更全的杂志信息网

半导体薄膜研究论文

发布时间:2024-07-06 00:51:58

半导体薄膜研究论文

透明导电薄膜。虽然目前电阻率等性能仍较低,但由于材料成本低、制造工艺简单,因此有望替代ITO用作液晶显示器等的透明导电薄膜。 空心阴极法生长半导体薄膜.以非晶态半导体材料为主体制成的固态电子器件。非晶态半导体虽然在整体上分子排列无序,但是仍具有单晶体的微观结构,因此具有许多特殊的性质。1975年,英国.斯皮尔在辉光放电分解硅烷法制备的非晶硅薄膜中掺杂成功,使非晶硅薄膜的电阻率变化10个数量级,促进非晶态半导体器件的开发和应用。同单晶材料相比,非晶态半导体材料制备工艺简单,对衬底结构无特殊要求,易于大面积生长,掺杂后电阻率变化大,可以制成多种器件。非晶硅太阳能电池吸收系数大,转换效率高,面积大,已应用到计算器、电子表等商品中。非晶硅薄膜场效应管阵列可用作大面积液晶平面显示屏的寻址开关。利用某些硫系非晶态半导体材料的结构转变来记录和存储光电信息的器件已应用于计算机或控制系统中。利用非晶态薄膜的电荷存储和光电导特性可制成用于静态图像光电转换的静电复印机感光体和用于动态图像光电转换的电视摄像管的靶面。具有半导体性质的非晶态材料。非晶态半导体是半导体的一个重要部分。50年代.科洛米耶茨等人开始了对硫系玻璃的研究,当时很少有人注意,直到1968年.奥弗申斯基关於用硫系薄膜制作开关器件的专利发表以后,才引起人们对非晶态半导体的兴趣。1975年.斯皮尔等人在硅烷辉光放电分解制备的非晶硅中实现了掺杂效应,使控制电导和制造PN结成为可能,从而为非晶硅材料的应用开辟了广阔的前景。在理论方面,.安德森和莫脱,.建立了非晶态半导体的电子理论,并因而荣获1977年的诺贝尔物理学奖。目前无论在理论方面,还是在应用方面,非晶态半导体的研究正在很快地发展著。 分类 目前主要的非晶态半导体有两大类。 硫系玻璃。含硫族元素的非晶态半导体。例如As-Se、As-S,通常的制备方法是熔体冷却或汽相沉积。 四面体键非晶态半导体。如非晶Si、Ge、GaAs等,此类材料的非晶态不能用熔体冷却的办法来获得,只能用薄膜淀积的办法(如蒸发、溅射、辉光放电或化学汽相淀积等),只要衬底温度足够低,淀积的薄膜就是非晶态结构。四面体键非晶态半导体材料的性质,与制备的工艺方法和工艺条件密切相关。图1 不同方法制备非晶硅的光吸收系数 给出了不同制备工艺的非晶硅光吸收系数谱,其中a、b制备工艺是硅烷辉光放电分解,衬底温度分别为500K和300K,c制备工艺是溅射,d制备工艺为蒸发。非晶硅的导电性质和光电导性质也与制备工艺密切相关。其实,硅烷辉光放电法制备的非晶硅中,含有大量H,有时又称为非晶的硅氢合金;不同工艺条件,氢含量不同,直接影响到材料的性质。与此相反,硫系玻璃的性质与制备方法关系不大。图2 汽相淀积溅射薄膜和熔体急冷成块体AsSeTe的光吸收系数谱 给出了一个典型的实例,用熔体冷却和溅射的办法制备的AsSeTe样品,它们的光吸收系数谱具有相同的曲线。 非晶态半导体的电子结构 非晶态与晶态半导体具有类似的基本能带结构,也有导带、价带和禁带(见固体的能带)。材料的基本能带结构主要取决於原子附近的状况,可以用化学键模型作定性的解释。以四面体键的非晶Ge、Si为例,Ge、Si中四个价电子经sp杂化,近邻原子的价电子之间形成共价键,其成键态对应於价带;反键态对应於导带。无论是Ge、Si的晶态还是非晶态,基本结合方式是相同的,只是在非晶态中键角和键长有一定程度的畸变,因而它们的基本能带结构是相类似的。然而,非晶态半导体中的电子态与晶态比较也有著本质的区别。晶态半导体的结构是周期有序的,或者说具有平移对称性,电子波函数是布洛赫函数,波矢是与平移对称性相联系的量子数,非晶态半导体不存在有周期性, 不再是好的量子数。晶态半导体中电子的运动是比较自由的,电子运动的平均自由程远大於原子间距;非晶态半导体中结构缺陷的畸变使得电子的平均自由程大大减小,当平均自由程接近原子间距的数量级时,在晶态半导体中建立起来的电子漂移运动的概念就变得没有意义了。非晶态半导体能带边态密度的变化不像晶态那样陡,而是拖有不同程度的带尾(如图3 非晶态半导体的态密度与能量的关系 所示)。非晶态半导体能带中的电子态分为两类:一类称为扩展态,另一类为局域态。处在扩展态的每个电子,为整个固体所共有,可以在固体整个尺度内找到;它在外场中运动类似於晶体中

人们对开发环境稳定、通过可见光吸收并具有极性晶体结构的新型太阳能收集器有相当大的兴趣。车轮矿CuPbSbS3是一种自然形成的硫盐矿物,它在非中心对称的Pmn21空间群中结晶,并且 对于单结太阳能电池具有最佳的带隙。 然而,关于这种四元半导体的合成文献很少,它还没有作为薄膜被沉积和研究。

基于此,来自南加州大学洛杉矶分校的一项研究,描述了二元硫醇-胺溶剂混合物在室温和常压下溶解大块布氏体矿物以及廉价的块状CuO、PbO和Sb2S3前驱体以生成墨水的能力。合成的复合墨水是由大量的二元前驱体按正确的化学计量比溶解而得到的,在溶液沉积和退火后,生成CuPbSbS3的纯薄膜。相关论文以题为“Solution Deposition of a Bournonite CuPbSbS3 Semiconductor Thin Film from the Dissolution of Bulk Materials with a Thiol-Amine Solvent Mixture”于3月11日发表在Journal of the American Chemical Society上。

论文链接:

