更全的杂志信息网

钢化玻璃的研究背景与进展论文

发布时间:2024-07-05 06:52:47

钢化玻璃的研究背景与进展论文

中国的钢化玻璃到底有多强?可以讲讲吗?

在张家界大峡谷内有一座桥叫云天渡,他的桥面是钢化玻璃组成的,人们直接在玻璃上行走,荒川的玻璃桥甚至还有车在上面开。钢化玻璃为什么能承受巨大压力而不遂,他的承受能力到底有多强?

玻璃在古埃及时期就出现了,它的主要成分是二氧化硅。大约在四世纪时,古罗马人开始把玻璃应用在门窗上,到1291年,意大利的玻璃制造技术已经非常发达了,随着现代社会的需求,又出现了钢化玻璃呢?钢化玻璃是怎么制作的?和普通玻璃有什么区别呢?

钢化玻璃是一种预应力玻璃,把普通玻璃切割成需要的尺寸后,加热到接近软化点的700摄氏度左右,在进行快速均匀的冷却,就可以制成钢化玻璃。根据玻璃的厚度不同,加热降温的时间也不同,一般五到六毫米的玻璃在700度高温下加热,快速的冷却会使玻璃表面急剧收缩产生压应力,而玻璃中间冷却较慢,来不及收缩就形成了张应力,使玻璃的强度得以提高。抗弯强度大概是普通玻璃的三到五倍,抗冲击强度是普通玻璃的五到十倍。

12毫米的钢化玻璃,它能承受的最大重量是两吨。国外有人做过实验,将一块一厘米厚的钢化玻璃板架在木板上,腾空驾驶一辆吨重的小型汽车,从上面反复碾压,钢化玻璃只是被压弯了一点,除此之外毫发无伤,这足以看出钢化玻璃是有多坚韧。除此之外,钢化玻璃在使用中的安全性也提高了。普通玻璃敲碎后形成了锋利的边沿,一不小心就能划破手,而钢化玻璃却是碎成了一个个无锐角的小块,减少了对人体的伤害。

不过钢化后的玻璃不能再切割加工,只能在钢化之前切成想要的形状,而且随着钢化玻璃的强度提高它的耐冷耐热性质也比普通玻璃提高了两到三倍,能承受150度的温差变化,在防止热炸裂上有明显的效果。不过,钢化玻璃的缺点也很明显,虽然它强度增大了,但是在突然的温差变化下,却有自爆的可能性。

2020年,宁波小伙小张在洗澡时,浴室的钢化玻璃门突然破裂,导致手部受伤。据不完全统计,钢化玻璃的自爆率在之间。研究表明,这是因为钢化玻璃中硫化镍的存在。硫化镍有两种存在形态,A形态在高温下会转化成B形态,B形态的体积是A形态的三到五倍。在钢化玻璃迅速降温的情况下,新形态来不及转化,体积继续变大,会造成钢化玻璃的应力失衡,从而导致自爆。

由于这种硫化镍颗粒直径仅毫米,很难通过肉眼和光学缺陷设备检测出,因此钢化玻璃的自爆一直没能完全消除,不过国家也将钢化玻璃的表面应力降到90兆帕,规范钢化玻璃的加工质量,进一步降低了他的自爆风险。

钢化玻璃属于安全玻璃。钢化玻璃其实是一种预应力玻璃,为提高玻璃的强度,通常使用化学或物理的方法,在玻璃表面形成压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力,增强玻璃自身抗风压性,寒暑性,冲击性等。

