某一领域,某一专业或某一方面的课题、问题或研究专题搜集大量相关资料,然后通过阅读、分析、归纳、整理当前课题、问题或研究专题的最新进展、学术见解或建议,对其做出综合性介绍和阐述的一种学术论文。

国内的论文,文献综述包括互联网参考文献、外文论文和专著等,文献综述对论文作者的归纳总结能力是一道考验。文献综述不仅仅是一个简单的文献清单,最重要的作用是能够支撑论文作者的观点。

由于文献综述有作者自己的评论分析,因此在撰写时应分清作者的观点和文献的内容,不能篡改文献的内容。引用文献不过多。文献综述的作者引用间接文献的现象时有所见。如果综述作者从他人引用的参考文献转引过来,这些文献在他人引用时是否恰当,有无谬误,综述作者是不知道的,所以最好不要间接转引文献。

本科毕业生论文综述需要查重吗?我们一般情况下,本科生毕业论文综述,我认为有时候也是需要查重的吧!

每到毕业季,很多同学都会为自己的毕业论文发愁。论文的写作是一个繁琐而复杂的过程,本科毕业论文的写作除了论文的主体部分之外,还包括开题报告、文献综述等很多内容。那么,本科毕业论文的论文综述要查重吗?如何写本科论文的综述呢? 1、论文综述需要查重吗? 大多数情况下,是参与查重。但是需要注意的是,不同的学校对这部分的要求是不一样的。要求严格的学校会规定需要进行审核,所以要看学校的要求。尽管如此,我还是建议大家不要有那种侥幸心理,尽可能原创的写一篇论文综述,在自查的时候把综述的内容考虑进去,这样论文通过检测的机率会高一些。 2、论文综述怎么写? 毕业论文综述的撰写一般要经过选题、资料收集、拟定提纲和成文等几个步骤。毕业论文评论以理论性和综合性为主。综述一般由前言、正文、总结和参考文献组成。但需要注意的是,一篇完整的论文综述也要清晰地反映论文的主题,作者要阐述自己对研究情况的看法,对研究得出的结论提供一些解释,并逻辑流畅地从一个问题转移到另一个问题,一层一层地深入下去,而不是罗列自己读过的文献。

一般文献综述是不参与查重的。

也有部分高校考虑到为了加强对学生学术规范的管理,对于文献综述部分也有去除引用文献重复率的部分。因此,学生应当在撰写文献综述之前了解本校关于文献综述是否查重的规定。

首先,可以肯定的是论文的正文是必须进行查重的,论文除了正文之外的摘要、参考文献会有部分院校要求查重。其次,文献综述通常是不参与论文查重的,不排除个别院校为了加强对学生学术行为的管理而进行查重,所以具体情况看学校的规定。同时,如果文献综述是在论文的正文中,那么毫无疑问是要进行查重的,比如,某高校就规定引言中要有文献综述。

每到毕业之前,论文查重就是毕业生们关心的头等大事,而文献综述由于是在大量阅读文献的基础上,针对某一课题或者问题的研究进行撰写的,有种说法是文献的文献,所以文献综述是否查重十分重要。文献综述简称综述,是对某一领域,某一专业或某一方面的课题,问题或研究专题搜集大量相关资料,通过分析,阅读,整理,提炼当前课题,问题或研究专题的最新进展,学术见解或建议,做出综合性介绍和阐述的一种学术论文。

文献综述需要进行毕业论文检测吗

毕业论文查重会不会查文献综述?据我了解,不论是博士生、研究生的学术论文,还是本科生的毕业论文,论文都是需要进行查重检测的,很多高校在选择论文查重的时候,都会在知网上进行查重。由于专业的不同,撰写论文所需求的文献是不一样的,比如历史相关专业的,就一定要掌握大量的历史文献综述,同时也会写一些历史相关的故事作为论据,而相关论文的文献综述是不是也需要在知网上查重一下呢?如何避免文献综述论文查重率太高?文献综述是指作者在写某篇文章时,对别人写的文章或书籍或网络相关内容进行查看或借鉴,有些文综是国内的,有些是国外的,文献综述则是考查作者对文章进行归纳、分析的能力。作者不仅要对文献综述进行简单的编排和列举,更要通过文献中有关论点或论点的内容来说服读者。文献综述需不需要知网查重,各校对学生的学术要求不相同,因此对学术规范性要求较高的学校会进行文献综述的查重。学生在写论文时,可事先与老师沟通,弄清文综能否免于查重。有些检测是把文献综述中引用的一些观念内容去掉后再进行查重,这样可以有利于降低重复率,因此作者在进行引用写作时必须按照正规的操作,格式要保证正确无误。需要用脚注注明文献出处的小伙伴们,一定要注意标注。学校要求文献综述查重,那么作者也不用担心,只需做好相应的标注,并且不超过规定的字数,就不会出现重复率太高的问题。对于一个部分引用可以用学生自己的观点可以表达的,可以用通俗易懂的文字语言表达,只要少借鉴,用自己的话表达的内容多,就不会鉴定为重复内容。

本科论文的文献综述一般而言是不需要参与知网查重的,但是有部分学校为了加强对学生学术行为的规范,而规定本科论文的文献综述不得超过知网查重的20%,学生应当在撰写论文文献综述之前就对相关规定进行一个了解。

首先,文献综述的概念指的是作者撰写某篇文章所查看的他人的论述,既包括查看的国内论文、专著甚至是互联网文章等,也包括国外的一些外文论文或者专著等,而文献综述就是考验论文作者的一个归纳整理及分析能力,文献综述并不仅仅是对文献的简单罗列,而是需要通过文献的论述来辅佐论证作者的观点。

因此,对于文献综述部分而言,其和学校规定的对于论文的知网查重还是有所区别的。其次,文献综述一般而言是不参与知网查重的,但是由于部分学校考虑到为了加强对学生学术规范的管理,对于文献综述部分也有去除引用文献重复率的部分。

因此,学生应当在撰写文献综述之前了解本校关于文献综述是否查重的规定,在撰写文献综述的过程中也不能够仅仅是对文献的简单堆砌,而应当用脚注的形式明确文献的的来源和引用的作者的观点,以最大先对的规范文献综述的撰写。

最后,如果学校规定文献综述需要参与知网查重,一般而言,本科论文的文献综述的重复率都以不超知网查重的20%为宜,所以,学生应当尽量用好脚注,对于自己的观点应当用自己的方式进行表述。

综上所述,本科论文的文献综述一般而言是不需要参与知网查重的,但是有部分学校为了加强对学生学术行为的规范,而规定本科论文的文献综述不得超过知网查重的20%,因此,学生应当在撰写论文文献综述之前就对相关规定进行一个了解。

对于文献综述的引用应当规范化,对于文献综述当中自己陈述的观点应当尽量用自己的方式进行表述,以最大限度的避免文献综述重复率过高。

毕业论文文献综述并不会查重。不过在论文写作的时候,还是要尽量有原创的思想和观点,要用自己的描述方式对论文进行写作。如果引用他人的文献和材料以及资料,要有详细的备注。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2