近来,Wallace等人通过对天然矿物的筛选,得到的材料具有热力学稳定性,不具有杂化卤化铅钙钛矿所固有的环境不稳定性问题。极性结构可以降低激子的结合能,减少材料中的复合速率。极性晶体结构可以使直接带隙材料的偶极不允许跃迁的几率和在吸收开始时振子强度的相应降到最低。从筛选到的自然生成的多种矿物中,符合选择标准的结果之一是车轮矿CuPbSbS3。车轮矿CuPbSbS3是一种硫盐矿物,它在正交晶立方Pmn21空间群中结晶,根据实验报道,从 eV到 eV的带隙是单结太阳能电池的最佳选择。有关CuPbSbS3的合成文献很少,目前只有少量的固态合成和一种溶剂热合成。 到目前为止,这种材料还没有以薄膜的形式沉积或研究。

基于以上考虑,研究者开发了一种碱化溶剂系统,它利用短链硫醇和胺的二元混合物,能够溶解100多种散装材料,包括散装金属、金属硫族化合物和金属氧化物。所得到的油墨在溶液沉积和温和退火后通过溶解和恢复的方法返回纯相的硫族化合物薄膜,使其适用于大规模的溶液处理。事实上,硫醇-胺油墨已被有效地用于大面积黄铜矿和酯基太阳能电池的溶液沉积,具有极好的功率转换效率。

研究者首次展示了车轮矿CuPbSbS3薄膜沉积的方法。通过简单地调整大块前驱体的化学计量学,就可以精细地调整复合油墨的组成,从而允许沉积纯相的CuPbSbS3。制备的CuPbSbS3薄膜具有 eV的直接光学带隙,在~105cm-1的可见光范围内具有较高的吸收系数。电学测量证实,固溶处理的CuPbSbS3薄膜具有 cm2(V•s)-1范围内的流动性,载体浓度为1018-1020cm-3。这突出了在薄膜太阳能电池中作为吸收层的潜力,需要进一步的研究。

图1 车轮矿CuPbSbS3的晶体结构图

图2 合成油墨以及相关测试图

图3 将纯相CuPbSbS3从油墨中滴铸并退火到450 ˚C的粉末XRD图谱。

图4 CuPbSbS3薄膜的相关测试表征图

图5 CuPbSbS3薄膜电阻率(ρ)随温度变化的函数。

该方法可推广应用于其它多晶半导体薄膜的溶液沉积,包括与I-IV-V-VII组成相关的半导体,如CuPbBiS3。 结果突出了碱化法在解决硫酸盐吸收层沉积问题上的前景 。(文:水生)

半导体薄膜论文

人们对开发环境稳定、通过可见光吸收并具有极性晶体结构的新型太阳能收集器有相当大的兴趣。车轮矿CuPbSbS3是一种自然形成的硫盐矿物,它在非中心对称的Pmn21空间群中结晶,并且 对于单结太阳能电池具有最佳的带隙。 然而,关于这种四元半导体的合成文献很少,它还没有作为薄膜被沉积和研究。

基于此,来自南加州大学洛杉矶分校的一项研究,描述了二元硫醇-胺溶剂混合物在室温和常压下溶解大块布氏体矿物以及廉价的块状CuO、PbO和Sb2S3前驱体以生成墨水的能力。合成的复合墨水是由大量的二元前驱体按正确的化学计量比溶解而得到的,在溶液沉积和退火后,生成CuPbSbS3的纯薄膜。相关论文以题为“Solution Deposition of a Bournonite CuPbSbS3 Semiconductor Thin Film from the Dissolution of Bulk Materials with a Thiol-Amine Solvent Mixture”于3月11日发表在Journal of the American Chemical Society上。

论文链接:

近来,Wallace等人通过对天然矿物的筛选,得到的材料具有热力学稳定性,不具有杂化卤化铅钙钛矿所固有的环境不稳定性问题。极性结构可以降低激子的结合能,减少材料中的复合速率。极性晶体结构可以使直接带隙材料的偶极不允许跃迁的几率和在吸收开始时振子强度的相应降到最低。从筛选到的自然生成的多种矿物中,符合选择标准的结果之一是车轮矿CuPbSbS3。车轮矿CuPbSbS3是一种硫盐矿物,它在正交晶立方Pmn21空间群中结晶,根据实验报道,从 eV到 eV的带隙是单结太阳能电池的最佳选择。有关CuPbSbS3的合成文献很少,目前只有少量的固态合成和一种溶剂热合成。 到目前为止,这种材料还没有以薄膜的形式沉积或研究。

基于以上考虑,研究者开发了一种碱化溶剂系统,它利用短链硫醇和胺的二元混合物,能够溶解100多种散装材料,包括散装金属、金属硫族化合物和金属氧化物。所得到的油墨在溶液沉积和温和退火后通过溶解和恢复的方法返回纯相的硫族化合物薄膜,使其适用于大规模的溶液处理。事实上,硫醇-胺油墨已被有效地用于大面积黄铜矿和酯基太阳能电池的溶液沉积,具有极好的功率转换效率。

研究者首次展示了车轮矿CuPbSbS3薄膜沉积的方法。通过简单地调整大块前驱体的化学计量学,就可以精细地调整复合油墨的组成,从而允许沉积纯相的CuPbSbS3。制备的CuPbSbS3薄膜具有 eV的直接光学带隙,在~105cm-1的可见光范围内具有较高的吸收系数。电学测量证实,固溶处理的CuPbSbS3薄膜具有 cm2(V•s)-1范围内的流动性,载体浓度为1018-1020cm-3。这突出了在薄膜太阳能电池中作为吸收层的潜力,需要进一步的研究。

图1 车轮矿CuPbSbS3的晶体结构图

图2 合成油墨以及相关测试图

图3 将纯相CuPbSbS3从油墨中滴铸并退火到450 ˚C的粉末XRD图谱。

图4 CuPbSbS3薄膜的相关测试表征图

图5 CuPbSbS3薄膜电阻率(ρ)随温度变化的函数。

该方法可推广应用于其它多晶半导体薄膜的溶液沉积,包括与I-IV-V-VII组成相关的半导体,如CuPbBiS3。 结果突出了碱化法在解决硫酸盐吸收层沉积问题上的前景 。(文:水生)

一般来说宽度的大小能够决定本征载流子的浓度,从而决定了电阻率,也就是导电能力强弱wuxm0618(站内联系TA)只能说明本征材料的导电能力很弱,在有杂质或者缺陷的情况下可能还是有好的导电性能。混沌学徒(站内联系TA)带隙越窄越接近金属吧,越宽就越接近绝缘体回归2011(站内联系TA)紫外漫反射边通过F(R)hv2对hv作图,通过紫外可以测试半导体的带隙,这种称之为光学带隙,一般论文里都是这样做的。而氧化铜确实是一种半导体薄膜。氧化亚铜也是。均可以作为薄膜太阳能电池材料,尽管效率比较低。