钢化玻璃的质量能否符合标准,除了玻璃原料的原因以外,工艺参数的设定是否合理是决定的因素。只有把它们的作用和相互之间的关系彻底了解,才能生产出优质的钢化玻璃。 所有的参数都是围绕着“均匀加热、迅速冷却”而设计的,但它们不是孤立的,是一个有机的整体,必须综合考虑,才能得到一个完美的工艺。 为了使用户能尽快地掌握和理解,我们把工艺参数以及为了保证工艺的实现而必须达到的机械、电气方面的设计,分为三个方面来叙述:一、 加热 加热均匀是钢化玻璃的一个至关重要的因素,和加热有关的参数是上部温度、下部温度、加热功率、加热时间、温度调整、平衡装置、强制对流(热循环风)装置。1、 上、下部温度的设定 由于玻璃厚度的不同,加热温度的设定也不相同。其原则是玻璃越薄温度越高,玻璃越厚温度越低。其具体数据如下: (表1) 厚度 上部温度 下部温度 720---730度 715---725度 5----6mm 710---720度 705---715度 8----10mm 705---710度 700---705度 12mm 690---695度 685---690度 15---19mm 660---665度 655---660度加热温度确定后,加热时间的确定就非常关键,这是两个密切相关的参数,加热时间确定的原则是—4毫米的玻璃,每毫米厚度为35—40秒左右。5—6毫米的玻璃,每毫米厚度为40—45秒左右。8—10毫米的玻璃,每毫米厚度为45—50秒左右。12毫米的玻璃,每毫米厚度为50—55秒左右。15—19毫米的玻璃,每毫米厚度为55—65秒左右。由于各单位用的原料不同、软化点不同、颜色不同、其厚度的误差也各不相同,设定的温度和功率又各不相同,我们不可能把加热时间说得那么准确,需要各单位在实践中总结,尤其是以前从未接触过钢化玻璃的单位。我们有一条经验可以供参考:当玻璃出炉后,在急冷时间段里破碎,那就说明加热时间不够;如果玻璃表面出现波筋和麻点那就说明加热时间过长。请根据具体情况作出调整。2、 加热功率的运用 加热功率指的是钢化炉加热的能力,一般都设为100%,这是在设计的时候就已经确定了的,由于上、下部加热方法不同,上部主要是靠辐射,而下部则是靠传导和辐射来进行加热,当玻璃进炉后的初始阶段,玻璃的下表面由于先受热而卷曲,随着上部温度逐渐辐射到玻璃的上表面,玻璃也就会逐渐展平。如果在这几十秒内,玻璃卷曲得太厉害的话,出炉后玻璃的下表面的中间会有一条白色的痕迹或者光畸变。为了解决这个问题,除了要把下部温度设定得比上部低以外,还要把下部的功率降低,让陶瓷辊的表面温度降低,使玻璃在这个阶段卷曲得少一点。如果白雾消失后,又大量做玻璃的话,可能玻璃会破碎,就可以再把功率逐步加上去。3、 温度调整的运用 温度调整的功能是北玻公司采用矩阵式加温后设置的,每个加热控制点都能单独调整,它对调整钢化玻璃的工艺有很大的帮助,尤其是5型的设备,运用它比较多,由于5型的弯钢化是靠玻璃的自重而没有加压成型,如果半径比较小的话,就需要把中间的温度适当地加高,如果前端出现炸口就可以把前端的温度加高。另外,做大板面的6毫米以下的玻璃时,可能会出现玻璃中间有球面,可以把上下部中间的温度提高,就能解决。又如:导电膜玻璃由于玻璃的上表面吸热很慢,所以下表面吸热就会过快,出炉后的玻璃中间部分可能会出现光畸变,这就需要除了把下部的温度设低外,还要把下部的功率降低,由于玻璃的长和宽的比例不同,光畸变的程度也会不同,究竟降低到什么程度为好?连续生产时,玻璃表面既无光畸变,玻璃的成品率又能达到指标为佳。温度调整功能的作用较多,关键在于如何运用。4、 热平衡装置 它是一个利用压缩空气,在炉内形成对流的装置,并可以根据需要手动调节压力,起到加快辐射,均衡温度的作用。5、 强制对流(热循环风)装置强制对流(热循环风)装置是北玻集团最新推出的供用户选配的装置,它的作用是加强炉内的对流,缩短加热时间,是钢化离线LOW—E玻璃的理想装置。