更全的杂志信息网

干式变压器论文答辩

发布时间:2024-07-04 19:20:11

干式变压器论文答辩

第一章 变电所主变压器的选择及主接线的设计一、变电所主变压器台数、容量及型式的选择1、变压器台数的选择据国际《35-110 KV变电所设计规范GB50059-92》有关条文规定,为保证供电的可靠性,变电所一般装设两台主变,当只有一个电源的变电所可由低压侧电网取得备用电源给重要负荷供电时,可装设一台,现时待设变电所有水电厂和220 KV变电所两个电源,故选择2台主变。2、主变压器容量的选择主变容量应根据5-10年的发展规划进行选择,适当考虑到远期10-20年负荷的发展,对城郊变电所,主变压器容量还应与城市规划相结合。并应考虑主变正常运行和事故时的过负荷能力。对选两台主变的变电所,每台变压器的容量一般按式Sn=(Pm为变电所最大负荷)选择:按5年发展规划:Sn=(MVA)按10年发展规划:Sn=(MVA)这样当一台主变停用时,可保证对70%负荷供电,考虑变压器的事故过负荷能力40%,而可保证对98%负荷供电,由于一般变电所大约有25%的非重要负荷,因此在一台主变停用时,仍能对一、二级负荷供电。3、 主变压器型式的选择变压器有油浸式和干式两种,一般在户外情况下采用三相油浸节能型变压器。具有三种电压的变电所,如通过各侧绕组的功率均达到15%以上时,多采用自耦变压器,以得到较大的经济效益。现待设变电所为郊区中间变电所,且只有110 KV和10 KV两个电压等级,所以待设变电所选择三相双绕组高阻抗有载调压油浸式变压器,查《设备手册》选择型号为 SFZ7系列110KV级双绕组有载调压变压器,其技术参数列于表1-1表1-1 SFZ7系列110KV级双绕组有载调压变压器技术参数表发展方案型号额定容量(KVA) 额定电压(KV) 损耗(KW) 阻抗电压(%) 空载电流(%) 连接组别高压 低压 空载 负载5年SFZ7-16000/11016000 110±8×年 SFZ7-20000/110 20000 110±8×二、变电所主接线的设计原则待设的110KV变电站为市郊中间变电站,是降压变电站具有110KV、10KV两个电压等级。高压侧为电源侧,有二回路,其中连接着110KV水电厂一个和220KV变电站一个的一回110KV线路,距离待设变电站分别为12KM和10KM。两电源之间存在15MW的功率交换,低压侧10KV为负荷侧,负荷性质分别为:I、II、III类。根据负荷性质,应设计20回10KV馈线其中包括四回备用馈线。变电所主接线的设计对电气设备的选择。配电装置的布置、工作的灵活性、继电保护以及运行的可靠性与经济合理性有密切关系,而电气主接线是变电所电气部份的主体,对变电所以及电力系统的安全、可靠、经济运行起重要作用。根据我国《变电所设计技术规程》规定:变电所的主接线应根据变电所在电力系统中的地位,回路数、设备特点及负荷性质等条件确定。并且应满足运行可靠、简单灵活。操作方便和节省投资等要求。现就主接线应满足的可靠性、灵活性、经济性三项基本要求说明如下:1、保证供电可靠性(1)、断路器检修时,不影响对用户供电;(2)、设备的母线故障或检修时,应尽量减少停止运行的回数和停运时间并保证对I类和II类负荷的供电;(3)尽量避免全变电所停运的可能性2、具有一定的灵活性(1)、调度灵活,操作方便,应能灵活地投入或切除某些元件,调配电源负荷,能满足系统在事故检修及运行方式下的调整要求。(2)、检修安全应能方便地运断路器,母线及继电保护设备进行安全检修而不影响电力网的正常运行及用户的供电。(3)扩建方便,应能容易地从初期过渡到最终接线,并在扩建过渡时,一次和二次设备等所需的改造最少。3、具有合理的经济性(1)投资省,主接线应简单清晰,以节省断路器、隔离开关等一次设备投资,要使控制、保护方式不过于复杂,以利于运行并节约二次设备的电缆投资。(2)占地面积小,电气主接线的设计要为配电装置的布置创造条件,以节约用地和节省架构、导线、绝缘子及安装费用。(3)电能损耗,经济合理地选择主变压器的型式、容量和台数。避免两次变压而增加电能的损耗。综合以上所述,由于待设110KV变电所电源侧110KV有二回线路,低压侧10KV负荷侧负荷的性质分别为I、II、III类。根据负荷性质,必须保证重要负荷供电的连续性、可靠性,为此,拟定本次设计的主接线初步方案。三、变电所主接线初步方案A、技术比较(确定各级电压等级配电装置的接线方式)设计规程规定:110 -220 KV配电装置中出线一回时,采用不分段单母线或变压器-线路单元接线,当出线为2回时,一般采用桥形接线,当出线不超过4回时,一般采用单母线分段。出线回数较多,连接的电源较多,负荷大或污秽环境中,则采用双母线接线。6-10 KV配电装置中,一般采用单母线分段或单母线。如果单母线分段不能满足供电可靠性,则可采用双母线接线。现待设变电所中,其中110 KV侧连着水电厂和220 KV变电所2回进线,由于待设变电所中选用2台主变压器,故引出2回出线,因此采用桥形接线,而在10 KV侧有多个供电线路,为满足供电可靠性可采用单母线分段或双母线。1、变电所110 KV侧可能接线方案技术比较如下表1-2所示表1-2 变电所110 KV侧接线方案技术比较表接线方案内桥接线外桥接线接线图优点内桥接线一次侧可装设线路保护,倒换线路时操作方便,设备投资与占地面积少对变压器的切换方便,比内桥少两组隔离开关,继电保护简单,易于过渡到单母线分段接线,且投资少,占地面积少缺点操作变压器和扩建成单母线分段不如外桥方便,不利于变压器经常切换倒换线路时操作不方便,变电所一次侧无线路保护适用范围这种接线适用于进线距离长的终端变电所 这种接线适用于进线短而倒闸次数少的变电所或变压器采取经济运行需要经常切换的终端变电所以及可能发展为有穿越负荷的变电所技术比较结果经上述比较,由于待设变电所两回线路进线分别为12KM和10KM较短,且考虑到以后发展的需要,因此选用外桥接线2、变电所10 KV侧可能接线方案技术比较如下表1-3所示:表1-3 变电所10 KV侧可能接线方案技术表接线方案单母线分段接线双母线接线接线图优点 任一母线发生故障时,不影响另一母线运行。单母线分段比双母线所用设备少,系统简单、经济、操作安全可靠性比单母线分段高,运行灵活缺点 当其中任一段母线需要检修或发生故障时,接于该母线的全部进出线均停止运行 设备投资多,接线复杂,操作安全性较差适用范围多用于具有一、二级负荷,且进出线较多的变电所主要用于负荷容量大,可靠性要求高、进出回路多的变电所技术比较结果经上述比较,由于待设变电所负荷容量不大,在两种接线方式均满足可靠性的情况下,考虑到经济问题,因此选用单母线分段接线B、经济比较经过上述技术比较,可初步确定待设变电所的电气主接线。由于主变容量根据5-10年的发展规划进行选择,且选择不同容量的变压器其综合投资和年运行费用就不同,因此进行经济比较是很有必要的,初步拟定按5年发展规划和按10年发展规划两个方案对变压器进行经济比较。查《电气设备选择施工安装设计应用手册》,计算过程详看计算书,可得相关参数如下表1-4所示:表1-4 经济比较表方案号 综合投资Z(万元) 年运行费用u(万元)Ⅰ(按5年发展规划) (按10年发展规划) 112 比较结果 经上述比较,方案Ⅰ的综合投资和年运行费用都比方案II少,故选择方案Ⅰ(按5年发展规划)第二章 变电所自用电接线设计自用电接线包括从电源引接至所用电的全部网络,其中高压部分也是电站主接线的组成部分。所用电接线的基本要求与主接线大体相同,其中最主要的是供电的可靠性。对小电站还要力求接线简单、清晰、运行方便,并合理节省费用。现主要以电源的引接方式、接线的形式的供电网络三个层次给予说明,所用变压器选择。一、所用变压器的选择按设计题目要求,变电所自用负荷接两台100KVA考虑,因此所用变压器应装设两台容量为100KVA的变压器,为了节省一、二次设备的投资和占地面积,以及运行维护的方便。查表可选择SC9—100/10型树脂干式变压器,将其配置成可推拉式,装嵌在10KV高压柜内其技术参数列于表2-1表2-1 所用变压器技术参数型号 额定容量(KVA) 额定电压(KV) 损耗(KW) 阻抗电压(%) 空载电流(%) 连接组别高压 低压 空载 负载SC9-100/10 100 ±5% 4 Y/Yn0二、所用电的接线形式所用电的低压电路还具有相应的接线形式以满足可靠性等方面的要求。(1)由前面一章知,单母线分段有较高的可靠性,现决定采用单用单母线分段,二分段母线用自动开关和闸刀开关相联,分段自动开关在正常情况下处于分闸位置,当因故失去一个电源时,投入分段自动开关,由另一电源带全部负荷,这就是暗备用。为了满足I类负荷对恢复供电的紧迫要求宜设置BZT(备用电源自动投入)装置,以加速成切换过程和避免匆忙中的人为操作。两电源不允许在低压侧并列。三、负荷供电回路所用负荷的供电回路常用以下四种形式,直接或间接地从低压母线取电。(1)、一级辐射式供电每个回路有单独的隔离引接、保护和操作电器以避免影响主母线的正常运行,供电可靠性较高。一般只限于某些容量较大或较重要的公共负荷。(2)、二级辐射式供电二级辐射式供电的前提是负荷的分组,采用分组二级供电方式的优点是:A、便于供电的分组管理,方便运行维护;B、减小主盘的供电回数,提高一级辐射供电的可靠性;C、就地设置可大量节约电缆。向Ⅰ、II类负荷供电的分盘应采用有独立的引接闸刀开关的配电盘,以保证供电的可靠性和灵活性。(3)、干线式供电对一些相邻近的小容量III类负荷或同一用电设备的不同负荷可共用一组供电回路和电源电缆,直接在各负荷的操作电器的电源侧并接电源。(4)、环网式供电将干线式供电回路的末端接至另一电源,构成环式供电,环式供电用于重要负荷,但同样也禁闭环运行。综合考虑供电的可靠性、安全性、技术性和经济性决定采用:高压部分采用单母线分段,负荷配电采用一级辐射式、环网式混合供电。具体图样见图纸书上。第三章 短路电流计算及主要设备的选择一、短路电流计算根据设计的变电所电气主接线绘制出等值电路图,采用标么值计算,取Sj=100MVA;Uj=Up网络,对选择10KV~110KV配电装置的电器和导体,需计算出在最大运行方式下流过电气设备的短路电流,选取d1、d2两个短路点,计算过程详见计算书,各短路点短路电流计算结果见表3-1表3-1 短路电流计算结果一览表短路点 支路名称(KV)回路名称 次暂态短路电流I″(3)(KA) 短路电流(3) (KA) 短路电流(3)(KA) 1S短路电流I1(3)(KA) 2S短路电流I2(3)(KA) 4S稳态短路电流I∞(3)(KA) 短路电流冲击值i ch(KA)d1115 水电厂S=2×30MW/省网Xxt=∞ 短路点总电流Id∑ 水电厂S=2×30MW/省网Xxt=∞ 短路点总电流Id∑二、主要电气设备的选择在选择电气设备时应遵循如下的原则:1、导体和电器力求技术先进,安全适用,经济合理,贯彻以铝代铜,减小占地等政策。2、在选择导体和电器时应按正常工作条件进行选择,并按短路情况校验其动稳定和热稳定以满足正常运行、检修和短路情况下的要求。3、验算导体和电器的动稳定、热稳定以及电器开断电流所用的短路电流,按本工程的设计规划容量计算,并考虑电力系统的远景发展规划按可能发生最大短路电流的正常接线方式进行计算。4、为了便于维修,减少备品备件的型号,设计时同一电压等级的导体和电器尽量采用同一品种。5、所选的导体和电器,应按当地的气温、风速、覆冰、海拔等环境条件进行校验根据原水电部86年颁布的《导体和电器选择设计技术规程SDGJ14-86》,对主电路所有电气设备进行选择和校验,选择结果列于下列各表中。表3-1 10KV高压开关柜一览表开关柜的型号KYN-10型BA1-10、16、25一次线路方案编号052327471819一次线路方案图用途型号及名称馈电左右联络所用 变压器 TV及避雷器(柜宽1000) 电容器柜(柜宽1000)SN10-10Ⅰ/630型少油断路器1SN10-10III/2000型少油断路器11LDJ型电流互感器 3 3 3UKI-12型电压互感器 3RN2-10型熔断器 3FZ型避雷器 3 3SCL-10型变压器 型电流互感器 3RN3-10型熔断器 3 型电容器 3外形尺寸(宽×深×高)mm 800×1500×2200 800×1800×2200 800×1500×2200 800×1500×2200额定电流(A) 630 2000表3-2: 导体选择结果一览表导线名称 型号 载流量(A) 最大允许应力110KV母线 LGJ-25/4 25210KV母线 LGY-100×8单条平放矩形铝母线 1454 69000000Pa10KV电缆 3XZLQ-185普通粘性绝缘三芯(铝) 771表3-3: 断路器选择结果一览表安装地点型号额定电压(KV) 最高工作电压(KV)额定电流(A) 额定短路开断电流(KA)动稳定电流(KA)4秒后热稳定电流(KA)110KV出线 SW 110 126 1200 21 53 21110KV分段 SW6-110110 126 1200 21 53 21主变110KV侧SW6-1101101261200215321主变10KV侧分段 SN10-10III 10 2000 40 130 4010KV馈线 SN10-10J 10 630 20 50 20表3-4: 电流互感器选择结果一览表安装地点型号 额定电流比2×600/5级次组合 额定二次负荷(Ω) 1秒后热稳定倍数动稳定倍数级 级主变110KV侧LCWD-102×600/分段 LCWDL-10 2×600/5 2 75 135主变10KV LDJ-10 3000/5 50 9010KV分段 LDJ-10 3000/5 50 9010KV馈线 LDJ-10 630/5 50 90表3-5: 高压熔断器选择结果一览表安装地点型号额定电压(KV)额定电流(A)最大开断电流(KA) 额定断流容量(MVA)备注10KV侧电压互感器所用变压器 RN3-10/50 10 50 50 20010KV侧电容器 RN3-10/50 10 50 50 200表3-6: 电压互感器选择结果表安装地点 型号 数量 额定变比 额定容量(VA)级 级 1级110KV线路侧TYD-1106个 110000/√3、100/√3、100/√3、1005010010KV母侧VKI122组 10000/√3、1000/√3、100/√33090280表3-7 隔离开并选择结果一览表安装地点 型号 额定电压(KV) 额定电流(A) 动稳定电流(KA) 4秒热稳定电流(KA)110KV侧 GW4-110 110 1250 50 20表3-8 电容器选择结果表安装地点 型号 额定电压(KV) 标称容量(KVA) 标称电容μF10KV侧 12 表3-9 支柱绝缘子选择结果一览表安装地点 型号 额定电压(KV) 绝缘子高度(mm) 机械破坏负荷(kg)110KV侧 ZS-110 110 1200 150010KV侧 ZL-10/4 10 160 第四章 无功功率补偿一、补偿无功功率的必要性。无功功率的主要消耗者是感应电动机、变压器和电焊机等。它们都需要无功功率来建立交变磁场。无功功率除发电机是主要无功功率电源外,线路电容也产生一部分无功功率。但上述无功功率往往不能满足负荷对无功功率和电网对无功功率的需要, 需要加装无功补偿设备。例如,同期调相机、移相电容器等,它们都是无功功率电源,这里仅谈,用移相电容补偿无功功率,即无功补偿问题。无功电源不足,交流系统电压降低,从而损坏用电设备,严重的会造成电压崩溃,使系统瓦解而造成大面积停电,还会使电能损耗增加,效率降低,限制线路的输电能力,因而补偿无功功率是保证电力系统安全运行的重要措施。二、提高功率因数的补偿方法1、采用同期调相机,同期调相机主要是空载运行的同步电动机,在过励磁情况下输出感性无功功率。与采用移相电容器相比,有功功率的单相损耗较大,具有旋转部分,需专人监护,运行时有噪音,但在短路故障时较为稳定, 损坏后可修复继续使用。由于其容量较大, 一般用于电力系统较大的变电所中, 工业企业较少采用。2、采用移相电容器,与采用同期调相机相比,移相电容器有下列特点:A、优点(1)、无旋转部件,不需专人维护管理;(2)、安装简单;(3)、可以做到自动投切,按需要增减补偿量;(4)、有功功率损耗小;B、缺点:(1)、移相电容器的无功功率与其端电压的平方成正比,因此电压波动对其影响较大;(2)、寿命短,损坏后不易修复;(3)、对电流的稳定性差;(4)、切除后有残留电荷,危及人身安全。待设变电所要求补偿后功率因数达到,而中间变电所负荷量不大,从技术性和经济性等综合考虑本所采用移相电容器补偿,详情请见计算书。三、电容器的补偿方式电容器的补偿方式的选择,首先要从减少大量无功功率的传输入手,其基本原则就是尽量使用户的无功负荷就地供应。工厂企业内部电容器的补偿方式,可分为个别补偿、分组补偿和集中补偿三种。1、个别补偿适用于低压网络,与单台用电设备装于同一回路,这种无功功率就地供应的方式,补偿效果最好,可以减少配电变压器的容量及配电线路的截面及其相应传输无功功率的有功损耗,但电容器的利用率低,常用于由较长线路供电、长期运行的容量电动机。1、 分组补偿电容器装设在车间变、配电室母线上,可提高电容器的利用率,但只能减少高压线路和配电变压器中的无功功率,而低压配电线路中的无功功率不能减少。2、 集中补偿电容器装设在工厂总降压变电所的母线上(一般装设在低压母线侧),这种补偿方式,电容器安装方便、运行可靠、利用率高。但不能减少工厂内部配电网络中的无功功率。综上所述,本变电所采用集中补偿的方式,分别装设在10KV母线两段侧。四、电容器的补偿容量的确定分别在低压母线的两侧并联电容器补偿,每侧补偿,型号为TBB310-750/50接线方式:单Y。第五章 变电所的防雷保护及接地网设计一、避雷针的布置和保护范围避雷针是变电所屋外配电装置和所内电工建筑物防护直击雷过电压的主要设施,变电所避雷针布置应考虑以下几个方面的因素:1、 避雷针和保护范围应保护到站内各电气设备。2、 避雷针和保护范围和地下连接点至10KV设备与主接地网和地下连点,沿接地体的长度不得小于15米。3、 独立避雷针不应设在人经常通行的地方,避雷电针及其接地装置与道路口等的距离不宜小于3米。4、 电压在110KV以上和配电装置,一般将避雷器装在配电装置和构架上,35KV及以下和高压配电装置和构架或房顶不宜装设避雷针,因其绝缘水平很低,雷击时容易引起反击,另外在变压器的门型构架上不宜装设避雷针。这是因为门型构架距离变压器近,装设避雷针后,构架的集中接地装置距离变压器和金属外壳接地点在地中距离难以达到不小于15米要求。二、避雷器的选择和校验避雷器是发电厂、变电所防护雷电侵入波的主要设施,避雷器的选择和校验是以《交流电气装置过电压保护和绝缘配合》为依据的。由于氧化锌避雷器一般是无间隙,避免了间隙电压分布不均的缺点;在过电压下动作后无续流通过;不用串联火花间隙, 其体积小、重量轻、结构简单在运行中维护方便、使用寿命长,造价也低等优点比普通阀式,磁吹阀式避雷器具有优越的保护性能,而且目前也具有逐步取代其他类型避雷器的趋势,因此,待设变电所各级电压的设备都选用氧化锌型避雷器来防护雷电侵入波的危害,并对各级电压的避雷器分别进行选择的校验,详细的校验过程参见计算书。表5-1: 避雷器选择果表安装地点型 号 避雷器额定电压(KV) 持续运行电压(KV) 雷电冲击8/20µs(10KA),峰值(KV)标称放电电流(KA) 直流1mA参考电压(KV)数量110KV母线侧 Y10WR-108/26810884268101572组主变压器中性点 组10KV母线侧 Y5WZ-17/45组三、接地装置1、接地电气设备和线路的某些部分通过接地装置与大地紧密连接起来,是保证供用电系统安全运行的主要措施之一。接地装置由接地体和接地线两部分组成。接地类型如下:1、工作接地 为了保证电气设备正常和事故情况下能可靠工作而进行的接地,如发电机、变压器中性点接地。2、保护接地 是将电气设备正常运行中不带电的金属部分与接地装置间作良好的金属连接,防止在电气设备绝缘损坏外壳带电时发生人身触电事故。3、冲击接地 即防雷装置的接地。由于雷电流的幅值大,作用时间短暂,故接地装置在冲击电流作用下呈现的电阻值与工频接地电阻值有所差别。2、接地网为了降低接触电势和跨步电势,使其不超过规定值。发电厂、变电所的接地装置在充分利用了自然接地体之后,还应装置人工接地体。一般情况下,发电厂、变电所接地网中的垂直接地体对工频电流散流作用不大。避雷针、避雷器和避雷线附近加强集中接地和散泄雷电流之用。接地网的外边缘应闭合,做成圆弧形,圆弧的半径不宜小于均压带间隔的一半。接地网内应敷设水平均压带。接地网的埋深一般采用米或米。接地网的边缘经常有人出入的走道外,应铺设砾石、沥青路面或“帽檐式”均压带综上所述,站区敷设水平接地体为主,辅以垂直接地极,主地网用Ф50镀锌圆钢,若土壤电阻率高,为满足接地电阻要求,可考虑外引接地网及深井接地极并施加降阻剂。第六章 变电所电气总平面布置变电所内设备布置型式采用常规户外设备单列中型式:110KV设备及主变压器布置在室外。由于两电源点都位于所址北侧,考虑110KV进线方便的需要,110KV开关布置在所内北面。同时,负荷在变电所的东侧,10KV配电装置亦设在变电所内的东边,便于出线。而中央控制室和辅助厂房在南边,门口正面对着公路,方便运输。变电所电气总平面布置详见附图:“变电所总平面布置图”;变电所接地网布置详见附图:“接地网布置图”。设计参考资料:《电力工程设计手册》——水利电力出版社《电气设备选择施工安装设计应用手册上册》——中国水利水电出版社 刘宝林主编《发电厂电气部分》——西安电力学校 卫斌编《电力工程设备手册》——中国电力出版社《无间隙氧化锌壁雷器选择手册》——中国电力出版社