柔性薄膜晶体管的研究现状论文

我国的柔性衬底薄膜电池的研究进展较慢。哈尔滨Chrona公司在90年代中期曾研制出柔性聚酰亚胺衬底上的非晶硅单结薄膜电池,电池初始效率为,功率重量比为,但此后进展不大。近年来南开大学在柔性衬底非晶硅薄膜电池方面的研究取得了一定的进展,他们在的聚酰亚胺衬底上获得单结薄膜电池的初始效率为,功率重量比为341W/kg。柔性衬底电池的产业化方面,目前天津津能电池有限公司在建6MW非晶硅柔性电池生产线,30MW生产线已经开始了项目论证,新疆天富光伏光显有限公司在建1MW非晶硅柔性电池生产线,未来准备建立8MW。这两家公司都由于设备及技术由国外进口,预计电池成本偏高。总的来说,国内目前具备了非晶硅薄膜电池研制的技术基础,但是在柔性衬底上的研究还处于刚刚起步的阶段,和国外的差距较大。

半导体工业是电子工业的一个分支,本质上仍然是制造业。与网路产业不同的是,半导体产业仍然需要制造设备和工厂,有特定的产品要生产,并且需要设计、生产、包装、测试和销售。简单来说,整个产业链分为三大环节:上游公司定义与设计 芯片 、中流晶片制造芯片、下游厂商将芯片应用于个人电脑、手机等领域。        产业链的上游是电子自动化设计(EDA)软件供应商和集成电路设计公司。EDA主要有三家Synopsys、Cadence和Mentor,公司在不同领域的专业知识,但业务也是交叉的,国内厂商有华达九天。设计公司有英特尔、高通、联发科技、博通等,国内设计公司有华为海斯、紫光占瑞和惠定科技等。 图1半导体产业链上游企业         产业链的中间环节是由许多以晶圆制造商为核心的企业组成的。知名的晶片制造商包括英特尔、三星、台积电、格罗芬德和中芯国际,它们需要从设备制造商那里购买设备。此外,亦有需要向其他原料制造商购买制造晶片所需的消耗品。所购设备主要包括光刻机、蚀刻设备和沉积设备;采购的原材料主要包括单晶硅、光刻胶、湿式电子化学品、特种气体等。芯片生产完成后,将交给封装测试制造商对芯片进行测试和封装。包装企业是具有代表性的月光、安全和国内长期动力技术,通福微动力和天水华天。 图二:产业链中游企业         下游企业是联系最广泛的公司,包括移动电话制造商苹果、三星、华为、特斯拉和比亚迪在汽车领域,联想和惠普在个人电脑领域。此外,还有物联网、医疗电子等应用。 图3:下游企业、芯片应用和具有代表性的公司         半导体行业设备的头等大事,芯片节电的速度取决于工艺,工艺取决于设备。         一、摩尔定律接近极限,集成电路技术成熟,产业成熟,成本和服务将决定成熟产业的核心竞争力。        迈克尔·波特指出,在产业成熟的过程中,成本和服务将成为产业的核心竞争力。        英特尔(Intel)联合创始人戈登·摩尔(GordonMoore)在1965年提出,当价格保持不变时,集成电路类的元件数量将每18至24个月翻一番,性能将翻一番。简单地说,在大约两年的时间里,消费者将能够以同样的价格购买性能是现在的两倍的芯片。在过去的40年里,集成电路工业的发展一直遵循摩尔定律,但它不可能永远持续下去。近年来,技术更新周期有所放缓。 图4摩尔定律预测了每个集成电路的晶体管数目。        可以观察到,台积电2011年生产28 nm、2015年生产16 nm、2018年量产7 nm、20 nm和12 nm 10 nm以及其他升级的过度生产工艺。先进的工艺更新周期已经从最初的18个月减缓到2年,现在已经放缓到3年左右,未来5 nm甚至3 nm的更新周期可能会更长。        直到2000年,在光刻市场上有三家供应商,即尼康、佳能和阿斯梅尔。目前,ASMAI家族是唯一留在20 nm的公司,另外两家由于研发和利润压力而放弃最新光刻技术的开发。其余的Asmae占光刻市场的80%。图5:半导体工艺已慢慢接近物理极限        这些迹象表明,集成电路制造工艺的进步越来越困难,集成电路产业正在从成长性向成熟性转变。在成熟的产业过程中,成本和服务将成为产业的核心竞争力。        以成熟的传统汽车工业为例。2004年,该波导从南汽集团撤出。一年前,该公司获得了超过1亿元人民币的58股股份,以控制南汽集团无锡汽车车身有限公司。前后一年左右的对比如此之大,正是由于产业竞争策略的制定错误。不可否认,在2004年左右,中国的汽车工业仍然是一个积极的行业,而且这个行业已经以惊人的速度发展。我国庞大的人口和潜在的巨大需求一直是支撑着工业发展的巨大推动力,在一个快速增长的工业中。一个企业只需要伴随着工业的进步就行了,不需要太多的努力。这也许是《波导》进入汽车行业的原因,但随着汽车行业竞争的升温,无论是美国汽车巨头通用汽车和福特,还是德国大众和奔驰,以及日本的丰田和本田汽车,他们关注成本优势,同时也关注本土汽车企业,他们在中国市场上的竞争加剧,这减少了中国汽车行业巨大利润的泡沫。对于当时的汽车工业企业来说,汽车工业增长缓慢,客户多年来积累的知识和经验,以及更为成熟的技术,带来的结果是,竞争趋势变得更加注重成本和服务。这一发展改变了市场对企业在该行业取得成功的需求。        这与过去三四十年来集成电路的发展非常相似,芯片的性能主要取决于设计技术和制造技术。在过去的二十年里,芯片随着制造技术的进步而不断进步,而设计技术并没有得到很大的更新。PC芯片仍然是以Intel公司为主导的X86体系结构,而复杂计算机指令集的CISC迁移则是由ARM体系结构主导的。采用精简的计算机指令集(RISC)。制造技术依赖于制造设备的技术进步,现在设备的进步已经接近半导体的物理极限。据专家预测,半导体芯片制造工艺的物理极限为2~3 nm。摩尔定律似乎是十年来唯一可以再做的事情&现状;生存与现状;。        缓慢的增长、更多的知识客户和更先进的技术已经导致了竞争趋势变得更加以成本为导向和服务为导向。随着产品标准化、成本和技术成熟度的日益重视,产业转型往往出现明显的国际竞争。       在国际竞争中,国内企业的劣势在于起步较晚,但从后来的分析中我们可以看出,企业之间的差距正在逐年缩小。现在差距大约是2 - 3年。优点是(1)低。研发成本,制造成本和技术支持成本(2)所有研发人员和技术支持人员均在中国,可以提供更及时,更低成本的现场技术支持。 (3)研发人员更贴近国内市场,了解客户需求,并提供定制服务        1。成本优势:国内企业在研发成本和原材料成本方面具有绝对的竞争优势。       所有国际设备制造商都在中国设有办事处。他们主要负责各种生产线的设备销售和技术支持工作。它们不涉及研发和制造。众所周知,信息和通信技术行业的硕士学位毕业生每年在家领取20万至40万元人民币。