6、和温度有关的玻璃缺陷及纠正的方法 (1)、波筋 如果设定的温度过高,加热时间又过长的话,玻璃就会出现波浪,这是由于玻璃的加热已经超过临界点,玻璃已经开始软化,出现这种缺陷的话只要把加热时间缩短就能解决。 (2)、麻点 加热时间过长还会造成玻璃的下表面出现麻点,麻点可以分为两种,一种是密集性的,呈桔皮状,这是加热时间过长造成的,(尤其是12毫米以上的厚玻璃,有的单位为了让它不碎而把加热时间设定得很长,)可以根据情况作出调整。另一种是个别的呈星点状的麻点,它是由于上片台和陶瓷辊表面不干净,或者是风栅辊道的玻璃碎没有清理干净造成的。 (3)、白雾 白雾就是在玻璃下表面的中间,出现一条白色的痕迹,它一般出现在初始生产的前几炉,这是由于陶瓷辊的表面温度过高造成的,当玻璃进炉的初始几十秒内,玻璃下表面直接受到热传导而四角卷曲,玻璃与陶瓷辊的接触面变小,与陶瓷辊的摩擦力加大而造成的,随着陶瓷辊表面温度的下降会消失。我们可以在初始生产时把下部温度设定得低一些,把下部的功率也设定得低一些,另外一定要连续生产,不能让炉子空运转,如果暂时不生产可以把加热开关关掉,防止出现白雾。 (4)、弯曲 我们在生产钢化玻璃时,如果出现弯曲一般是靠调整风压,或者调节吹风距离来解决的,非常有效快捷。但有的操作工并不明白上下温度的差异也会造成玻璃的弯曲,假设风栅段的吹风距离,风压的大小是相等的话,如果玻璃四角向上弯,就说明下部温度过低,相反如果玻璃的四角向下弯的话,说明下部的温度过高,如果需要靠调节温度来使玻璃平整的话,并非一两炉就能解决,需要几炉以后才行。 (5)、球面 这是在做6毫米以下薄玻璃而且版面比较大的时候出现的,可以通过温度调整的功能把中间纵向的上下温度各调高就可以了,有时候需要调高30度左右。(由纵向两边第2排起向中间递增)。 一个优秀的操作工应该明白,温度和光学性能的关系是:温度高加热时间长,成品率会高,但光学性能会差;反之温度低,或加热时间短,光学性能好,但成品率会低。这就需要我们认真总结,寻找最佳的效果。 温度的高低与钢化玻璃的颗粒度有很大的关系;在风压相等的条件下,温度高颗粒小,温度低颗粒大。二、 冷却 与冷却相关的参数:急冷风压、急冷时间、冷却风压、冷却时间、滞后吹风时间、风机等待频率、风机提前时间、出炉速度以及其他与冷却有关的机械方面的保证:上下风栅吹风距离、风管导流板的高低、进风口的流量调节螺栓。1、 急冷风压是指玻璃钢化时需要的风压,其原则是玻璃越薄风压越大,玻璃越厚风压越小。NORTH GLASS钢化炉的风压大小是通过电脑设置,改变进风口的开启度,其数值是百分比。有风机变频器的单位是通过电脑改变风机的频率达到需要的风压,其数值也是百分比。各种厚度的玻璃急冷时所需要的理论风压如(表2单位:帕)3mm 4mm 5mm 6mm 8mm 10mm 12mm 15mm 19mm16000 1000 500 300 200 200 由于各国和各地的海拔高度和空气密度不同,环境温度不同以及风路的走向不同,实际需要的风压与表2上的数值有所不同,须作调整,以满足颗粒度的要求。2、 急冷时间是指玻璃钢化时所需要的时间(表3单位:秒)3mm 4mm 5mm 6mm 8mm 10mm 12mm 15mm 19mm3--8 10--30 40-50 50--60 80--100 100-120 150--180 250-、 冷却风压和冷却时间是指玻璃急冷后,冷却时需要的风压,它的作用仅仅使玻璃冷却到需要的温度。其设定的原则是薄玻璃冷却风压要小于急冷风压,厚玻璃冷却风压要大于急冷风压。(表4 单位:帕)3mm 4mm 5mm 6mm 8mm 10mm 12mm 15mm 19mm (表5 单位:秒)3mm 4mm 5mm 6mm 8mm 10mm 12mm 15mm 19mm20 30 50 60 80 120 180 250 300 由于只是为了让玻璃冷却,冷却风压和冷却时间的设置,要求并不严格,但要注意如果玻璃的自爆比较多的话,就应该把急冷风压降低。