自己写的最好

变压器的种类和功能

我们知道,从发电站送出来的电压高达104~106伏,经过各级变压器后,输送到我们家里用的电压却只有220伏。这中间的电压是如何发生变化的呢?这就是变压器的神奇之处:改变电压的“魔术师”。变压器是根据电磁感应定律将交流电变换为同频率不同电压的交流电的非旋转式电机。

我们的生活中的许多地方都离不开变压器。发电站产生的电,先通过升压变压器把电压升高,然后再送上电网,输送到各个变电站,变电站又利用降压变压器,将电压转换成用户需要的标准电压220伏或者380伏,输送给用户。在我们家里还有各种变压器,它们将220伏的电压转换成4或6伏等不同的低电压的给手机电池或者其他充电电池充电。这都是变压器的电压变化功能,变压器还有许多其他的功能,如阻抗变换、隔离、稳压(磁饱和变压器)等。

变压器有多种功能:

(1)高效、经济、方便地升高电压,减小电流,以满足远距离、大功率输电的要求;

(2)方便地降低电压,利于近距离供电,或进一步降低到安全电压(如8伏、12伏、24伏等),以保证人身安全;

(3)变换电流;

(4)变换阻抗;

(5)变换相数;

(6)变换相角;

(7)既不变换电压,也不变换电流和相角,只是以1∶1的变化将其两侧的电路用高强度绝缘予以隔离。

变压器的发明

变压器是随着电磁感应现象的发现而诞生,经过许多科学家不断完善、改进而最终形成。在一大批研究变压器的杰出人士中,最为著名的是法拉第和亨利,他们奠定了电磁学真理的基石,而所有后来者则致力于科学大厦的完成。

1831年,法拉第在研究磁生电的实验中设计了一套实验装置,并成功地发现了磁生电的现象。法拉第通过实验发现了电磁感应现象。法拉第进行这个实验的装置实际上是世界上第一只变压器雏形,以后法拉第又做了数次实验,同年10月28日还制成了第一台圆盘式直流发电机。同年11月24日,法拉第向英国皇家学会报告了他的实验及其发现,从而使法拉第被公认为电磁感应现象的发现者,他也顺理成章地成为变压器的发明人。

随后,经过许多科学家的共同努力,电磁学得到了完善和发展,变压器也随着社会的需要逐渐出现在人们的视野里。

在变压器中,用来传递磁场的是铁芯,使用高性能的铁芯,可以减少变压器因漏磁等原因引起的能量损耗,提高了变压器的工作效率。

法拉第被认为是变压器的发明人,但实际上最早发明变压器的是美国著名科学家亨利。

1830年8月,亨利采用自制的实验装置进行磁生电实验。当他合上开关K,发现检流计P的指针摆动;打开开关K,又发现检流计P的指针向相反方向摆动。实验中,当打开开关K时,亨利还在线圈B的两端间观察到了火花。同时发现可以将大电流变为小电流,也可将小电流变为大电流。实际上,亨利这个实验是电磁感应现象的非常直观的关键性实验,亨利这个实验装置实际上也是一台变压器的雏形。但遗憾的是,他没能及时发表他的成果,他将这件事搁置一旁继续进行研究。直到1832年,亨利才发表了相关论文,与电磁感应现象的发现权和变压器的发明权擦肩而过。特别值得一提的是,亨利实验装置比法拉第感应线圈更接近于现代通用的变压器。

变压器的工作原理

变压器在我们的生活和生产中起到了非常重要的作用,可以说变压器在电力系统中几乎和发电机同样重要。那么它是如何“开展工作”的呢?下面我们一起来揭开变压器的变压之谜。

变压器的基本构造是两个线圈绕在同一铁芯上。输入电能的线圈,也就是接在电源的线圈,叫做原线圈(原绕组),输出电能的线圈,也就是以电能供给受电器的线圈,叫做副线圈(副绕组)。这两个电路之间根本没有导体相连接,电流是不能从一个电路传导到另一电路上的,电能也不能直接地传递,那么电能是怎么实现传递的呢?