在美国等发达国家,这一数字将增至80,000美元至100,000美元,是国内水平的两倍以上。设备巨头asml每年的营收占总收入的10%至15%。近年来,由于进程日益先进,这一数字有所增加。生产中原材料的成本占经营成本的50<垃圾>-60<垃圾>lt;垃圾>想到未来在设备更新缓慢,我们在人为研发成本上的绝对成本优势,和原材料价格,当国内半导体设备会发光。       2。服务优势:国内企业可提供更完善、更方便的现场技术支持,增加客户粘性。        外资企业的高服务成本已成为国内企业的共识。在这方面,国内企业可以依靠本地优势,提供更及时、更低的售后服务费用,以改善下游客户对公司的粘度和满意度。今后,公司应在不断拓展市场的基础上,努力构建和完善大客户的服务体系。具体措施包括为特定重点客户量身定制服务方案,在国内集成电路产业集中的地区建立综合工艺和技术支持中心,以及人员和技术的快速反应。为客户提供更完善、更方便、更及时的增值服务等。        在行业竞争需要密集的本地化营销服务或密集的客户交易的市场中,全球公司将难以在综合的全球基础上与本地竞争者竞争。虽然全球公司在分散的单位中为客户提供服务,但在实施过程中,管理任务非常庞大,但本地公司对客户服务请求的响应能力更强。        3.市场优势:研发人员更贴近国内市场,了解客户需求,提供定制化服务。        先进的工艺不能由设备制造商单独完成,而是设备和制造商联合研发的结果。国内设备的研发人员在国内,国际制造商不能这样做。除了提供技术支持外,国际制造商的技术支持人员还需要将遇到的问题发送给公司的研发人员进行改进。优化设备.所以我们往往更贴近国内的客户,更了解国内生产线的客户需求。 二、新型合作竞争关系       值得注意的是,传统的企业竞争模型只提到了企业与五种力量之间的竞争,而没有考虑到企业与五种力量之间的合作。在某些环境中,这些企业既有竞争关系,也有合作关系。如果一种产品或服务能使另一种产品或服务更具吸引力,那么就可以称之为互补产品或服务,两个企业之间的关系已经从竞争转变为合作。如何区分两个企业是否形成了合作与竞争的关系?一般来说,如果顾客同时拥有两家公司的产品比同时拥有一家公司的产品获得更多的价值或更少的成本,那么这两家公司就是互补的。       成功的例子包括:汽车在上个世纪是一种昂贵的产品,而消费者想要购买汽车时却没有足够的现金。目前,银行信贷机构已成为企业公司的补充,后者向消费者提供贷款,并为他们购买汽车提供资金。但是汽车贷款并不容易获得,因此通用汽车公司在1919年创立了通用汽车公司,福特公司在1959年成立了福特银行,以使消费者更容易获得贷款。这样做的好处是显而易见的:方便的贷款是人们可以购买更多的汽车,而对汽车的需求的增长促进了福特和通用汽车的贷款业务。        即使处于互补竞争关系的两家公司技术落后,它们也会获得一定的优势。没有合作伙伴的人如果拥有技术优势,就不一定会成功。例如,索尼于1975年推出了Betamax格式录像机。它曾经是电视录制领域的主导者。在美国多久,日本JVC开发了VHS格式录像机。尽管Betamax在技术的某些方面比VHS更强大,但Betamax格式录像机可以租用的电影数量太少,最终丢失,市场份额占JVC的60%。         国产设备+中鑫国际华润设备与中国合作,为进一步赢得国际市场打下基础        amat通过与台积电、英特尔和其他晶圆工厂的合作取得了技术突破。国内企业可以与中芯国际紧密合作,共同促进国内设备的发展。例如,中芯国际和北方的中国创都是国内公司。要在国际市场上发挥更大的作用,就必须相互支持、相互帮助。北芳华可以为中心提供低成本的设备和更好的服务。反过来,中芯国际稳定的制造过程可以给Beifanghua带来产品验证支持和广告效果(高品质客户的身份也可能带来广告效果,使公司销售设备,这对半导体设备来说应该是昂贵的。因此,晶圆制造商倾向于选择那些在扩大生产线方面已经得到国际制造商验证的设备公司。        目前,一些设备制造商与中芯国际的合作并不局限于设备的验证阶段。为了加快半导体生产线的国产化和替代进程,上下游厂商开始在早期研发过程中进行合作。正是在中芯国际等晶圆厂的大力帮助下,国产设备才能在短期内实现多项技术突破,进入国内先进晶圆厂乃至国际制造商的供应链系统。加快设备国产化和更新换代进程。         三是以历史为镜,把握产业转移的大趋势,规划新的市场。 应用材料(AMAT)        回顾AMAT增长的历史,从1972年纳斯达克上市开始,收入为630万美元,市值仅为300万美元,而52年后,今天的收入为170亿美元,市值超过410亿。 AMAT在此过程中经历了四个主要阶段:启动期,增长期,并购调整期和研发领导期。其中,确定其生存,生存和大发展的时期是前两个时期。        (1)在最初阶段,从1967年到1979年,Amat的主要业务是向半导体制造商提供他们所需的原材料。然而,由于产品种类繁多,Amat一度濒临破产。1977年,新上任的首席执行官Morga进行了一系列激烈的改革,精简了生产线,关闭或出售了一些部门,并集中精力生产半导体设备。这些措施效果明显,企业在危机中幸免于难。        (2)增长时期:1979-1996年,1970年代,全球半导体工业开始向美国以外的市场转移,首先是日本,然后是韩国和台湾。1977年,Morga决定搭乘参加日本半导体设备展览会后返回的飞机进入日本市场。此后,分别于1985年和1989年在韩国和台湾设立了办事处。该公司过去20年的全球布局使其在1996年实现了亿美元的收入。        泛林集团(Lrcx)也有前瞻性的眼光,全球新兴市场的布局。        大卫·K·林,一位工程师,成立于1980年,由英特尔的鲍勃·诺伊斯资助。第一台设备于1982年售出,该公司于1984年在纳斯达克首次公开募股(IPO)。目前,总市值接近300亿美元,2018年的收入为48亿美元。        它没有经历与代工半导体市场相同的竞争。在其创立的第一年,它吸引了80万美元的投资。在第三年,它有稳定的现金流。它诞生于20世纪80年代,正处于将半导体市场从美国转移到海外的阶段。除了LAM当时在半导体设备行业中具有很强的竞争力之外,其成功还归功于20世纪80年代日本半导体行业对设备的巨大需求。当时,除个人电脑外,还使用半导体产品,以及移动电话,立体声系统(功率放大器),汽车和电话。       事情并不总是顺利的。在80年代中后期,林正处于一个艰难的时期,尽管半导体设备的市场需求持续增长,但日本企业从技术引进、消化吸收等方面逐渐增强。