如果风压已经较低但自爆还是比较多,除了原料的中硫化镍含量过高外,那就要检查急冷时间是否太短了,如果有多工位的话,一般都有专门的冷却段,冷却时间和冷却风压可以不用设定。4、 滞后吹风时间是为了做弯玻璃而单独设定的一个参数,玻璃出炉后不能马上吹风,必须等到玻璃成型后才能吹风,它与玻璃的形状和颗粒有很大的关系,滞后时间长,玻璃软态时在风栅里的往复时间长,弧度会好,但玻璃的破损会多,颗粒会差,这就需要将这两个参数有机地结合,找到最佳点。5、 风机等待频率和风机提前时间这两个参数是为有风机变频器的单位单独设置的,玻璃在炉内加热的时候并不需要风机作高速运转,可以将频率设低,等到玻璃出炉前再把速度提到需要的程度,其设置的原则是:玻璃薄等待频率要高一些,玻璃厚等待频率应该低一些,一般等待频率比工作频率低10—15赫兹较好。风机提前时间也就是从等待频率提升到工作频率所需要的时间,10赫兹约15—20 秒。如果等待频率设定得低那么风机提前时间就要长一些,如果等待频率设得高,风机提前时间可以短一些,设置得当可以节约电耗。6、 出炉速度也是一个与冷却密切相关的一个参数。它的作用不容忽视,尤其是5型的设备为了减少炸口,一般出炉速度都调到600。7、 上下风栅距离和玻璃的颗粒度以及平整度有极大的关系,在风压不变的情况下,风栅距离越近,颗粒越好,一般平玻璃有弯曲的情况基本上是靠调节上风栅的距离来解决的。(表6 单位:毫米)3mm 4mm 5mm 6mm 8mm 10mm 12mm 15mm 19mm12mm 15mm 20mm 25mm 30mm 40mm 50mm 60mm 70mm小弯钢化的风栅由于调节距离比较麻烦,可以将其归结为(表7单位:毫米) 4mm 5mm 6mm 8mm 10mm 12mm15mm 15mm 15mm 20mm 20mm 30mm 30mm 30mm由于半径不同可能如果距离太近,玻璃上表面会有风栅的擦伤,只需要把上风栅的距离调大就可以了。8、 风管导流板是在上下风路的中心设置的一个机构,用于调节风压的大小。向下调是上面风大,向上调是下面的风大。9、 进风口流量调节螺栓(它安装在进风蝶阀的汽缸杆上)是用来调节进风流量的,两台风机的工作应该是均等的,如果两台有差异,可以靠它来调一致。如果其中一台风压高电流大,就把这一台的调节螺栓向下调,直到两台一致即可。10、 和冷却有关的玻璃缺陷与纠正方法(1)、弯曲 这是做平玻璃常见的缺陷,前面已经讲到温度也会造成弯曲,那么假设温度是平衡的话,如果玻璃向下弯,说明在冷却时,上部的冷却速度快于下部,如果玻璃向上弯,说明下部的冷却速度快于上部。一般玻璃向下弯上风栅高度往上调,向上弯向下调。(2)、炸口在做平钢化大版面厚玻璃的时候,玻璃加热时间已经足够长了,但在吹风时玻璃的前端先开始出现裂纹,然后就破碎或一分为二。这是由于版面大,出炉速度慢,导致玻璃前后冷却不一致而破碎。一般只要将出炉速度加快就可以解决。 (3)、自爆 一般的自爆是指玻璃钢化以后,在相当长的一段时间后发生自己爆裂,这是钢化玻璃的一个特性,但这里所说的是在吹风快结束的时候玻璃自爆,其原因除了原料以外,急冷风压过大,或急冷时间太短加上冷却风压高也是一个因素,可根据具体情况加以解决,但要注意玻璃的颗粒是否达到要求。三、 成型 与成型有关的参数是:变弧速度、进栅距离、风栅有效长度、急冷往复速度、边辊下压时间、上压辊作用时间、定位器作用时间、上风栅预提升时间、玻璃长度。1、 变弧速度 它是指玻璃进入风栅后,风栅由平变弯的速度,其设定的原则:半径小、玻璃薄要求快一些;半径大玻璃厚要求慢一些。SM 2型的设备一般不要超过350,SM 5型的设备一般不要超过400。2、 进栅距离 它是指玻璃出炉后,玻璃的前端达到风栅的位置。3、 风栅有效距离 它是指玻璃进入风栅后,玻璃的后端达到的位置与玻璃达到最前端之间的距离。4、 急冷往复速度 它是指玻璃在风栅里摆动的速度。它设定的原则是玻璃薄半径小速度快;玻璃厚半径大速度慢一些。但必须注意,如果急冷往复速度快了以后,玻璃的后端可能会跑出风栅,就必须对风栅有效距离作适当的调整。