根据电磁感应定律,我们知道电和磁是不可分割的,它们始终交织在一起。简单地说,就是电生磁、磁生电。在通电导线周围产生磁场,变化的电流则可以产生变化的磁场;在一个闭合电路中,如果通过的磁场发生变化,那么这个电路中将有电流产生,即当磁铁靠近线圈或远离线圈时都会有电流产生。由于变压器的两线圈绕在同一铁芯上,原线圈中的交流电由于电流大小和方向的交替变化产生磁场,通过铁芯传递到副线圈中,再由交替变化的磁场在副线圈中产生新的交替变化的电动势,在副线圈回路中产生电流,这样就完成了一个电能的传递过程。这种不用导线而能传递电能的现象就是变压器的特性。

变压器的副电路中的电流是一种感应电流,是由于副线圈中的感应电动势所产生的,副线圈中能产生感应电动势的原因则是穿过这线圈的磁通量时刻在变化(电磁感应现象),而产生这种变化的原因又是原线圈中的电流在不断地改变着。由此可知,变压器的副电路中产生电动势的必要条件是原线圈中存在着时刻变化的电流。为了实现这个目的,变压器就应用了交变电流为电源,直流电则不能产生感应电动势,变压器决不能用它为电源。发电厂所发的电通常是交流而非直流的最主要原因,就在于惟有交变电流才能利用变压器来提高电压增加输电效率。

变压器铁芯一般用或毫米厚的两面涂有绝缘层的硅钢片叠成或卷成。变压器铁芯分为芯式和壳式两大类。通常芯式铁芯用于高电压、小容量的变压器;壳式铁芯则用于低电压、大容量的变压器。铁芯中通过交变磁通后将产生磁滞损耗和涡流损耗,也会引起副边电压的波形畸变和对原边电压的相位移。

因此,高频中有用铁氧体材料制作铁芯的。频率更高或精度要求极高时,常用非铁磁材料(其磁性能与空气非常接近)制作芯子,这种变压器称作空心变压器。大型变压器还有冷却系统、保护装置、出线装置和油箱等部分。

原电路中的电流每有一次交变,铁芯中的磁场也有一次交变,因而副电路中的感应电流也有一次交变,也就是说,原电路的交流和副电路的交流有着同一的频率。

为加强磁场、提高效率,通常将两绕组套在铁芯上。磁通的绝大部分通过铁芯,这部分磁通称主磁通,它连接了原、副线圈。变压器绕组由铜或铝的绝缘扁导线或圆导线绕成。原、副线圈匝数不同,电压不同。原、副线圈匝数比近似等于其电压比。

超导变压器

电力系统内部能量损失是一个非常重大的问题,除发电机的损失外,变电和输电系统的损失也占有很大的比例。据估计,我国变压器的总损耗占系统总发电量的10%左右,如损耗每降低1%,每年可节约上百亿度电。因此变压器的节能降耗已是势在必行。可以说,节能型变压器的推广对于解决我国电力供应紧张,建立节约型社会有着重大意义。超导技术的发展为减少变压器等变电设备和输电线路的损失提供了有力的技术支持。

当变压器的初级绕组通电后,线圈所产生的磁通在铁芯流动,因为铁芯本身也是导体,在垂直于磁力线的平面上就会感应电势,这个电势在铁芯的断面上形成闭合回路并产生电流,好像一个漩涡,所以称为“涡流”。这个“涡流”使变压器的损耗增加,并且使变压器的铁芯发热,变压器升温增热。由“涡流”所产生的损耗我们称为“铁损”。另外要绕制变压器需要用大量的铜线,这些铜导线存在着较大的电阻,电流流过时,电阻会消耗一定的功率,这部分损耗往往变成热量而消耗,我们称这种损耗为“铜损”。

与传统的变压器相比,高温超导变压器的绕组导线为高温超导材料,可以大大降低这部分损耗。同时采用液氮或传导冷却(制冷剂),冷却效率大大高于传统油浸式变压器,因此可节约可观的电能,也减少了对化石燃料的需求,减少了因化石燃烧而产生的各种污染。同时,由于没有变压器油,不必担心火灾和漏油造成的污染。

高温超导变压器具有体积小、重量轻、效率高、过负荷能力强、无火灾隐患等优点。与传统的变压器相比,高温超导变压器的总损耗是传统变压器的31%,重量是46%,成本是77%。在我国,随着城镇用电负荷日趋增大,必须使用体积更为庞大的大容量变压器来满足用户的需求,许多现有变电站都面临重建的问题,由于在相同容量下超导变压器的体积比常规变压器小40%~60%,超导变压器可直接安装在现有的变电站内,从而节省了大笔建设经费。正是基于这些优点,高温超导变压器具有十分广阔的发展前景。高温超导材料的发现是超导材料发展的一个重要里程碑。目前,高温超导电缆已进入实用阶段,国内外厂家正积极开展高温超导变压器的研发工作。2003年,我国继美国、瑞士、德国、日本等少数几个国家之后成功研究出三相高温超导变压器样机。这为下一步研制实用型高温超导变压器打下了坚实的技术基础。

变压器的种类

变压器按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器、电抗器、抗干扰变压器、防雷变压器、箱式变电器试验变压器、转角变压器、大电流变压器、励磁变压器。

变压器检测论文

关于变压器的保护措施分析论文

摘要:文章分析了换流变压器的特点以及超高压直流输电的各种运行工况对换流变压器保护带来的影响。提出了换流变压器保护的总体设计思想。

关键词:换流变压器 保护 分析

0 引言

超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状态等。

1 换流变压器的特点

短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。

直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。

谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n+1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。

调压分接头 为了使直流系统运行在最优的工况,减少交流系统电压扰动对直流系统的影响,换流变压器都具有较大范围的利用分接头调整电压的功能。例如:三峡到常州工程三峡侧换流变压器档位范围+25/-5,每档调节范围。因此保护设计时要考虑分接头调整带来的影响,如正常运行时变比的变化等。

直流系统的特殊运行工况 由于直流控制系统的特殊调节作用,使换流变压器遇到的运行工况以及故障情况不同于普通变压器。这些不同主要包括以下几点:

直流系统的故障相当于换流变压器的区外故障,一般短路电流都不会太大。对于整流侧,穿越换流变的'电流会增大,但由于直流控制保护系统的快速作用,很快会减小。对于逆变侧,直流系统的故障会造成直流电流无法传变至交流侧,反而会使穿越电流减小。

对于换流变压器保护来说,直流系统造成的最严酷的区外故障为整流侧的阀短路故障,相当于换流变出口的两相或三相短路故障。但由于直流保护的干预,实际只会出现半个周波的两相短路。对于逆变侧,由于触发角很大,阀短路时流过换流变压器的电流较整流侧小很多。

换流变压器发生区内故障时,直流系统一般不会提供短路电流。这是由直流控制系统的作用造成的。在整流侧,功率由交流侧转换至直流侧,换流变压器的故障只会造成这种转换的停止,而不会使功率反向,因此直流侧不会提供短路电流;在逆变侧,当故障轻微换相可以正常进行时,由于直流系统的定电流控制特性,直流侧不会提供额外的短路电流。如果故障严重,必然造成换相无法进行(交流电压降低),直流侧更不会提供短路电流。

由于直流控制系统快速的调节作用,在需要的时候,可以快速的将功率传输由一个方向反至另一个方向,对于换流变压器来说,就会出现快速的潮流反向。

换流变压器保护区内发生接地故障时,实际造成了阀的短路。由于阀的单向导电性,故障电流半周电流大,半周电流小,导致差电流中含有较大的二次谐波。

对于逆变侧的换流变压器的区内故障,往往会导致换相失败的发生,从而在穿越电流电流中产生很大的谐波,但差电流(即提供给故障点的电流)仍主要为工频分量。

由于换流变压器的特殊运行方式以及较大的漏抗(作为换相电抗),二次侧故障一般不会造成各侧TA的饱和,即使饱和造成保护的“误动作”也是正确的(换流变的区外即阀的区内故障,都会造成直流的停运)。但对于一个半开关的接线方式,交流系统区外故障时高压侧TA存在饱和的可能。。这种情况下的误动作是不可接受的,必须防止。

在阀未解锁前,当阀侧交流连线存在接地故障时,并不产生接地电流,也不会对变压器造成损害。但如此时不发现故障,阀一解锁后,就会造成阀的短路。因此要设置保护检测这种情况下的接地故障。

2 换流变压器的保护措施

保护的配置原则 为了保证既可靠又安全,在既简单又经济的情况下,可以这样配置换流变压器保护:每台换流变压器保护装设两台保护装置,每台保护装置的电源、输入独立,每台装置的输出都可以到达断路器的两个跳闸线圈以及直流控制的两个系统。每台装置采取措施防止自身误动作,而靠两装置的或出口防止故障情况下的拒动作。 保护的配置及原理 为了避免换流站特有的谐波对保护的影响,保护装置应从硬件和软件上采取措施,使保护只针对工频分量。

主保护包括稳态比率差动、差动速断、工频变化量比率差动、零序比率差动、过激磁保护。后备保护包括过流、零序过流、过电压、零序过压、饱和保护。

稳态比率差动保护 由于变比和联接组的不同,电力变压器在运行时,各侧电流大小及相位也不同。在构成继电器前必须消除这些影响。换流变压器的TA一般装在各侧绕组上,因此原、副边绕组电流相位相同,因此只需要对变比的影响进行补偿。以下的叙述的前提均为已消除了变压器各侧幅值和相位的差异。

稳态比例差动保护用来区分感受到的差流是由于内部故障还是不平衡输出(特别是外部故障时)引起。装置采用初始带制动的变斜率比率制动特性,稳态比率差动元件由低值比率差动(灵敏)和高值比率差动(不灵敏)两个元件构成。为了保证区内故障的快速切除,只有低值比率差动元件(灵敏)设有TA饱和判据,高值比率差动元件(不灵敏)不设TA饱和判据。

对于换流变压器分接头调整造成的差动电流不平衡,可用三种方法来解决:一是通过整定值躲开;二是利用浮动门槛自适应调整;三是利用分接头位置来调整。方法一、二简单实用,三实现起来复杂。

工频变化量比率差动保护 装置中依次按相判别,当满足 一定条件时,工频变化量比率差动动作。工频变化量比率差动保护经过涌流判别元件、过激磁闭锁元件闭锁后出口。

由于工频变化量比率差动的制动系数可取较高的数值,其本身的特性抗区外故障时TA的暂态和稳态饱和能力较强。工频变化量比率差动元件提高了装置在变压器正常运行时内部发生轻微匝间故障的灵敏度。且工频变化量比率差动保护不会受换流变压器分接头调整造成的差动电流不平衡的影响。