日本从70年代末的零开始,到80年代中期已经占到全球设备销售额的50%。后来,美国半导体设备公司进行了业务重组等改革,提高了生产效率,并更加注重大容量设备的开发,更注重研究专利技术的发展。        当时,前瞻性的林氏管理层注意到新兴小市场的销售增长。从1980年代末到1990年代初,它开始了更广泛的全球布局。这一时期的重点是环太平洋和欧洲市场。海外收入占50%以上。日本住友金属工业有限公司。。。(smi)联合开发蚀刻机器,建立了一个完整的子公司:lam技术中心;1980年代中期,在台湾和韩国建立了客户支持中心;直到1990年代初,lam在中国、马来西亚和以色列也看到了增长的机会。并考虑建立研发中心。 值得借鉴的经验有: 1。战略遵循产业转移进行全球布局         巨人的成长离不开两种产业转移。上世纪七、八十年代,日本在工业DRAM产品的高可靠性和美国的技术支持下取得了飞速发展,占DRAM市场的近80%,占半导体市场的近50%。另一次是在上世纪八九十年代,韩国通过引进技术成为个人电脑DRAM的主要供应商,而台湾则在垂直分工领域的晶片合约制造和芯片封闭测试方面处于领先地位。  2.与新兴市场的当地企业和大学建立合作伙伴关系         Amat在日本、韩国、台湾、东南亚和欧洲建立了广泛的公司和机构,抢占市场第一。在大学方面,我们与新加坡科技局投资了多个研发实验室,并与亚利桑那州立大学联合开发了用于柔性显示器的薄膜晶体管技术。在企业方面,2001年,我们共同研究了使用黑钻石方案来突出晶体管,并推动了芯片的技术节点。2003年,ARM与台积电共同开发了90nm低功耗芯片设计技术,使总功耗降低了40%。         林书豪与清华大学合作设立了泛森林小组清华大学微电子论文奖,捐赠了实验室设备,并提供了就业机会。 iv。政府、财政支援及税务宽减,三管齐下        落后是要克服的,现在的理解是,在电子信息技术领域,落后受到技术封锁和国家安全的威胁。如果一个国家想被喉咙挡住,它就必须发展关键技术,而不是被其他国家控制。近年来,我国在应用领域取得了巨大的成就。20多年来,以BAT为代表的企业引领了科学技术的发展趋势,但在基础科学领域,我们还没有实现核心芯片技术的自我完善。包括设计和制造领域,而制造领域的成功取决于设备。         政策支持反映了该行业的重要性,国家必须以坚定的决心发展半导体产业        政府对半导体工业的政策支持正在增加。今年3月,在第十三届全国人民代表大会第一次会议上,李总理根据“02专项”、“国家集成电路产业发展促进计划”等重大政策,在讨论实体经济发展问题时,把集成电路产业放在实体经济第一位。在政府工作报告中。3月底,财政部发布了《关于IC厂商企业所得税政策的通知》,给予IC企业税收优惠,表明了政府对半导体产业发展的坚定态度。 图5:政府对半导体行业的支持政策       二期大型基金即将募集,全国产业基金总额突破万亿元。计划一期,大型基金募集资金1000亿元,实际募集资金1387亿元,实际投资超过1000亿元。此外,这只大型基金还投资了3600亿多家地方工业基金。总计5000亿元的半导体产业基金,以较高的资本投入,为半导体产业的发展提供了有力的支持。目前,第二阶段的大型基金正在设立,并将在年底前完成。预计将筹集1,500亿至2,000亿美元(一些外国媒体也透露,筹资额可能达到3,000亿美元)。按1:3的比例计算,二期大型基金还将举债4500亿至6000亿元地方产业基金,国家半导体产业基金总额突破万亿元。作为中国最有希望承担替代中国制造半导体设备任务的企业,微电子、上海微电子、北方华昌等企业必将充分受益于政府对该行业的支持红利。       财政部、国家税务总局、科技部联合在财政部网站上出台新政策,扣除研发费用,研发费用税前扣除比例由50%提高到75%。同时,将原科技企业的扣除范围扩大到所有企业。利润增幅最大的企业主要集中在机械、计算机、电子元器件等行业。事实上,在一些行业,特别是集成电路行业,每年的研发成本、研发开支甚至占营运收入的一半以上,而增加研发开支的税前扣减比例,无疑会释放减税的红利。 5.设备行业继续强劲增长,晶圆厂建设高峰期导致设备需求增加。        设备制造商位于半导体产业链上游,为生产线提供晶圆制造设备。2017年,全球半导体设备市场销售额达到亿美元,年均增长率稳定在10%以上。从2016年到2020年,全球共建成62家晶圆厂。此外,中国正在建设和规划26家12英寸晶圆厂,占世界的42%。因此,近年来,我国工厂建设出现了小高峰,设备需求巨大,国际企业设备产量有限,这是扩大市场份额的好时机。 全球半导体市场销售额          2017年全球半导体设备市场销售额达到亿美元。2016年至2020年,陆续建成62座晶圆工厂。设备销售年均增长率超过100亿。近年来对设备的需求将达到一个小高峰。 图六:全球半导体市场销售及其增长率         从国内实际市场看,从2018年到2020年,国产设备企业每年仍有500亿至70亿美元的潜在市场份额。        从国内市场来看,国内市场销售额从2013年开始持续增长,年增长率保持在20%以上,远远超过国际市场10%以上的增速。 2016年至2020年,中国将有26家晶圆厂,将建成并投入生产,占全球在建晶圆厂数量的42%,成为全球新晶圆厂最活跃的地区。另外,从国内市场的设备销售比例可以看出,这个数字正在缓慢而稳步上升。 2016年,中国半导体设备市场规模为亿美元,2017年销售额为亿美元。据SEMI称,2018年将达到113亿。在过去三年中,每年的增长率接近30%。        购买新晶圆厂设备的费用将占生产线的70%,其余为基础设施费用。从2016年到2018年,8至12个12英寸晶圆厂正在建设中。根据Semi对2018年100亿美元设备市场的预测,晶圆制造工艺占80%,光刻机占制造工艺的30%。剩余的市场是国内潜在的国产设备总市场,100-80%(1-30%)=56亿。据推测,从2018年到2020年,每年仍有50亿至70亿美元的潜在市场份额。 图七:半导体设备在国内市场的销售和增长情况        近几年国内装备技术进步与市场对装备的强劲需求        国内设备凭借深厚的技术积累填补了国内半导体设备领域的一些技术空白,产品已能够满足12英寸、90~28 nm工艺生产线的生产要求,部分设备批量进入中芯国际等国内主流集成电路生产线进行批量生产。展望未来2-3年,设备需求将迎来2019年90/65/55/40 nm工艺生产线设备采购高峰。而国内仓储企业将在2020年前后扩大生产设备采购高峰。 图8:国内建造/正在建造的晶圆生产线