5、 边辊下压时间 它是SM 2的一个参数,指风栅两头的压辊作用时间,当玻璃出炉后先到达前面第1根压辊,靠汽缸把压辊下压,但玻璃还必须跑到后端把玻璃的后端也压一下,以消除直边,由于生产的玻璃弧长不等,玻璃由前往复到后需要一段时间,这就是边辊下压时间。只有玻璃两端都压过后才能吹风,不然玻璃会断裂。尤其是SM 2—2 5型的设备。6、 上压辊作用时间 由于SM 2小弯段的适用范围比较大可以达到半径450,为了使形状达到要求,采用了对压成型的方法,当玻璃出炉后在风栅里是靠上压辊压住玻璃成型的,一般弧度在半径1000以上的可以不用压力,靠压辊的自重就可以了。半径在1000以下的可以用压力,那就需要一个加压的时间,这就是上压辊作用时间。一般可以把它设为与急冷时间差不多就行了。7、 定位器作用时间 由于玻璃比较窄而且比较长,玻璃从上片台到加热炉,经过一段时间的加温,出炉时高速到风栅,有可能跑偏,玻璃常常会翘角,为了解决这个问题,在风栅里安装了一个定位装置,它能使玻璃调正,消除翘角。它的设定原则是:玻璃出炉到达位置,向后摆动时,就可以下落。8、 上风栅预提升时间 小弯段的上风栅是跟下风栅一起变弧的,变弧后它的链条松的,当吹风结束后,下风栅展平时,它也会展平把玻璃砸坏,这就需要有一个将链条事先收起来的动作,这就是上风栅预提升,它的时间设置的原则是:半径小时间长,半径大时间短,但千万注意链条不能收得太紧,尤其是半径小的时候,太紧了会把风栅拉坏。9、 玻璃长度 这是小弯段多工位设备必须设定的一个参数,玻璃在炉内的位置,完全取决于玻璃长度。玻璃长度设长了,会使玻璃在炉内的往复的距离缩短,出炉后会使风栅有效距离缩短。应该按玻璃的实际长度设定。10、 小弯钢化玻璃的缺陷常见的有:直边、弧度不稳定,压痕太深等为了使用户比较快的理解各参数的运用我们把如何做好小弯玻璃,专门列出供用户参考。 SM 2小弯段上压棍调整方法及各参数的运用洛阳北玻的小弯段是采用对压成型的方法来满足生产的需要,它的特点是适应范围广,可以做R450及各种弧度的玻璃,但有的单位对上压棍的调整方法以及各个参数的运用还不够熟练,现将小弯段上压棍的调整方法以及各个有关参数运用,专门列出供用户参考:1、 上压棍的调整方法:用需要生产的同厚度玻璃,切两片长条,放入小弯段两边,将上风栅落下展平,检查上压棍的气压,将其调到公斤的压力,然后逐个调节每个压棍的锥面轮,调到压棍能用手转动,但又感到比较重即可。每一根都是这样的感觉,千万不要只调了一根就去量锥面轮外面的丝杆的长度,然后统一调丝杆的长短,这是一个误区,因为丝杆并不是一个基准。调整压棍的工作是一项细致的工作,必须认真。2、 上压棍压力的使用:如果玻璃曲率R在1000以下的或者比较厚的玻璃可以使用压力,压力一般在2公斤左右,无须过大,如果压力过大的话,玻璃表面的光学性能会受到影响。消除直边的关键并不仅仅取决于压力的大小。如果R在1000毫米以上的弧度可以不用压力,仅仅靠压棍的自重就可以。3、 定位器(Locating)的选用:定位器的作用是为了防止狭长玻璃在长时间运行中发生跑偏而造成翘角,如果玻璃的弧长在600毫米以下的话,可以用第3根,如果玻璃的弧长在600毫米以上的话最好用第1根风刀作为定位器,这样玻璃在风栅里就可以有足够的往复距离。如果上压棍的间隙调整得好的话,那么往复距离越长,玻璃的弧度就越好,直边就会相应减少或消除。定位器的作用时间可以设定,原则是当玻璃出炉后到达定位器,向反方向运动时它就可以下落。使玻璃校正就可以了。4、 进栅距离 (Enter quench Distance) 的确定:运用定位器后,进栅距离是一个很重要的参数,必须调整到:玻璃到达定位器后马上就向反方向运动。千万不要让玻璃接触定位器后还向前运动,这样不仅会将定位器顶弯,而且会使玻璃的直线边向前凸出,严重的可达4-5毫米。定位器上面的这根压棍的间隙应该相应地调高防止它转动时将定位器向前带弯。