后备保护 后备保护包括过流、零序过流、过电压、零序过压、饱和保护。

3 小结

分析换流变压器与交流系统的主变压器比较所具有特点,阐述了这些特点以及直流输电的各种特殊运行工况对换流变压器保护带来的影响,并提出了相应的保护方案。

1主题内容与适用范围 本导则适用于电压等级在35~220kV的国产油浸电力变压器、6kV及以上厂用变压器和同类设备,如消弧线圈、调压变压器、静补装置变压器、并(串)联电抗器等。 对国并进口的油浸电力变压器及同类设备可参照本导则并按制造厂的规定执行。 本导则适用于变压器标准项目大、小修和临时检修。不包括更换绕组和铁芯等非标准项目的检修。 变压器及同类设备需贯彻以预防为主,计划检修和诊断检修相结合的方针,做到应修必修、修必修好、讲究实效。 有载分接开关检修,按部颁DL/T574-95《有载分接开关运行维修导则》执行。 各网、省局可根据本导则要求,结合本地区具体情况作补充规定。 2引用标准 电力变压器 油浸式电力变压器技术参数和要求 GB7251-87变压器油中溶解气体分析和判断导则 GBJ148-90电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 GB7665-87变压器油 DL/T572-95电力变压器运行规程 DL/T574-95有载分接开关运行维修导则 3检修周期及检修项目 检修周期 大修周期 一般在投入运行后的5年内和以后每间隔10年大修一次。 箱沿焊接的全密封变压器或制造厂另有规定者,若经过试验与检查并结合运行情况,判定有内部故障或本体严重渗漏油时,才进行大修。 在电力系统中运行的主变压器当承受出口短路后,经综合诊断分析,可考虑提前大修。 运行中的变压器,当发现异常状碚或经试验判明有内部故障时,应提前进行大修;运行正常的变压器经综合诊断分析良好,总工程师批准,可适当延长大修周期。中华人民共和国电力工业部1995-06-29发布1995-11-01实施 小修周期 一般每年1次; 安装在2~3级污秽地区的变压器,其小修周期应在现场规程中予以规定。 附属装置的检修周期 保护装置和测温装置的校验,应根据有关规程的规定进行。 变压器油泵(以下简称油泵)的解体检修:2级泵1~2年进行一次,4级泵2~3年进行一次。 变压器风扇(以下简称风扇)的解体检修,1~2年进行一次。 净油器中吸附剂的更换,应根据油质化验结果而定;吸湿器中的吸附剂视失 程度随时更换。 自动装置及控制回路的检验,一般每年进行一次。 水冷却器的检修,1~2年进行一次。 套管的检修随本体进行,套管的更换应根据试验结果确定。 检修项目 大修项目 吊开钟罩检修器身,或吊出器身检修; 绕组、引线及磁(电)屏蔽装置的检修; 铁芯、铁芯紧固件(穿心螺杆、夹件、拉带、绑带等)、压钉、压板及接地片的检修; 油箱及附件的检修,季括套管、吸湿器等; 冷却器、油泵、水泵、风扇、阀门及管道等附属设备的检朔; 安全保护装置的检修; 油保护装置的检修; 测温装置的校验; 操作控制箱的检修和试验; 无盛磁分接开关和有载分接开关的检修; 全部密封胶垫的更和组件试漏; 必要时对器身绝缘进行干燥处理; 变压器油的处理或换油; 清扫油箱并进行喷涂油漆; 大修的试验和试运行。 小修项目 处理已发现的缺陷; 放出储油柜积污器中的污油; 检修油位计,调整油位; 检朔冷却装置:季括油泵、风扇、油流继电器、差压继电器等,必要时吹扫冷却器管束; 检修安全保持记装置:包括储油柜、压力释放阀(安全气道)、气体继电器、速动油压继电器等; 检修油保护装置; 检修测温装置:包括压力式温度计、电阻温度计(绕组温度计)、棒形温度计等; 检修调压装置、测量装置及控制箱,并进行调试; 检查接地系统; 检修全部阀门和塞子,检查全部密封状态,处理渗漏油; 清扫油箱和附件,必要时进行补漆; 清扫并绝缘和检查导电接头(包括套管将军帽); 按有关规程规定进行测量和试验。 临时检修项目 可视具体情况确定。 对于老、旧变压器的大修,建议可参照下列项目进行改进 油箱机械强度的加强; 器身内部接地装置改为引并接地; 安全气道改为压力释放阀; 高速油泵改为低速油泵; 油位计的改进; 储油柜加装密封装置; 气体继电器加装波纹管接头。 4检修前的准备工作 查阅档案了解变压器的运行状况 运行中所发现的缺陷和异常(事故)情况,出口短路的次数和情况; 负载、温度和附属装置的运行情况; 查阅上次大修总结报告和技术档案; 查阅试验记录(包括油的化验和色谱分析),了解绝缘状况; 检查渗漏油部位并作出标记; 进行大修前的试验,确定附加检修项目。 编制大修工程技术、组织措施计划 其主要内容如下: 人员组织及分工; 施工项目及进度表; 特殊项目的施工方案; 确保施工安全、质量的技术措施和现场防火措施; 主要施工工具、设备明细表,主要材料明细表; 绘制必要的施工图。 施工场地要求 变压器的检修工作,如条件许可,应尽量安排在发电厂或变电所的检修间内进行; 施工现场无检修间时,亦可在现场进行变压器的检修工作,但需作好防雨、防潮、防尘和消防措施,同时应注意与带电设备保持安全距离,准备充足的施工电源及照明,安排好储油容量、大型机具、拆卸附件的放置地点和消防器材的合理布置等。 5变压器的解体检修与组装 解体检修 办理工作票、停电,拆除变压器的外部电气连接引线和二次接线,进行检修前的检查和试验。 部分排油后拆卸套管、升高座、储油柜、冷却器、气体继电器、净油器、压力释放阀(或安全气道)、联管、温度计等附属装置,并分别进行校验和检修,在储油柜放油时应检查油位计指示是否正确。 排出全部油并进行处理。 拆除无励磁分接开关操作杆;各类有载分接开关的拆卸方法参见《有载分接开关运行维修导则》;拆卸中腰法兰或大盖宫接螺栓后吊钟罩(或器身)。 检查器身状况,进行各部件的紧固并测试绝缘。 更换密封胶垫、检修全部阀门,清洗、检修铁芯、绕组及油箱。 组装 装回钟罩(或器身)紧固螺栓后按规定注油。 适量排油后安装套管,并装好内部引线,进行二次注油。 安装冷却器等附属装置。 整体密封试验。 注油至规定定的油位线。 大修后进行电气和油的试验。 解体检修和组装时的注意事项。 拆卸的螺栓等零件应清洗干净分类妥善保管,如有损坏应检修或更换。 拆卸时,首先拆小型仪表和套管,后拆大型组件,组装时顺序相反。 冷却器、压力释放阀(或安全气道)、净油器及储油柜等中件拆下后,应用盖板密封、对带有电流互感器的升高座应注入合格的变压器油(或采取其它防潮密封施)。 套管、油位计、温度计等易损部件拆下后应妥善保管,防止损坏和受潮;电容式套管应垂直放置。 组装后要检查冷却器、净油器和气体继电器阀门,按照规定开启或关闭。 对套管升高座、上部管道孔盖、冷却器和净油器等上部的放气孔应进行多次排气,直至排尽为止,并重新密封好擦净油迹。 拆卸无盛磁分接开关操作杆时,应记录分接开关的位置,并作好标记;拆卸有载分接开关时,分接头应置于中间位置(或按制造厂的规定执行)。 组装后的变压器各零部件应完整无损。 认真做好现场记录工作。 检修中的起重和搬运 起重工作及注意事项 起重 荼应分工明确,专人指挥,并有统一信号; 根据变压器钟罩(或器身)的重要选择起重工具,包括起重机、钢丝绳、吊环、U型挂环、千斤顶、枕木等; 起重前应先拆除影响起重工作的各种连接; 如系吊器身,应先紧固器身有关螺栓; 起吊变压器整体或钟罩(器身)时,钢丝绳应分别挂在专用起吊装置上,遇棱角处应放置衬垫;起吊100mm左右时应停留检查悬挂及捆绑情况,确认可靠后再继续起吊; 起吊时钢丝绳的夹角不应大于60°,否则应采用专用吊具或调整钢丝绳套; 起吊或落回钟罩(或器身)时,四角应系缆绳,由专人扶持,使其保持平稳; 起吊或降落速度应均匀,掌握好重心,防止倾斜; 起吊或落回钟罩(或器身)时,应使高、低压侧引线,分接开关支架与箱壁间保持一定的间隙,防止碰伤器身; 当钟罩(或器身)因受条件限制,起吊后不能移动而需在空中停留时,应采取支撑等防止坠落措施; 吊装套管时,其斜度应与套管升高座的斜度基本一致,并用缆绳绑扎好,防止倾倒损坏瓷件; 采用汽车吊起重时,应检查支撑稳定性,注意起重臂伸张的角度、回转范围与临近带电设备的安全距离,并设专人监护。 搬运工作及注意事项 了解道路及沿途路基、桥梁、涵洞、地道等的结构及承重载荷情况,必要时予以加固,通过重要的铁路道口,应事先与当地铁路部门取得联系。 了解沿途架空电力线路、通信线路和其它障碍物的高度,排除空中障碍,确保安全通过。 变压器在厂(所)内搬运或较长距离搬运时,均应绑轧固定牢固,防止冲击震动、倾斜及碰坏零件;搬运倾斜角在长轴方向上不大于15°,在短轴方向上不大于10°;如用专用托板(木排)牵引搬运时,牵引速度不大于100m/h,如用变压器主体滚轮搬运时,牵引速度不大于200m/h(或按制造厂说明书的规定)。 利用千斤顶升(或降)变压器时,应顶在油箱指定部位,以防变形;千斤顶应垂直放置;在千斤顶的顶部与油箱接触处应垫以木板防止滑倒。 在使用千斤顶升(或降)变压器时,应随升(或降)随垫木方和木板,防止千斤顶失灵突然降落倾倒;如在变压器两侧使用千斤顶时,不能两侧同时升(或降),应分别轮流工作,注意变压器两侧高度差不能太大,以防止变压器倾斜;荷重下的千斤顶不得长期负重,并应自始至终有专人照料。 变压器利用滚杠搬运时,牵引的着力点应放在变压器的重心以下,变压器底部应放置专用托板。为增加搬运时的稳固性,专用托板的长度应超过变压器的长度,两端应制成楔形,以便于放置滚框;运搬大型变压器时,专用托板的下中应加设钢带保护,以增强其坚固性。 采用专用托板、滚框搬运、装卸变压器时,通道要填平,枕木要交错放置;为便于滚杠的滚动,枕木的搭接处应沿变压器的前进方向,由一个接头稍高的枕木过渡到稍低的枕木上,变压器拐弯时,要利用滚框调整角度,防止滚杠弹出伤人。 为保持枕木的平整,枕木的底部可适当加垫厚薄不同的木板。 采用滑全国纪录组牵引变压器时,工作人员和需站在适当位置,防止钢丝绳松扣或拉断伤人。 变压器在搬运和装卸前,应核对高、低压侧方向,避免安装就位时调换方向。 充氮搬运的变压器,应装有压力监视表计和补氮瓶,确保变压器在搬运途中始终保持正压,氮气压力应保持,露点应在-35℃以下,并派专人监护押运,氮气纯度要求不低于。 (2005-06-25)整体组装 整体组装前的准备工作和要求 组装前应彻底清理冷却器(散热器),储油柜,压力释放阀(安全气道),油管,升高座,套管及所有组、部件。用合格的变压器油冲洗与油直接接触的组、部件。 所附属的油、水管路必须进行彻底的清理,管内不得有焊渣等杂物,并作好检查记录。 油管路内不许加装金属网,以避免金属网冲入油箱内,一般采用尼龙网。 安装上节油箱前,必须将油箱内部、器身和箱底内的异物、污物清理干净。 有安装标志的零、部件,如气体继电器、分接开关、高压、中压套管或高座及压力释放阀(或安全气道)升高座等与油箱的相对位置和角度需按照安装标志组装。 准备好全套密封胶垫和密封胶。 准备好合格的变压器油。 将注油设备、抽真空设备及管路清扫干净;新使用的油管亦应先冲洗干净,以去除油管内的脱模剂。 组装 装回钟罩(或器身); 安装组件时,应按制造厂的“发装使用说明书”规定进行; 油箱顶部若有定位件,应按并形尺寸图及技术要求进行定位和密封; 制造时无升高坡度的变压器,在基础上应使储油柜的气体继电器侧具有规定的升高坡度; 变压器引线的根部不得受拉、扭及弯曲; 对于高压引线,所包扎的绝缘锥部分必须进入套管的均压球内,防止扭曲; 在装套管前必须检查无盛磁分接开关连杆是否已插入分接开关的拨叉内,调整至所需的分接位置上; 各温度计座内应注以变压器油; 按照变压器外形尺寸图(装配图)组装已拆卸的各组、部件,其中储油柜、吸湿器和压力释放阀(安全气道)可暂不装,联结法兰用盖板密封好;安装要求和注意事项按各组部件“安装使用说明书”进行。 排油和注油 排油和注油的一般规定 检查清扫油罐、油桶、管路、滤油机、油泵等,应保持清洁干燥,无灰尘杂质和水分。 排油时,必须将变压器和油罐的放气孔打开,放气孔宜接入干燥空气装置,以防潮气侵入。 储油柜内油不需放出时,可将储油柜下面的阀门关闭。将油箱内的变压器油全部放出。 有载调压变压器的有载分接开关油室内的油应分开抽出。 强油水冷变压器,在注油前应将水冷却器上的差压继电器和净油器管路上的塞子关闭。 可利用本体箱盖阀门或气体继电器联管处阀让安装抽空管,有载分接开关与本体应安连通管,以便与本体等压,同时抽空注油,注油后应予拆除恢复正常。 向变压器油箱内注油时,应经压力式滤油机(220kV变压器宜用真空滤油机)。 图1真空注油连接示意图 1-油罐;2,4,9,10-阀门;3-压力滤油机或真空滤油机;5-变压器;6-真空计;7-逆止阀;8-真空泵 真空注油 220kV变压器必须进行真空注油,其它奕坟器有条件时也应采用直空注油,真空注油应遵守制造厂规定,或按下述方法进行,其连接图见图1。 通过试抽真空检查油箱的强度,一般局部弹性变形不应超过箱壁厚度的2倍,并检查真空系统的严密性。 操作方法: 以均匀的速度抽真空,达到指定真空度并保持2h后,开始向变压器油箱内注油(一般抽空时间=1/3~1/2暴露空气时间),注油温度宜略高于器身温度; 以3~5t/h的速度将油注入变压器距箱顶约200mm时停止,并继续抽夫空保持4h以上; 变压器补油:变压器经真空注油后补油时,需经储油柜注油管注入,严禁以下部油门注入,注油时应使油流缓慢注入变压器至规定的油面为止,再静止12h。 胶囊式储油柜的补油 进行胶囊排气:打开储油柜上部排气孔,由注油管将油注满储油柜,直至排气孔出油,再关闭注油管和排气孔; 从变压器下部油门排油,此时空气经吸湿器自然进入储油柜胶囊内部,至油位计指示正常油位为止。 隔膜式储油柜的补油 注油前应首先将磁力油位计调整至零位,然后打开隔膜上的放气塞,将隔膜内的气体排除再关闭放气塞; 由注油管向隔膜内注油达到比指定油位稍高,再次打开放气塞充分排除隔膜内的气体,直到向外溢油为止,经反复调整达到指定油位; 发现储油柜下部集气盒油标指示有空气时,应用排气阀进行排气; 正常油位低时的补油,利用集气盒下部的注油管接至滤油机,向储油柜内注油,注油过中发现集气盒中有空气时应停止注油,打开排气管的阀门向外排气,如此反复进行,直至储油柜油位达到要求为止。 油位计带有小胶带时储油柜的注油 变压器大修后储油柜未加油前,先对油位计加油,此时需将油表呼吸塞及小胶囊室的塞子打开,用漏斗从油表呼吸塞座处徐徐加油,同时用手按动小胶带,以便将囊中空气全部排出; 打开油表放油螺栓,放出油表内多余油量(看到油有内油位即可),然后关上小胶囊室的塞子,注意油表呼吸塞不必拧得太紧,以保证油表内空气自由呼吸。 整体密封试验 变压器安装完毕后,应进行整体密封性能的检查,具体规定如下: 静油柱压力法:220kV变压器油柱高度3m,加压时间24h;35~110kV变压器油柱高度2m,加压时间24h;油柱高度从拱顶(或箱盖)算起。 充油加压法:加油压时间12h,应无渗漏和损伤。 变压器油处理 一般要求 大修后注入变压器内的变压器油,其质量应符合GB7665-87规定; 注油后,应从变压器底部放油阀(塞)采取油样进行化验与色谱分析; 根据地区最低温度,可以选用不同牌号的变压器油; 注入套管内的变压器油亦应符合GB7665-87规定; 补充不同牌号的变压器油时,应先做混油试验,合格后方可使用。 压力滤油 采用压力式滤油机过滤油中的水分和杂质;为提高滤油速度和质量,可将油加温至50~60℃。 滤油机使用前应先检查电源情况,滤油机及滤网是否清洁,极板内是否装有经干燥的滤油纸,转动方向是否正确,外壳有无接地,压力表指示是否正确。 启动员滤油机应先开出油阀门,后开进油阀门,停止时操作顺序相反;当装有加热器时,应先启动滤油机,当油流通过后,再投入加热器,停止时操作顺序相反。 滤油机压力一般为,最大不超过