半导体研究论文

半导体射线探测器最初约年研究核射线在晶体上作用, 表明射线的存在引起导电现象。但是, 由于测得的幅度小、存在极化现象以及缺乏合适的材料, 很长时间以来阻碍用晶体作为粒子探测器。就在这个时期, 气体探测器象电离室、正比计数器、盖革计数器广泛地发展起来。年, 范· 希尔顿首先较实际地讨论了“ 传导计数器” 。在晶体上沉积两个电极, 构成一种固体电离室。为分离人射粒子产生的载流子, 须外加电压。许多人试验了各种各样的晶体。范· 希尔顿和霍夫施塔特研究了这类探测器的主要性质, 产生一对电子一空穴对需要的平均能量, 对射线作用的响应以及电荷收集时间。并看出这类探测器有一系列优点由于有高的阻止能力, 人射粒子的射程小硅能吸收质子, 而质子在空气中射程为, 产生一对载流子需要的能量比气体小十倍, 在产生载流子的数目上有小的统计涨落, 又比气体计数器响应快。但是, 尽管霍夫施塔特作了许多实验,使用这种探侧器仍受一些限制, 像内极化效应能减小外加电场和捕捉载流子, 造成电荷收集上的偏差。为了避免捕捉载流子, 需外加一个足够强的电场。结果, 在扩散一结, 或金属半导体接触处形成一空间电荷区。该区称为耗尽层。它具有不捕捉载流子的性质。因而, 核射线人射到该区后, 产生电子一空穴载流子对, 能自由地、迅速向电极移动, 最终被收集。测得的脉冲高度正比于射线在耗尽层里的能量损失。要制成具有这种耗尽层器件是在年以后, 这与制成很纯、长寿命的半导体材料有关。麦克· 凯在贝尔电话实验室, 拉克· 霍罗威茨在普杜厄大学首先发展了这类探测器。年, 麦克· 凯用反偏锗二极管探测“ 。的粒子, 并研究所产生的脉冲高度随所加偏压而变。不久以后, 拉克· 霍罗威茨及其同事者测量一尸结二极管对。的粒子, “ , 的刀粒子的反应。麦克· 凯进行了类似的实验, 得到计数率达, 以及产生一对空穴一电子对需要的能量为土。。麦克· 凯还观察到,加于硅、锗一结二极管的偏压接近击穿电压时, 用一粒子轰击, 有载流子倍增现象。在普杜厄大学, 西蒙注意到用粒子轰击金一锗二极管时产生的脉冲。在此基础上, 迈耶证实脉冲幅度正比于人射粒子的能量, 用有效面积为二“ 的探测器, 测。的粒子, 得到的分辨率为。艾拉佩蒂安茨研究了一结二极管的性质, 载维斯首先制备了金一硅面垒型探测器。年以后, 许多人做了大量工作, 发表了广泛的著作。沃尔特等人讨论金一锗面垒型探测器的制备和性质, 制成有效面积为“ 的探测器, 并用探测器, 工作在,测洲的粒子, 分辨率为。迈耶完成一系列锗、硅面垒型探测器的实验用粒子轰击。年, 联合国和欧洲的一些实验室,制备和研究这类探测器。在华盛顿、加丁林堡、阿什维尔会议上发表一些成果。如一结和面垒探测器的电学性质, 表面状态的影响, 减少漏电流, 脉冲上升时间以及核物理应用等等。这种探测器的发展还与相连的电子器件有很大关系。因为, 要避免探测器的输出脉冲高度随所加偏压而变, 需一种带电容反馈的电荷灵敏放大器。加之, 探测器输出信号幅度很小, 必需使用低噪声前置放大器, 以提高信噪比。为一一满足上述两个条件, 一般用电子管或晶体管握尔曼放大器, 线幅贡献为。在使用场效应晶体管后, 进一步改善了分辨率。为了扩大这种探测器的应用, 需增大有效体积如吸收电子需厚硅。采用一般工艺限制有效厚度, 用高阻硅、高反偏压获得有效厚度约, 远远满足不了要求。因此, 年, 佩尔提出一种新方法, 大大推动这种探测器的发展。即在型半导体里用施主杂质补偿受主杂质, 能获得一种电阻率很高的材料虽然不是本征半导体。因为铿容易电离, 铿离子又有高的迁移率, 就选铿作为施主杂质。制备的工艺过程大致如下先把铿扩散到型硅表面, 构成一结构, 加上反向偏压, 并升温, 锉离一子向区漂移, 形成一一结构, 有效厚度可达。这种探测器很适于作转换电子分光器, 和多道幅度分析器组合, 可研究短寿命发射, 但对卜射线的效率低, 因硅的原子序数低。为克服这一点, 采用锉漂移入锗的方法锗的原子序数为。年, 弗莱克首先用型锗口,按照佩尔方法, 制成半导体探测器,铿漂移长度为, 测‘“ 、的的射线, 得到半峰值宽度为直到年以前, 所有的探测器都是平面型, 有效体积受铿通过晶体截面积到“和补偿厚度的限制获得补偿厚度约, 漂移时间要个月, 因此, 有效体积大于到” 是困难的。为克服这种缺点, 进一步发展了同轴型探测器。年, 制成高分辨率大体积同轴探测器。之后, 随着电子工业的发展而迅速发展。有效体积一般可达几十“ , 最大可达一百多“ , 很适于一、一射线的探测。年以后广泛地用于各个部门。最近几年, 半导体探测器在理论研究和实际应用上都有很大发展。

光学薄膜行业深度研究论文

光学薄膜行业市场参与者较多

使用“企查猫”企业大数据平台,以“光学薄膜”为关键词,通过查询企业名称、品牌、经营范围、企业简介中涵盖“光学薄膜”的企业,筛选注册资本在1万元以上的企业,得到以下数据。

根据企查猫查询数据显示,我国光学薄膜行业历年新注册企业数量呈现不断上升的趋势。截至2022年11月,中国光学薄膜行业注册企业共有3741家,其中2021年新注册企业数量创历史高峰,达449家。总体来看,中国光学薄膜行业企业参与者不多,但近年来热度较高,新进入企业数量快速提高。

代表性企业销量规模增长良好

2018-2021年,中国光学薄膜行业主要企业光学薄膜产品销量基本呈现良好的增长势头,销量规模持续扩大。其中,销量规模增速最快为东材科技,2019年其销量规模为万吨,2021年为万吨,三年间销量规模增长了3倍,主要系2021年公司收购山东胜通,新增4万吨光学膜产能,并借助良好的市场顺利实现销售。长阳科技、裕兴股份2019-2021年销量规模复合增速分别达到以及。

注:由于口径统计差异,双星新材2018-2019年以“聚酯薄膜”口径统计销量、长阳科技2018年以“反射膜及背板基膜”合并统计销量,与光学薄膜口径有差异,故不纳入相关数据。

2018-2021年,激智科技光学膜业务整体销量规模整体较为平稳,2021年达到亿平方米,同比增长;斯迪克从2019年的亿平方米增长至2021年的亿平方米,三年间销量规模复合增速达到。

注:斯迪克统计口径为“功能性薄膜材料及电子级胶粘材料销量”。

光学薄膜市场规模扩张较快

结合双星新材公告及tbTEAM数据,2019年,中国光学薄膜行业市场规模约354亿元。光学薄膜下游行业主要是消费电子产品,目前中国电脑出货量约是全球出货量的2/3,而根据Counterpoint公布的2021年度全球手机产量数据,中国贡献了全球手机产量的67%,中国已成为全球消费电子制造大国,因此中国光学薄膜行业市场规模增速应高于全球增速的增速。结合中国光学薄膜行业代表性企业营收规模增长情况,初步测算,2021年中国光学薄膜行业市场规模约为425亿元。

行业投融资热度较高

光学薄膜行业属于新材料行业中的膜材料行业,由于统计口径限制,在烯牛数据中筛选膜材料行业进行搜索,可见2017-2022年,我国膜材料行业投融资规模处于波动增长的状态。总体来看,投融资事件数量较多,行业的投融资热度较高。截至2022年12月13日,本年度投融资事件共36起,本年度投融资数量水平维持高位。

注:2022年数据截至2022年12月13日。

未来市场规模复合增速超10%

目前,中国已经成为全球最大的消费电子产品生产国、出口国和消费国,随着中国人均收入水平的不断提高,消费者对液晶电视、手机、电脑等消费类电子产品品质要求不断提升,更新换代频率加快,长远看需求依然强劲。而伴随着5G技术、物联网技术的发展,穿戴式产品、家庭居住等新型智能硬件产品迅猛发展,光学薄膜产品下游产品范围不断延伸,新型应用场景的不断丰富,也将带动显示光学薄膜的下游市场需求增长。此外,随着国内产品国产替代的步伐加快,预计2022-2027年,中国光学薄膜行业市场规模增速仍高于全球平均水平,复合增速约,2027中国光学薄膜行业市场规模约769亿元。

—— 更多本行业研究分析详见前瞻产业研究院《中国光学薄膜行业发展前景与投资战略规划分析报告》

光学薄膜技术是一门交叉性很强的学科,它涉及到光电技术、真空技术、材料科学、精密机械制造、计算机技术、自动控制技术等领域。光学薄膜是一类重要的光学元件,它广泛地应用于现代光学光电子学、光学工程以及其他相关的科 学技术领域。它不仅能改善系统性能(如减反、滤波),而且是满足设计目标的必要手段。光学薄膜可分光透射,分光反射,分光吸收以及改变光的偏振状态或相位,用作各种反射膜,增透膜和干涉滤光片,它们赋予光学元件各种使用性能,对光学仪器的质量起着重要或决定性的作用。

科学家曾经预言21世纪是光子世纪。21世纪初光电子技术迅速发展,光学薄膜器件的应用向着性能要求和技术难度更高、应用范围和知识领域更广、器件种类和需求数量更多的方向迅猛发展。光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。

一、光学薄膜的制造技术

光学薄膜可以采用物理气相沉积(PVD)、化学气相沉积(CVD)和化学液相沉积(CLD)三种技术来制备。

1、物理气相沉积(PVD)

PVD需要使用真空镀膜机,制造成本高,但膜层厚度可以精确控制,膜层强度好,目前已被广泛采用。在PVD法中,根据膜料气化方式的不同,又分为热蒸发、溅射、离子镀及离子辅助镀技术。其中,光学薄膜主要采用热蒸发及离子辅助镀技术制造,溅射及离子镀技术用于光学薄膜制造的工艺是近几年才开始的。

热蒸发

光学薄膜器件主要采用真空环境下的热蒸发方法制造,此方法简单、经济、操作方便。尽管光学薄膜制备技术得到长足发展,但是真空热蒸发依然是最主要的沉积手段,当然热蒸发技术本身也随着科学技术的发展与时俱进。 在真空室中,加热蒸发容器中待形成膜的原材料,使其原子或分子从表面气化逸出,形成蒸汽流,入射到固体(称为衬底或基片)表面,凝结形成固态薄膜的方法。

热蒸发的三种基本过程:由凝聚相转变为气相的相变过程;气化原子或分子在蒸发源与基片之间的运输,即这些粒子在环境气氛中的飞行过程;蒸发原子或分子在基片表面的沉积过程。