变压器论文模板

序有人做过,方法可行;摘要:变压器,autocad;正文:经本人查阅大量资料,绘制各零部件图,用autocad软件绘制变压器生产用图。可以指导生产;~结论经本人验证可行,可以指导生产;引用《变压器设计手册》《变压器结构设计手册》------------------------------XY1641真是问的可笑。

关于变压器的保护措施分析论文

摘要:文章分析了换流变压器的特点以及超高压直流输电的各种运行工况对换流变压器保护带来的影响。提出了换流变压器保护的总体设计思想。

关键词:换流变压器 保护 分析

0 引言

超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状态等。

1 换流变压器的特点

短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。

直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。

谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n+1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。

调压分接头 为了使直流系统运行在最优的工况,减少交流系统电压扰动对直流系统的影响,换流变压器都具有较大范围的利用分接头调整电压的功能。例如:三峡到常州工程三峡侧换流变压器档位范围+25/-5,每档调节范围。因此保护设计时要考虑分接头调整带来的影响,如正常运行时变比的变化等。

直流系统的特殊运行工况 由于直流控制系统的特殊调节作用,使换流变压器遇到的运行工况以及故障情况不同于普通变压器。这些不同主要包括以下几点:

直流系统的故障相当于换流变压器的区外故障,一般短路电流都不会太大。对于整流侧,穿越换流变的'电流会增大,但由于直流控制保护系统的快速作用,很快会减小。对于逆变侧,直流系统的故障会造成直流电流无法传变至交流侧,反而会使穿越电流减小。

对于换流变压器保护来说,直流系统造成的最严酷的区外故障为整流侧的阀短路故障,相当于换流变出口的两相或三相短路故障。但由于直流保护的干预,实际只会出现半个周波的两相短路。对于逆变侧,由于触发角很大,阀短路时流过换流变压器的电流较整流侧小很多。

换流变压器发生区内故障时,直流系统一般不会提供短路电流。这是由直流控制系统的作用造成的。在整流侧,功率由交流侧转换至直流侧,换流变压器的故障只会造成这种转换的停止,而不会使功率反向,因此直流侧不会提供短路电流;在逆变侧,当故障轻微换相可以正常进行时,由于直流系统的定电流控制特性,直流侧不会提供额外的短路电流。如果故障严重,必然造成换相无法进行(交流电压降低),直流侧更不会提供短路电流。

由于直流控制系统快速的调节作用,在需要的时候,可以快速的将功率传输由一个方向反至另一个方向,对于换流变压器来说,就会出现快速的潮流反向。

换流变压器保护区内发生接地故障时,实际造成了阀的短路。由于阀的单向导电性,故障电流半周电流大,半周电流小,导致差电流中含有较大的二次谐波。

对于逆变侧的换流变压器的区内故障,往往会导致换相失败的发生,从而在穿越电流电流中产生很大的谐波,但差电流(即提供给故障点的电流)仍主要为工频分量。

由于换流变压器的特殊运行方式以及较大的漏抗(作为换相电抗),二次侧故障一般不会造成各侧TA的饱和,即使饱和造成保护的“误动作”也是正确的(换流变的区外即阀的区内故障,都会造成直流的停运)。但对于一个半开关的接线方式,交流系统区外故障时高压侧TA存在饱和的可能。。这种情况下的误动作是不可接受的,必须防止。

在阀未解锁前,当阀侧交流连线存在接地故障时,并不产生接地电流,也不会对变压器造成损害。但如此时不发现故障,阀一解锁后,就会造成阀的短路。因此要设置保护检测这种情况下的接地故障。

2 换流变压器的保护措施

保护的配置原则 为了保证既可靠又安全,在既简单又经济的情况下,可以这样配置换流变压器保护:每台换流变压器保护装设两台保护装置,每台保护装置的电源、输入独立,每台装置的输出都可以到达断路器的两个跳闸线圈以及直流控制的两个系统。每台装置采取措施防止自身误动作,而靠两装置的或出口防止故障情况下的拒动作。 保护的配置及原理 为了避免换流站特有的谐波对保护的影响,保护装置应从硬件和软件上采取措施,使保护只针对工频分量。

主保护包括稳态比率差动、差动速断、工频变化量比率差动、零序比率差动、过激磁保护。后备保护包括过流、零序过流、过电压、零序过压、饱和保护。

稳态比率差动保护 由于变比和联接组的不同,电力变压器在运行时,各侧电流大小及相位也不同。在构成继电器前必须消除这些影响。换流变压器的TA一般装在各侧绕组上,因此原、副边绕组电流相位相同,因此只需要对变比的影响进行补偿。以下的叙述的前提均为已消除了变压器各侧幅值和相位的差异。

稳态比例差动保护用来区分感受到的差流是由于内部故障还是不平衡输出(特别是外部故障时)引起。装置采用初始带制动的变斜率比率制动特性,稳态比率差动元件由低值比率差动(灵敏)和高值比率差动(不灵敏)两个元件构成。为了保证区内故障的快速切除,只有低值比率差动元件(灵敏)设有TA饱和判据,高值比率差动元件(不灵敏)不设TA饱和判据。

对于换流变压器分接头调整造成的差动电流不平衡,可用三种方法来解决:一是通过整定值躲开;二是利用浮动门槛自适应调整;三是利用分接头位置来调整。方法一、二简单实用,三实现起来复杂。

工频变化量比率差动保护 装置中依次按相判别,当满足 一定条件时,工频变化量比率差动动作。工频变化量比率差动保护经过涌流判别元件、过激磁闭锁元件闭锁后出口。

由于工频变化量比率差动的制动系数可取较高的数值,其本身的特性抗区外故障时TA的暂态和稳态饱和能力较强。工频变化量比率差动元件提高了装置在变压器正常运行时内部发生轻微匝间故障的灵敏度。且工频变化量比率差动保护不会受换流变压器分接头调整造成的差动电流不平衡的影响。

后备保护 后备保护包括过流、零序过流、过电压、零序过压、饱和保护。

3 小结

分析换流变压器与交流系统的主变压器比较所具有特点,阐述了这些特点以及直流输电的各种特殊运行工况对换流变压器保护带来的影响,并提出了相应的保护方案。

1主题内容与适用范围 本导则适用于电压等级在35~220kV的国产油浸电力变压器、6kV及以上厂用变压器和同类设备,如消弧线圈、调压变压器、静补装置变压器、并(串)联电抗器等。 对国并进口的油浸电力变压器及同类设备可参照本导则并按制造厂的规定执行。 本导则适用于变压器标准项目大、小修和临时检修。不包括更换绕组和铁芯等非标准项目的检修。 变压器及同类设备需贯彻以预防为主,计划检修和诊断检修相结合的方针,做到应修必修、修必修好、讲究实效。 有载分接开关检修,按部颁DL/T574-95《有载分接开关运行维修导则》执行。 各网、省局可根据本导则要求,结合本地区具体情况作补充规定。 2引用标准 电力变压器 油浸式电力变压器技术参数和要求 GB7251-87变压器油中溶解气体分析和判断导则 GBJ148-90电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 GB7665-87变压器油 DL/T572-95电力变压器运行规程 DL/T574-95有载分接开关运行维修导则 3检修周期及检修项目 检修周期 大修周期 一般在投入运行后的5年内和以后每间隔10年大修一次。 箱沿焊接的全密封变压器或制造厂另有规定者,若经过试验与检查并结合运行情况,判定有内部故障或本体严重渗漏油时,才进行大修。 在电力系统中运行的主变压器当承受出口短路后,经综合诊断分析,可考虑提前大修。 运行中的变压器,当发现异常状碚或经试验判明有内部故障时,应提前进行大修;运行正常的变压器经综合诊断分析良好,总工程师批准,可适当延长大修周期。中华人民共和国电力工业部1995-06-29发布1995-11-01实施 小修周期 一般每年1次; 安装在2~3级污秽地区的变压器,其小修周期应在现场规程中予以规定。 附属装置的检修周期 保护装置和测温装置的校验,应根据有关规程的规定进行。 变压器油泵(以下简称油泵)的解体检修:2级泵1~2年进行一次,4级泵2~3年进行一次。 变压器风扇(以下简称风扇)的解体检修,1~2年进行一次。 净油器中吸附剂的更换,应根据油质化验结果而定;吸湿器中的吸附剂视失 程度随时更换。 自动装置及控制回路的检验,一般每年进行一次。 水冷却器的检修,1~2年进行一次。 套管的检修随本体进行,套管的更换应根据试验结果确定。 检修项目 大修项目 吊开钟罩检修器身,或吊出器身检修; 绕组、引线及磁(电)屏蔽装置的检修; 铁芯、铁芯紧固件(穿心螺杆、夹件、拉带、绑带等)、压钉、压板及接地片的检修; 油箱及附件的检修,季括套管、吸湿器等; 冷却器、油泵、水泵、风扇、阀门及管道等附属设备的检朔; 安全保护装置的检修; 油保护装置的检修; 测温装置的校验; 操作控制箱的检修和试验; 无盛磁分接开关和有载分接开关的检修; 全部密封胶垫的更和组件试漏; 必要时对器身绝缘进行干燥处理; 变压器油的处理或换油; 清扫油箱并进行喷涂油漆; 大修的试验和试运行。 小修项目 处理已发现的缺陷; 放出储油柜积污器中的污油; 检修油位计,调整油位; 检朔冷却装置:季括油泵、风扇、油流继电器、差压继电器等,必要时吹扫冷却器管束; 检修安全保持记装置:包括储油柜、压力释放阀(安全气道)、气体继电器、速动油压继电器等; 检修油保护装置; 检修测温装置:包括压力式温度计、电阻温度计(绕组温度计)、棒形温度计等; 检修调压装置、测量装置及控制箱,并进行调试; 检查接地系统; 检修全部阀门和塞子,检查全部密封状态,处理渗漏油; 清扫油箱和附件,必要时进行补漆; 清扫并绝缘和检查导电接头(包括套管将军帽); 按有关规程规定进行测量和试验。 临时检修项目 可视具体情况确定。 对于老、旧变压器的大修,建议可参照下列项目进行改进 油箱机械强度的加强; 器身内部接地装置改为引并接地; 安全气道改为压力释放阀; 高速油泵改为低速油泵; 油位计的改进; 储油柜加装密封装置; 气体继电器加装波纹管接头。 4检修前的准备工作 查阅档案了解变压器的运行状况 运行中所发现的缺陷和异常(事故)情况,出口短路的次数和情况; 负载、温度和附属装置的运行情况; 查阅上次大修总结报告和技术档案; 查阅试验记录(包括油的化验和色谱分析),了解绝缘状况; 检查渗漏油部位并作出标记; 进行大修前的试验,确定附加检修项目。 编制大修工程技术、组织措施计划 其主要内容如下: 人员组织及分工; 施工项目及进度表; 特殊项目的施工方案; 确保施工安全、质量的技术措施和现场防火措施; 主要施工工具、设备明细表,主要材料明细表; 绘制必要的施工图。 施工场地要求 变压器的检修工作,如条件许可,应尽量安排在发电厂或变电所的检修间内进行; 施工现场无检修间时,亦可在现场进行变压器的检修工作,但需作好防雨、防潮、防尘和消防措施,同时应注意与带电设备保持安全距离,准备充足的施工电源及照明,安排好储油容量、大型机具、拆卸附件的放置地点和消防器材的合理布置等。 5变压器的解体检修与组装 解体检修 办理工作票、停电,拆除变压器的外部电气连接引线和二次接线,进行检修前的检查和试验。 部分排油后拆卸套管、升高座、储油柜、冷却器、气体继电器、净油器、压力释放阀(或安全气道)、联管、温度计等附属装置,并分别进行校验和检修,在储油柜放油时应检查油位计指示是否正确。 排出全部油并进行处理。 拆除无励磁分接开关操作杆;各类有载分接开关的拆卸方法参见《有载分接开关运行维修导则》;拆卸中腰法兰或大盖宫接螺栓后吊钟罩(或器身)。 检查器身状况,进行各部件的紧固并测试绝缘。 更换密封胶垫、检修全部阀门,清洗、检修铁芯、绕组及油箱。 组装 装回钟罩(或器身)紧固螺栓后按规定注油。 适量排油后安装套管,并装好内部引线,进行二次注油。 安装冷却器等附属装置。 整体密封试验。 注油至规定定的油位线。 大修后进行电气和油的试验。 解体检修和组装时的注意事项。 拆卸的螺栓等零件应清洗干净分类妥善保管,如有损坏应检修或更换。 拆卸时,首先拆小型仪表和套管,后拆大型组件,组装时顺序相反。 冷却器、压力释放阀(或安全气道)、净油器及储油柜等中件拆下后,应用盖板密封、对带有电流互感器的升高座应注入合格的变压器油(或采取其它防潮密封施)。 套管、油位计、温度计等易损部件拆下后应妥善保管,防止损坏和受潮;电容式套管应垂直放置。 组装后要检查冷却器、净油器和气体继电器阀门,按照规定开启或关闭。 对套管升高座、上部管道孔盖、冷却器和净油器等上部的放气孔应进行多次排气,直至排尽为止,并重新密封好擦净油迹。 拆卸无盛磁分接开关操作杆时,应记录分接开关的位置,并作好标记;拆卸有载分接开关时,分接头应置于中间位置(或按制造厂的规定执行)。 组装后的变压器各零部件应完整无损。 认真做好现场记录工作。 检修中的起重和搬运 起重工作及注意事项 起重 荼应分工明确,专人指挥,并有统一信号; 根据变压器钟罩(或器身)的重要选择起重工具,包括起重机、钢丝绳、吊环、U型挂环、千斤顶、枕木等; 起重前应先拆除影响起重工作的各种连接; 如系吊器身,应先紧固器身有关螺栓; 起吊变压器整体或钟罩(器身)时,钢丝绳应分别挂在专用起吊装置上,遇棱角处应放置衬垫;起吊100mm左右时应停留检查悬挂及捆绑情况,确认可靠后再继续起吊; 起吊时钢丝绳的夹角不应大于60°,否则应采用专用吊具或调整钢丝绳套; 起吊或落回钟罩(或器身)时,四角应系缆绳,由专人扶持,使其保持平稳; 起吊或降落速度应均匀,掌握好重心,防止倾斜; 起吊或落回钟罩(或器身)时,应使高、低压侧引线,分接开关支架与箱壁间保持一定的间隙,防止碰伤器身; 当钟罩(或器身)因受条件限制,起吊后不能移动而需在空中停留时,应采取支撑等防止坠落措施; 吊装套管时,其斜度应与套管升高座的斜度基本一致,并用缆绳绑扎好,防止倾倒损坏瓷件; 采用汽车吊起重时,应检查支撑稳定性,注意起重臂伸张的角度、回转范围与临近带电设备的安全距离,并设专人监护。 搬运工作及注意事项 了解道路及沿途路基、桥梁、涵洞、地道等的结构及承重载荷情况,必要时予以加固,通过重要的铁路道口,应事先与当地铁路部门取得联系。 了解沿途架空电力线路、通信线路和其它障碍物的高度,排除空中障碍,确保安全通过。 变压器在厂(所)内搬运或较长距离搬运时,均应绑轧固定牢固,防止冲击震动、倾斜及碰坏零件;搬运倾斜角在长轴方向上不大于15°,在短轴方向上不大于10°;如用专用托板(木排)牵引搬运时,牵引速度不大于100m/h,如用变压器主体滚轮搬运时,牵引速度不大于200m/h(或按制造厂说明书的规定)。 利用千斤顶升(或降)变压器时,应顶在油箱指定部位,以防变形;千斤顶应垂直放置;在千斤顶的顶部与油箱接触处应垫以木板防止滑倒。 在使用千斤顶升(或降)变压器时,应随升(或降)随垫木方和木板,防止千斤顶失灵突然降落倾倒;如在变压器两侧使用千斤顶时,不能两侧同时升(或降),应分别轮流工作,注意变压器两侧高度差不能太大,以防止变压器倾斜;荷重下的千斤顶不得长期负重,并应自始至终有专人照料。 变压器利用滚杠搬运时,牵引的着力点应放在变压器的重心以下,变压器底部应放置专用托板。为增加搬运时的稳固性,专用托板的长度应超过变压器的长度,两端应制成楔形,以便于放置滚框;运搬大型变压器时,专用托板的下中应加设钢带保护,以增强其坚固性。 采用专用托板、滚框搬运、装卸变压器时,通道要填平,枕木要交错放置;为便于滚杠的滚动,枕木的搭接处应沿变压器的前进方向,由一个接头稍高的枕木过渡到稍低的枕木上,变压器拐弯时,要利用滚框调整角度,防止滚杠弹出伤人。 为保持枕木的平整,枕木的底部可适当加垫厚薄不同的木板。 采用滑全国纪录组牵引变压器时,工作人员和需站在适当位置,防止钢丝绳松扣或拉断伤人。 变压器在搬运和装卸前,应核对高、低压侧方向,避免安装就位时调换方向。 充氮搬运的变压器,应装有压力监视表计和补氮瓶,确保变压器在搬运途中始终保持正压,氮气压力应保持,露点应在-35℃以下,并派专人监护押运,氮气纯度要求不低于。 (2005-06-25)整体组装 整体组装前的准备工作和要求 组装前应彻底清理冷却器(散热器),储油柜,压力释放阀(安全气道),油管,升高座,套管及所有组、部件。用合格的变压器油冲洗与油直接接触的组、部件。 所附属的油、水管路必须进行彻底的清理,管内不得有焊渣等杂物,并作好检查记录。 油管路内不许加装金属网,以避免金属网冲入油箱内,一般采用尼龙网。 安装上节油箱前,必须将油箱内部、器身和箱底内的异物、污物清理干净。 有安装标志的零、部件,如气体继电器、分接开关、高压、中压套管或高座及压力释放阀(或安全气道)升高座等与油箱的相对位置和角度需按照安装标志组装。 准备好全套密封胶垫和密封胶。 准备好合格的变压器油。 将注油设备、抽真空设备及管路清扫干净;新使用的油管亦应先冲洗干净,以去除油管内的脱模剂。 组装 装回钟罩(或器身); 安装组件时,应按制造厂的“发装使用说明书”规定进行; 油箱顶部若有定位件,应按并形尺寸图及技术要求进行定位和密封; 制造时无升高坡度的变压器,在基础上应使储油柜的气体继电器侧具有规定的升高坡度; 变压器引线的根部不得受拉、扭及弯曲; 对于高压引线,所包扎的绝缘锥部分必须进入套管的均压球内,防止扭曲; 在装套管前必须检查无盛磁分接开关连杆是否已插入分接开关的拨叉内,调整至所需的分接位置上; 各温度计座内应注以变压器油; 按照变压器外形尺寸图(装配图)组装已拆卸的各组、部件,其中储油柜、吸湿器和压力释放阀(安全气道)可暂不装,联结法兰用盖板密封好;安装要求和注意事项按各组部件“安装使用说明书”进行。 排油和注油 排油和注油的一般规定 检查清扫油罐、油桶、管路、滤油机、油泵等,应保持清洁干燥,无灰尘杂质和水分。 排油时,必须将变压器和油罐的放气孔打开,放气孔宜接入干燥空气装置,以防潮气侵入。 储油柜内油不需放出时,可将储油柜下面的阀门关闭。将油箱内的变压器油全部放出。 有载调压变压器的有载分接开关油室内的油应分开抽出。 强油水冷变压器,在注油前应将水冷却器上的差压继电器和净油器管路上的塞子关闭。 可利用本体箱盖阀门或气体继电器联管处阀让安装抽空管,有载分接开关与本体应安连通管,以便与本体等压,同时抽空注油,注油后应予拆除恢复正常。 向变压器油箱内注油时,应经压力式滤油机(220kV变压器宜用真空滤油机)。 图1真空注油连接示意图 1-油罐;2,4,9,10-阀门;3-压力滤油机或真空滤油机;5-变压器;6-真空计;7-逆止阀;8-真空泵 真空注油 220kV变压器必须进行真空注油,其它奕坟器有条件时也应采用直空注油,真空注油应遵守制造厂规定,或按下述方法进行,其连接图见图1。 通过试抽真空检查油箱的强度,一般局部弹性变形不应超过箱壁厚度的2倍,并检查真空系统的严密性。 操作方法: 以均匀的速度抽真空,达到指定真空度并保持2h后,开始向变压器油箱内注油(一般抽空时间=1/3~1/2暴露空气时间),注油温度宜略高于器身温度; 以3~5t/h的速度将油注入变压器距箱顶约200mm时停止,并继续抽夫空保持4h以上; 变压器补油:变压器经真空注油后补油时,需经储油柜注油管注入,严禁以下部油门注入,注油时应使油流缓慢注入变压器至规定的油面为止,再静止12h。 胶囊式储油柜的补油 进行胶囊排气:打开储油柜上部排气孔,由注油管将油注满储油柜,直至排气孔出油,再关闭注油管和排气孔; 从变压器下部油门排油,此时空气经吸湿器自然进入储油柜胶囊内部,至油位计指示正常油位为止。 隔膜式储油柜的补油 注油前应首先将磁力油位计调整至零位,然后打开隔膜上的放气塞,将隔膜内的气体排除再关闭放气塞; 由注油管向隔膜内注油达到比指定油位稍高,再次打开放气塞充分排除隔膜内的气体,直到向外溢油为止,经反复调整达到指定油位; 发现储油柜下部集气盒油标指示有空气时,应用排气阀进行排气; 正常油位低时的补油,利用集气盒下部的注油管接至滤油机,向储油柜内注油,注油过中发现集气盒中有空气时应停止注油,打开排气管的阀门向外排气,如此反复进行,直至储油柜油位达到要求为止。 油位计带有小胶带时储油柜的注油 变压器大修后储油柜未加油前,先对油位计加油,此时需将油表呼吸塞及小胶囊室的塞子打开,用漏斗从油表呼吸塞座处徐徐加油,同时用手按动小胶带,以便将囊中空气全部排出; 打开油表放油螺栓,放出油表内多余油量(看到油有内油位即可),然后关上小胶囊室的塞子,注意油表呼吸塞不必拧得太紧,以保证油表内空气自由呼吸。 整体密封试验 变压器安装完毕后,应进行整体密封性能的检查,具体规定如下: 静油柱压力法:220kV变压器油柱高度3m,加压时间24h;35~110kV变压器油柱高度2m,加压时间24h;油柱高度从拱顶(或箱盖)算起。 充油加压法:加油压时间12h,应无渗漏和损伤。 变压器油处理 一般要求 大修后注入变压器内的变压器油,其质量应符合GB7665-87规定; 注油后,应从变压器底部放油阀(塞)采取油样进行化验与色谱分析; 根据地区最低温度,可以选用不同牌号的变压器油; 注入套管内的变压器油亦应符合GB7665-87规定; 补充不同牌号的变压器油时,应先做混油试验,合格后方可使用。 压力滤油 采用压力式滤油机过滤油中的水分和杂质;为提高滤油速度和质量,可将油加温至50~60℃。 滤油机使用前应先检查电源情况,滤油机及滤网是否清洁,极板内是否装有经干燥的滤油纸,转动方向是否正确,外壳有无接地,压力表指示是否正确。 启动员滤油机应先开出油阀门,后开进油阀门,停止时操作顺序相反;当装有加热器时,应先启动滤油机,当油流通过后,再投入加热器,停止时操作顺序相反。 滤油机压力一般为,最大不超过

变压器期刊官网

求《变压器》投稿邮箱或者官方网站地址,感谢帮助

若晨传媒旗下的电子变压器资讯网,主要介绍电子变压器电感线圈行业的动态新闻等,其中,电子变压器专辑期刊杂志是国家一级协会,中电元协电子变压器分会的会刊,行业知名期刊,可上去了解一下,网站内都有介绍的,

《变压器》月刊 主办单位沈阳变压器研究院国际标准刊号1001-8425国内统一刊号CN21-1119/TM国外发行代号M4234联合征定代号LD211119创刊日期出刊日期当月08报刊版式大16开48页主管单位:沈阳变压器研究院主办单位:沈阳变压器研究院主编:项阳地址:沈阳浑南新区世纪路39号邮政编码:110179国际标准刊号:ISSN 1001-8425国内统一刊号:CN 21-1119/TM邮发代号:8-34单价:定价:

这个毫无疑问是沈阳变压器研究院主编的《变压器》杂志。1、沈阳变压器研究院是我国变压器行业的技术归口研究院,是变压器行业协会所在地,也是变压器标准归口单位和变压器检测中心所在地。2、《变压器》杂志在我印象中,上个世纪70年代就有的。以前还办过《变压器译丛》。他的读者主要有变压器行业和电力部门中变压器运行单位的技术人员。3、只不过现在广告多了一点,高水平的论文没有以前多,这主要是市场竞争激烈的环境造成的。

变压器状态检测器论文

您好,相关资料站的很难找,以下是一篇相关的论文(PDF格式),需下载:仅供参考,请自借鉴希望对您有帮助

试验变压器的电力设备预防性试验规范与选型要求预防性试验是电力设备运行和维护工作中一个重要环节,是保证电力设备安全运行的有效手段之一。多年来,电力部门和大型工矿企业的高压电力设备基本上都是按照原电力部颁发的《电力设备预防性试验规程》(以下简称《规程》)的要求进行试验的,对及时发现、诊断设备缺陷起到重要作用。1996年原电力部对《规程》近行了修订,修订后的电力行业标准DL/T 596—1996《电力设备预防性试验规程》已于1997年正式颁发实施。《规程》修订沿革《规程》自50年代至今40年中,先后共进行过5次修订,技术比较成熟。前两个版本在内容和格式方面比较“苏联化”,1985年和1996年版开始逐步“中国化”了。《规程》内容广泛,实际上有的内容已经超出预防性试验的范围,就其性质来说,属运行维护范畴。因此有人曾建议名称改用“电力设备维护试验规程”。这里的“维护”一词包含了预防性维护、预知性维护和消缺性维护,与《规程》的实际内容比较相符,但考虑到习惯上对“维护”一词理解较窄.而"预防性试验”又用惯了,最后仍沿用老名称。《规程》内容概要《规程》分章规定了各种常用电力设备的试验项目、试验周期和技术要求。这些试验项目综合了近代基本诊断技术。按专业来说,分属于电气、化学、机械等技术领域,其中大部分是电气试验项目。按试验性质来说,试验项目可分为4类。1.定期试验即预防性试验。这是为了及时发现设备潜在的缺陷或隐患,每隔一定时间对设备定期进行的试验。例如油中溶解气体色谱分析、绕组直流电阻、绝缘电阻、介质损耗因数、直流泄漏、直流耐压、交流耐压、绝缘油试验等。2.大修试验指大修时或大修后做的检查试验项目。除定期试验项目外,还需作:穿心螺栓绝缘电阻、局部放电、油箱密封试验、断路器分合闸时间和速度、电动机间隙等试验.其中有些是纯属于机械方面的检查项目。3.查明故障试验指定期试验或大修试验时,发现试验结果有疑问或异常,需要进一步查明故障或确定故障位置时进行的一些试验,或称诊断试验。这是在“必要时”才进行的试验项目。例如:空载电流、短路阻抗、绕组频率响应、振动、绝缘油含水量和油介损、压力释放器、氧化锌避雷器工频参考电压试验等。4.预知性试验这是为了鉴定设备绝缘的寿命,搞清被试设备的绝缘是否还能继续使用一段时间,或者是否需要在近期安排更换而进行的试例如:发电机或调相机定子绕组绝缘老化鉴定、变压器绝缘纸(板)聚合度、油中糠醛含量试验等。由上述可见、《规程》所列的不少试验项目,确已超出定期预防性试验的范围。试验项目、周期的确定和技术要求的由来各类设备(如变压器、电容器、SF6开关设备、支持绝缘子等)的试验项目和试验周期,由设备运行的可靠性和安全情况,决定是否需要增减或修改。技术要求的来源和依据,大体上可归纳成两类:1.由电力系统绝缘配合设计出发制定交流耐压试验电压标准;2.不少技术要求是由试验经验的积累,经统计分析确定,并经多年实践.逐步修改、完善的(如介损、泄漏电流、吸收比等的技术要求)。试验结果的分析和判断《规程》着重指出,对试验结果应进行综合分析和判断。也就是一般应进行下列三步:第一步应与历年各次试验结果比较;第二步与同类型设备试验结果比较;第三步对照《规程》技术要求和其他相关试验结果,进行综合分析,特别注意看出缺陷发展趋势,作出判断。综合分析、判断有时有一定复杂性和难度,而不是单纯地、教条地逐项对照技术要求(技术标准)。特别当试验结果接近技术要求限值时(尚未超标),更应考虑气候条件的影响、测量仪器可能产生的误差以及甚至要考虑操作人员的技术素质等因素。综合分析、判断的准确与否.在很大程度上决定于判断者的工作经验、理论水平、分析能力和对被试设备的结构特点,采用的试验方法、测量仪器及测量人员的素质等的了解程度。根据综合分析,一般可对设备作出判断结论:合格、不合格或对设备有怀疑。对不合格的,应及时进行检修。为了能做到有重点地或加速处理缺陷,应根据设备结构特点,尽量做部件的分节试验,以进一步查明缺陷的部位或范围。对有怀疑或异常、一时不易确定是否合格的设备.应采用缩短试验周期的措施,或在良好天气下、或在温度较高时进行复测,来监视设备可疑缺陷的变化趋势,或验证过去测量的准确性。近十多年来国内外的进展近十多年来我国电力设备预防性试验工作,在试验方法、试验项目和试验仪器等方面有了不少进展。现分别举例叙述如下:1.基本绝缘试验项目传统的基本绝缘试验项目,如绝缘电阻、直流泄漏电流、介损、直流耐压和交流耐压试验等试验方法基本不变,仅有少数改进:(1)绝缘电阻试验项目中,发现变压器吸收比试验不够完善,不少新出厂或检修烘燥后容量较大的变压器,绝缘电阻绝对值较高,但吸收比(R60"/R15")偏小,疑为不合格。经研究后采用国际上广泛采用的极化指数试验(R600"/R60")后,就易于作出明确判断,因此《规程》中增列了极化指数的试验项目。从介质理论来分析,吸收比试验时间短(仅60s),复合介质中的极化过程刚处于开始阶段,远没有形成基本格局,尚不能全面反映绝缘的真实面貌,故吸收比结果不够准确;极化指数试验时问为600s(10min),介质极化过程虽末完成,但已初步接近基本格局,故能较准确地反映绝缘受潮情况。从技术发展历史来看,工业发达国家从40年代至今都一直采用极化指数试验,不 采用吸收比试验。(2)改进在电场干扰下测量设备介损时的抗干扰方法。如采用电子移相抵消法和异频法等新方法,且操作方便,提高了工作效率,但另一种采用电源倒向和自动计算的方法在干扰较大时,误差仍较大。(3)6—35kV中压橡塑绝缘电力电缆(指聚氯乙烯绝缘、交联聚乙烯绝缘和乙丙橡胶绝缘电缆),取消了投运后的直流耐压试验项目,代之以测量外护套和内衬层的绝缘电阻。这是因为高幅值直流电压在宏观上会降低橡塑电缆绝缘寿命,不少直流耐压试验合格的橡塑电缆在运行中发生击穿事故,这已在理论和国内外的运行实践中证实。但对于35kV及以下纸绝缘电缆,多年经验表明,直流耐压试验仍是行之有效的预防性试验项目,能发现许多消在缺陷,故还应继续执行。(4)交流耐压试验中,对大容量试品(如SF6组合电器、大型发电机等)采用工频串联谐振方法的日渐增多。(5)总结数十年的经验表明,电力变压器的定期试验项目首先应是油中溶解气体的色谱分析。绝大部分的变压器缺陷都是从色谱分析发现的。这次修订《规程》时,把色谱分析列为电力变压器的首位试验项目。2.大修和查明故障试验项目在这方面先后增加了一些试验项目,举例如下:(1)35kV固体环氧树脂绝缘的电流互感器增做局部放电试验;(2)220kV及以上电力变压器大修后,做局部放电试验;(3)电力变压器出口短路后,做变压器绕组频率响应试验,以检测绕组是否变形;(4)在需要时做变压器油中含水量、油中含糠醛量和绝缘纸板聚合度试验,后两项试验的目的在于决定是否需要更换绝缘;(5)氧化锌避雷器如果直流电压试验或交流阻性电流测试不合格,应做交流工频参考电压试验,以作出进一步判断。3.测量仪器和试验设备的改进这些年来国内生产的测量仪器和试验设备有了较多的改进,有的逐步走向数字化、微机操作化、自动化或半自动化,提高了测量精度和工作效率,促使应用了数十年的老仪器逐步更新换代。例如:(1)出现了数字兆欧表,能自动计时,并能显示吸收比值和极化指数值,兼有自动放电功能。(2)高压直流电压试验设备更趋完善。功率和电压等级均有提高,采用数字式和指针式并用表计,读数方便、准确、易于判别。(3)出现了多种新颖的绝缘介损失角测试仪(有新式的M型试验电路和测量电压、电流相角差的电路多种)。大多用微机控制或自动计算,数字显示。抗干扰性能也有显著改进,提高了测量精度和工作简捷性,促使QS1高压电桥逐步淘汰。(4)广泛使用新式数字式交直流高压分压器,使现场能方便地直接测量高压侧电压,能直接显示“交流电压峰值/√-2”的数值或有效值。(5)生产了多种供大容量试品交流耐压试验用的串联谐振试验装置。(6)测量大型电力变压器绕组直流电阻的仪器,解决了五柱式三角绕组的测量问题,采用微机控制,提高了稳流性能,显著缩短了测量时间。(7)新开发的有载分接开关特性测试仪和高压开关测试仪,采用数字存储电子示波器的原理,显示波形和测量值,并打印出来,成为成套专用仪器。(8)国产的电力 变压器绕组变形测试仪,性能较好。(9) 氧化锌避雷器自动测试仪、 变压器变比和接线组别自动测试仪、 接触电阻测量仪、 绝缘油介质强度自动测试器等,都有了改进。几个工业发达国家电力公司的预防性试验工作,从整体上来看,试验项目较少,有的试验周期较长。关于绝缘方面的基本试验与我国相似,这些项目一般都由电力公司自己做。一些查明故障用的特殊试验项目(如局部放电定位、绕组变形试验等),则委托专业试验单位或制造厂做。国外采用的试验方法和项目,有的与我国习惯做法不尽相同,例 如他们习惯于对氧化锌和普阀式(碳化硅)避雷器做介质损耗测量。实际上是对氧化锌避雷器测量5~10KV交流电压下阻性电流的损耗。此法应用得很广泛。而 我国习惯于做直流电导电流1mA下电压试验。国外有的对避雷器做局部放电试验,或测量无线电干扰,发现了不少缺陷。有的对有间隙的避雷器做冲击放电电压试验。对大型电动机,广泛做直流泄漏和直流耐压试验,而不做交流耐压试验等。国外电流公司试验班组在基本试验项目方面采用的试验仪器与我国相似,但工业发达国家的仪器和试验设备的先进性和微机化、自动化方面则优于我国,相应的测量精度也高些,有的还配备红外照相机、携带式通讯设备、笔记本电脑(有的附有分析、诊断试验数据用的"专家系统")、手提电话、传真附件和打印机等,能将重要的试验结果和发现的问题在现场向上级汇报,请求指示。国外试验班组一般都有专用的试验用汽车。部分较重的试验设备,如交、直流耐压试验设备、介损仪、电缆故障测寻设备等固定在车上,不用搬上搬下。用轻便的高压铜轴电缆引向被试设备。纵观国内外电力部门预防性试验工作的进展过程,从试验项目和试验周期来看,凡是一个国家生产的电力设备产品质量较好的,运行中注意维护,运行可靠性较高的,这个国家规定的试验项目就较少,试验周期也较长,有的甚至对某些设备不做试验。目前我国电力设备质量和运行维护水平正处于逐步提高的过程,新颁发实施的DL/T596-1996《电力设备预防性试验规程》中,已经适当精简了部分试验项目,有的设备的试验周期也有所延长,但试验项目还是偏多的,周期也较短,有待于进一步提高。在电气设备上工作,除少数是在设备运行中带电进行者外,一般要在设备停电状态下进行,而且还要对停电的设备采取验电、挂地线等保证人身安全的技术措施。在停电的电气设备进行电气试验,特别是进行高压电气试验工作,除了切断设备一切可能来电的电源外,还要用试验电源给被试设备加压,使设备产生高电压,以达到试验的目的。由于给被试设备加压前后要频繁拆接线;对有较大电容的设备或有静电感应的被试设备试后还要进行放电或接地;被试设备加压一般要高于运行电压的几倍,而且试验用助导线多是裸露的;试验工作因其他班组往往是同时作业或交义作业等特点,高压电气试验工作较一般的电气设备维修正作更具有危险性,因此,既要求试验人员认真执行《电业安全工作规程》发电厂和变电所电气部分有关保证人身安全的技术措施和组织措施还要执行电气试验工作的有关安全规定,防止试验中发生高压触电事故,保证试验人员和有关工作人员的安全。高压电气试验工作应遵守下列主要安全注意事项:一、 试验人员必须胜任工作,试验工作人员不得少于二人,并应有试验负责人,制定和执行安全措施高压试验工作人员必须清楚试验目的、方法(包括熟悉试验仪表的性能、使用方法等)和应采取的安全措施。工作前,负责人应对全体试验人员详细布置试验工作中的安全注意事项带电测试应根据现场情况制定安全措施,重要的特殊性试验、研究性试验和在运行系统进行试验,必须有试验方案,并经有关领导批准后方可进行。这样,使试验工作能在有组织、有领导、有安全措施,而且在层层有人把关情况下安全进行。不这样做,特别是安全措施得不到落实,就要发生事故。如:某供电所电气试验室技术员做开关的介质损失角试验时,把正使用的试验接线同不用的导线混杂在一起,而且还边加压,边清理,以致,触及已加压到3千伏的导线头上,触电死亡。二、弄清工作范围,把被试设备与其他设备明显隔开,并有人监护设备停电进行高压电气试验工作,应执行工作票制度,同运行人员履行工作许可手续,弄清停电工作范围,并按《电业安全工作规程》发电厂和变电所电气部分的规定,在试验现场装设遮栏或围栏,栏上向外悬挂“止步!高压危险”标示牌,有人监护。被试设备两端不在同一地点时,另一端也应有人看守。其目的就是为了不致搞错停电工作范围。但从发生的事故中,有的是不设置遮栏或围栏,不设监护人,也有的是围栏末起到作用。现举例如下:某变电站由高压试验班进行35千伏的312开关介质损失角试验。由于工作围栏不能区分停电、带电设备,一名试验工从开关上下来以后,再上开关时,无人监护,未弄清楚被试设备,误登上临近运行中的312开关,触电死亡。三、 要坚持试验前复查接线的制度试验工作中接线拆接频繁,认真执行试验前复查结线制度,可以提前纠正错误结线,避免由于错接线而发生的事故。因此,试验前复查结线是试验工作的一项基本制度,也是防止试验工作触电事故,保证人身安全的一条有效措施,对这项制度既要求认真执行,更要求能坚持下去,应该对低级工、实习人员的结线复查,有所侧重,对高级工或简单结线也不能有所放松,否则达不到复查结线的目的。如:某电厂在高压试验室内用100千伏高压试压机做6千伏瓷瓶的耐压试验。试验前,未详细检查升压器的连接线,就接上被试瓷瓶的接线,当加压到42千伏时,才发现升压器高压出口瓷瓶上还接着一条塑料导线,直通到110千伏变电站内,约50多米,立即停下试验,把这条线拆除。这条线原来是十多天前试验110千伏开关后遗留末拆除者,而且就拴在变电站架构上,临近架构处就有十多名施工人员在工作,幸亏加压时,这些工人未靠近或碰及导线。四、试验工作时,应站在绝缘垫上或穿绝缘鞋进行,这是防止触电事故或减轻伤害程度的一项安全措施如:某供电局修配厂试验工人校验MД—16电桥时,只断开电桥的开关,未拉开电源刀闸,当翻动电桥时,右手碰到电桥的电源端的带电部分上,由于电桥有接地,工作人员脚下垫了绝缘垫,自己脱离了电源,仅造成从右手无名指到左手掌的通电回路触电烧伤。五、加压试验前,必须通知有关人员离开被试设备或退出现场后才能进行高压电气试验工作,经常和其他维修班组同时进行.或交义进行,所以加压前,必须通知这些工作班组离开被试设备或退出现场,以便使被试设备在无人工作状态下进行,达到保证人员安全的目的。这些做法是不容忽视的,否则会造成严重后果。如:某变电站变压器检修、试验工作中,变压器加压试验前末通知有关班组的工作人员,以致一名维护工人认为设备无电,先后两次登上变压器工作,正当加压时,这名工人再次攀登变压器时,幸亏被发现,避免了触电事故。六、对有电容或有电感应的被试设备试验前后必须充分放电或接地被试的大电容设备如:母线、电缆、电容器等及有静电感应的设备停电后,以及高压直流试验完成后,都必须进行充分放电或接地,证明被试设备确无电荷,才能工作。由于这些设备的残压或感应电压高,放电时须使用绝缘棒,也可以防止误碰到运行中的带电设备上。有的单位不注意放电或接地,而生了触电事故。如:某电厂高压试验室技术员进行6千伏电缆的直流30千伏、时间5分钟的耐压试验工作。准备试验的5条相邻的电缆两端编号顺序实际上颠倒的,留有隐患,如一端编号是l,而另一端却是5,一直末被觉察。当初试验一条电缆完了,断开试验电源后,未进行放电前,手触从编号看不是被试电缆,而实际却是刚刚试后的,残压为25 千伏的电缆头上,以致被残留电荷电死。七、加压试验工作的拉、合闸,必须相互呼应,正确传达口令加压试验工作的拉、合闸操作比较频繁,如果凭主观臆断或只看表计而不听口令,或未相互呼应,正确传达口令,就可能发生触电事故。如:某供电局修配厂试验班进行变压无载试验时,试验电源操作人认为已经接好线,未通知设备上的倒线人,即合上试验闸,当倒线人发现接线松动,去动接线时触电。八、加压试验倒换接线时,调压器必须退至零位,拉开试验电源刀闸后才能进行加压试验工作正常倒换接线时都必须把调压器调至零位,切断试验电源,但是在查找加压后发生的问题,发现接线不牢或错接线及试验电源既有总刀闸,又有分刀闸时,有的试验人员则有所忽略而发生事故。如:某供电局变电施工队在某变电站升压器做开关的交流耐压试验时,发现试验数据有问题,在查找原因中,末将升压器调至零位,也末切断试验电源。当发现是升压器极性接反的错误后,准备改变极性时,试验人员触及加压至50千伏的带电部分,幸亏自己脱离开电源,仅烧伤双手,未造成严重后果。