溅射

溅射指用高速正离子轰击膜料表面,通过动量传递,使其分子或原子获得足

够的动能而从靶表面逸出(溅射),在被镀件表面凝聚成膜。

与蒸发镀膜相比,其优点是:膜层在基片上的附着力强,膜层纯度高,可同时溅射不同成分的合金膜或化合物;缺点是:需制备专用膜料靶,靶利用率低。

溅射的方式有三种:二级溅射、三级/四级溅射、射频溅射。

离子镀

离子镀兼有热蒸发的高成膜速率和溅射高能离子轰击获得致密膜层的双优效果,离子镀膜层附着力强、致密。离子镀常见类型:蒸发源和离化方式。

特点:

a、膜附着力强。这是由注入和溅射所致。

b、绕镀性好。原理上,电力线所到之处皆可镀上膜层,有利于面形复杂零件膜层的镀制。

c、膜层致密。溅射破坏了膜层柱状结构的形成。

d、成膜速率高。与热蒸发的成膜速率相当。

e、可在任何材料的工作上镀膜。绝缘体可施加高频电场。

粒子辅助镀

在热蒸发镀膜技术中增设离子发生器—离子源,产生离子束,在热蒸发进行的同时,用离子束轰击正在生长的膜层,形成致密均匀结构(聚集密度接近于1),使膜层的稳定性提高,达到改善膜层光学和机械性能。

离子辅助镀技术与离子镀技术相比,薄膜的光学性能更佳,膜层的吸收减少,波长漂移极小,牢固度好,该技术适合室温基底和二氧化锆、二氧化钛等高熔点氧化物薄膜的镀制,也适合变密度薄膜、优质分光镜和高性能滤光片的镀制。

2、化学气相沉积(CVD)

化学气相沉积就是利用气态先驱反应物,通过原子、分子间化学反应的途径来生成固态薄膜的技术。

CVD一般需要较高的沉积温度,而且在薄膜制备前需要特定的先驱反应物,在薄膜制备过程中也会产生可燃、有毒等一些副产物。但CVD技术制备薄膜的沉积速率一般较高。

3、化学液相沉积(CLD)

CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,还存在废水废气造成的污染问题,已很少使用。

二、光学薄膜的种类

用光学功能薄膜制成的种类繁多的光学薄膜器件,已成为光学系统、光学仪器中不可缺少的重要部件。其应用已从传统的光学仪器发展到天文物理、航天、激光、电工、通信、材料、建筑、生物医学、红外物理、农业等诸多技术领域。

分为 : 基本光学薄膜、控光薄膜、光学薄膜材料

1、基本光学薄膜

基本光学薄膜是指能够实现分光透射、分光反射、分光吸收和改变光的偏振状态或相位,可用于各种反射膜、增透膜和干涉滤波片的薄膜,它赋予光学元件各种使用性能,对保证光学仪器的质量起到决定性的作。

减反膜(增透膜)

减反膜是用来减少光学元件表面反射损失的一种功能薄膜。它可以有单层和多层膜系构成。单层膜能使某一波长的反射率为零,多层膜在某一波段具有实际为零的反射率。在应用中,由于条件和应用对象不同,其所用的减反膜的类型与诸多因素有关,例如基片材料、波长领域、所需特征及成本等。

a、单层减反膜

为减少光的反射消耗,增大光线的透射率,常在玻璃的表面上沉积一层减反膜。其原理是光的干涉现象。只要膜的折射率小于玻璃基片的折射率,就能都实现光的减反射作用。

b、多层减反膜

多层减反膜主要是为了改进单层减反膜的不足,进一步提高减反膜的效果,因而采用增加膜层层数的措施。

反射膜

反射膜的作用与减反膜相反,它是要求把大部分或几乎是全部入射光反射回去。如光学仪器、激光器、波导管、 汽车 、灯具的反射镜,都需要沉积镀制反射薄膜。反射膜有金属膜和介质膜两种

a、金属反射膜

金属反射膜具有很高的反射率和一定的吸收能力。金属高反射膜仅用于对膜的吸收损耗没有特殊要求的场合。

b、介质反射膜

金属高反射膜的吸收损失较大,在某些应用中,如多光束干涉仪、高质量激光器的反射膜,就要求沉积低吸收、高反射的全介质高反射膜。

2、控光薄膜

控光薄膜分为阳光控制膜、低辐射率膜、光学性能可变换膜三种 。

、阳光控制膜

在玻璃上镀上一层光学薄膜,使玻璃对太阳光中的可见光部分有较高的透射率,而对太阳光中的红外部分有较高的反射率,并对太阳光中的紫外线部分有很高的吸收率。将它制成阳光镀膜幕墙玻璃,就能保证白天建筑物内有足够的亮度等等

、低辐射率膜

在玻璃的表面镀制一层低辐射系数的薄膜,称为低辐射率膜,俗称隔热膜,它对红外线有较高的反射率。

、光学性能可变换膜

光学性能可变换膜是指物质在外界环境影响下产生一种对光反应的改变,在一定外界条件(热、光、电)下,使它改变颜色并能复原,这种变色膜是一类有广阔应用前景的光学功能材料。

3、光学薄膜材料

、金属和合金

金属和合金是较为广泛的薄膜,具有反射率高、截止带宽、中性好、偏振效应小以及吸收可以改变等特点,在一些特殊用途的膜系中,它们有特别重要的作用。

、化合物(电介质)

化合物是有重要用途并广泛应用的光学薄膜,主要有:卤化物、氧化物、硫化物和硒化物。

、半导体

半导体材料在近红外和远红外区透明,是一类重要的光学薄膜材料。在光学薄膜中使用最普遍的半导体材料是硅和锗。

三、光学薄膜研究的趋势

综合国内外光学及光学薄膜的研究现状,光学薄膜的研究呈现以下几个发展趋势:

1、继续重视对传统光学仪器中光学薄膜应用的研究和开发,提高薄膜的光学质量,研究大面积镀膜技术及其应用;

2、开发与新型精密光学仪器及光电子器件要求相适应的光学薄膜及其材料的制备方法,以满足现代光学、空间技术、 军事技术和全光网络技术日益迫切的需要;

3、开发极端光谱条件下的光学薄膜,如超窄带密集型波分复用滤波片,软X射线膜,高功率激光膜等的制备技术;

4、开发与环境保护息息相关的“绿色光学薄膜”,实现光能与人类 健康 需要的相互协调;

5、研究光学薄膜的材料物理、成膜过程的原位观察,实现镀膜过程的自动控制和超快速低温镀膜。

时至今日,光学薄膜已获得很大的发展,光学薄膜的生产已逐步走向系列化、 程序化和专业化,但是,在光学薄膜的研究中还有不少问题有待进一步解决, 光学薄膜现有的水平还需要进一步提高。科学家曾预言21世纪是光子世纪,而光学薄膜作为传输光子并实现其各种功能的重要载体,必然会在光学、光电子学及光子学获得突破性发展的同时,得到进一步的繁荣和发展。

登录点击《涂布材料库》查阅更多产品资料:

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2