摘要:随着我国电网设施的增加,为了电力设备的高效和正常运转,确保国家生产和人民生活的正常进行,电气设备故障诊断显的尤为重要。本文在阐述电气系统故障诊断必要性的基础上,总结了常见的电气系统故障诊断方法,并结合一实例探讨了基于振动信号的电气故障诊断系统的应用。关键词:电气系统;故障诊断;振动信号引言 电器系统的故障诊断技术是一门综合性技术,涉及现代控制理论、信号处理、模式识别、人工智能、小波变换数理统计、模糊逻辑等多学科理论。现代电网互联规模和运行复杂性越来越大,过去的故障诊断方法难以适应目前电力系统的发展趋势,系统故障诊断难以达到理想的效果。因此,目前研究电力系统故障诊断的方法主要是以智能化方法为主的。通常是由专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,从而提出对设备的维修处理建议。即通过状态监测来收集特征量,用故障诊断来分析判断特征量;依据分析结果,进行纵向(和历史数据)和横向(和同类设备)比较,制定维修方案,实施状态维护[1]。1.电气系统故障诊断的必要性电气系统故障对国计民生的重大事件,加强电气系统的故障诊断是具有显著的现实价值。以电气系统中最关核心也最易损伤的变压器的故障诊断为例,从以停电进行常规的预防性试验为基础的预防性维修逐步过渡到以在线监测为基础的状态维修,己成为电力系统的必然发展趋势,而能否对电力变压器的运行状态进行在线监测及故障诊断则是实现状态维修的关键。随着传感技术和电子及计算机技术的高速发展,对电力变压器实施振动在线监测已成为可能。 近年来,随着人型变压器制造水平的不断提高,变压器的可靠性也越来越高,同时对电网运行单位的生产效率和经济效益的要求也不断提高,鉴于传统的定期维修制度及离线试验所暴露出来的问题,人们开始关注变压器状态监测的研究和应用。随着电力系统自动化水平的提高,越来越多的变电站引入了变压器在线监测装置。日前在线监测项目主要包括绝缘油中气体在线监测、局部放电在线监测、介质损坏因数在线监测等。这些在线数据可以及时反映变压器绝缘的变化,对于及早发现故障,防止故障进一步扩人有很大帮助。将在线数据引入到变压器的故障诊断中,可以极大地提高诊断的实时性和准确性[2]。由于传统的监测方法与电力系统有电气连接,操作存在危险性。一种新的监测方法被人们所重视,即变压器振动监测法,通过粘在器身上的振动加速度传感器获得变压器的振动信号,一种完全无电气连接的方式在线监测的方法。2.常见的电气系统故障诊断方法 目前,智能诊断方法基本上是在变压器油中溶解气体的分析的基础上开展起来的,主要包括以下三种方法: (1)人工神经网络故障诊断法:基一于人工神经网络的变压器故障诊断系统的工作过程由两个阶段组成:①学习期:在学习过程中,气体分析数据及其它各种测试数据来源于变压器历史数据的计算后的结果,接着数据集被读入网络,通过反向传播学习计算法,计算权值和阀值。②工作期:在诊断过程中,计算来自不同变压器的测试样本,得到网络的实际输出,最后将这些值与所期望的输出值进行比较。采用模块化结构,各模块样本训练是独立进行的。人工神经网络主模块根据各分模块分析结果进行横向和纵向的、历史和现行的综合分析判断;并由前向通道传播至主模块各节点,经激活函数作用后,传送到输出层各节点,再经输出点的作用函数,输出诊断结沦[3]。 (2)灰色关联法:变压器故障的灰色诊断是应用灰色系统理沦对故障的征兆模式和故障模式进行识别的技术。灰色理沦认为:未知的、非确知的信息是黑色的;己知信息称为自色的;即含有未知信息又含有己知信息的系统,称为灰色系统。由此可见:变压器故障诊断系统是灰色系统。该方法对于一些较难判断的故障如受潮等有较好的准确性。 (3)专家系统故障诊断法:变压器故障诊断专家系统是将在变压器故障诊断方面的多位专家所具有的知识、经验、推理、技能综合后编制成大型计算机程序,着重围绕气体色谱分析,采用三比值法和特征气体对变压器运行状况进行初步分析,判断变压器的故障。专家系统利用计算机系统帮助人们分析解决只能用语言描述、思维推理的复杂问题。现场技术人员可以利用各种信息和征兆,在计算机系统的帮助下有效的解决工程实际问题。3.变压器振动故障诊断方法的应用实例 基于振动信号的故障诊断方法 电力变压器铁心或绕组发生位移、松动或变形时,相对于正常状态下的振动信号,这时测得振动信号会有高频成分出现,原来一些频率处的幅值也会发生变化,并且铁心或绕组位移、松动或变形越严重,出现的高频成分越多。另外,此时在一些频率处的幅值变化也就越人。变压器铁心或绕组发生故障时,振动信号的能量分布也会发生变化。综上所述,有以下诊断铁心或绕组是否发生故障的方法[4]: (1)将测量得到的时域波形与正常状态下的时域波形相比较,若某处幅值出现明显的增加或抖动,说明变压器有异常状况出现。 (2)将得到的振动信号进行快速傅立叶变换,得到其幅频特性曲线。在振动信号的幅频特性曲线下,相对于正常状态下的振动信号,主频或谐波分量幅值若出现明显变化,则可以认为绕组或铁心可能存在故障。对变压器进行故障诊断时,还要考虑变压器的背景资料信息,建立完备的变压器背景资料库,这对于提高变压器故障诊断的准确性具有很大的意义。现行的各种变压器故障诊断方法都是对变压器的运行状态进行离散分析,往往依据测得的变压器实际数据进行故障诊断,而对变压器的背景资料,如变压器的容量、电压等级、型号、安装地点、投运时间以及维修使用情况都没有加以重视,也几乎不涉及变压器运行状态变化的“过去”数据,极大地降低了诊断变压器故障严重程度和发展趋势的准确性。变压器振动故障诊断方法的应用本文以如下组建好的监测系统为例,对试验变压器负载工况下的振动进行监测试验,选用电容作为负载。监测系统接线图如图1所示。本文考虑了不同状态下的5%的随机测试噪声,图2(a)、2(b)为副边电压、电流分别为20KV,时的变压器振动信号时域波形图和频谱图。 根据 中基于振动信号的故障诊断方法(1),即时域信号来判断,由于随机测试噪声的存在,由图2(a)显然无法确定变压器是否发生故障,若对时域信号进行频谱分析,如图2(c)所示,不同故障状态下变压器的频谱图的比较,可以看处各谐波分量幅值出现了比较明显的变化,则可以认为变压器可能存在故障,因此须进行具体检测以确定故障损伤特征。尽管我国开展了电气设备在线状态监测理论研究,但由于目前运行经验缺乏,所以往往使监测系统无法精确确定,这正如预防性试验标准的制定一样,需要小断总结运行经验。因此,基于实践经验的专家系统建立势在必行,它要求进行大量的基础性研究工作,同时开展广泛的实践,积累运行经验,以期望建立准确的专家系统和报相应的监测标准。参考文献:[1] 盛兆顺,尹琦岭,设备状态监测与故障诊断技术及应用,化学工业出版社,2002, 38-104[2] 陈家斌,电气设备运行维护及故障处理,中国水利水电出版社,2003. 10[3] 陈家斌,电气设各故障检测诊断方法及实例,中国水利水电出版社,2003. 2[4] 阎士琦,常用电气设备故障诊断技术手册,中国电力出版社,2002. 3

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2