和进栅距离密切相关的参数是风栅有效长度(Effecting quench length),它决定了玻璃在风栅里往复的距离,应该充分利用风栅的长度,但如果急冷往复速度比较快的话,可能会使玻璃摆出风栅,需要调整风栅有效长度来控制玻璃往复的位置。5、 滞后吹风时间(Biow postpone time)的设定:它是做好弯玻璃的一个很关键的参数,它与玻璃的颗粒度密切相关,由于玻璃出炉后不是马上就吹风,而必须在玻璃成形后才能吹风,但此时玻璃的温度会以每秒20—30度左右的速度在迅速下降,如果滞后吹风时间过长的话,玻璃就会在吹风时破碎,尤其是、和4毫米的玻璃,为了达到良好的弧度要求,又不影响玻璃的颗粒要求,滞后吹风时间设定应该是:当玻璃达到定位器就向后运动,到位后,再向前运动时吹风为佳。 为了使颗粒度达到要求,可以将急冷往复速度(Quench Oscillating speed)加快,如果R小的话还应该加快变弧速度(ARC—Fotmingspeed)。我们应该明白玻璃在软态时,它在风栅里往复的时间越长,弧度就越好。吹风以后就无法改变玻璃的形状了(如果加快了急冷往复速度后,相同的风栅有效长度,玻璃可能会摆出风栅,需作适当调整)。当然如果玻璃厚度在6毫米以上的话可以将滞后吹风时间适当加长。由于各单位生产的玻璃厚度、形状、大小以及运用的其他参数各不相同,我们无法在此确定具体的时间是多少秒。需要各单位摸索,形成最佳工艺参数。6、 压棍下压时间(Quench upper roller ACT time)的设定:这是压棍在使用压力后需要设定的一个参数,如果你的产品是每炉只能做一片的话,压棍下压的时间原则上是急冷风吹了几秒钟后就可以不压了,如果产品是一排能放多片的话,就应该将下压时间设定得长一些,防止因为风压大而造成玻璃互相碰撞。7、 变弧速度ARC-Forming speed 的设定:这个参数必须在调弧以前就要设定好,其原则是R越小速度要越快,但一般不要超过400,R越大速度则越慢。如果调弧后再设定变弧速度的话有可能玻璃的弧度会与风栅的弧度不一致。8、 温度和弧度的关系:有的单位反映为什么刚开始调弧的时候玻璃的弧度和直边都很好,但做了一段时间后弧度会变浅,直边也出现了,实际上刚开始做的时候炉膛里的温度比较高,玻璃烧得比较软,做了一段时间后,炉膛里的温度相对低一些,玻璃就发生了变化,如果对弧度和直边要求比较高的话,可以适当地增加加热时间,或者把弧度调小一些就可以了。9、 进炉间隔时间Enter Interval (F)是做多工位时必须设定的参数,它的计算方法是:急冷时间乘n,用加热时间减去它们的和,再减两个陶瓷辊的反转时间约20秒,除以n就是进炉间隔时间,(例如:4毫米玻璃的加热时间是220秒,急冷时间是30秒,乘3(工位)等于90秒,220-90等于110,减20秒 ,等于90再除以3等于30秒,所以可以设定为25秒。应该明白每炉玻璃的出炉时间越平均其吻合度越好。10、 几个需要注意的问题:如果发现玻璃的弧度不是很规则的话,就应该注意是否压棍的间隙太小了或者压力太大了,如果发现玻璃的前端(先出炉的一端)弧度是好的,而后出炉的一端有直边而且较长,就应该注意是否往复距离太短了、滞后时间太短了或者压辊的间隙太大了,如果玻璃的前端(直线边)向前凸出,就应该注意出炉距离是否太长了或者定位器作用时间过长了(往往多几个毫米就会造成直线边前凸,尤其是淋浴房窄长条形的玻璃)。如果直边过长需要调整的话,应该明白调整那两根压辊,有的单位只调整定位器附近的压辊,但效果不明显,你应该注意玻璃在风栅里往复吹风时的一瞬间,玻璃在哪个位置上,这就是需要调整的压辊。如果用了定位器,玻璃还有翘角,要注意进栅距离是否太短了,定位器没有起到作用。另外如果上压辊不用压力的话,当风栅打开时玻璃的位置应该在风栅的中心为好,可以避免玻璃的两直边有轻微擦伤。如果不在中心的话,可以将急冷时间缩短或加长1—2秒就行了。 11、 有的单位反映玻璃厚度改变时,压棍的间隙需要重新调整很麻烦,我们建议你可以做一些专用垫片,直径为30毫米内孔为12毫米,开一条槽和内孔一样宽,厚度为2毫米,当你做完4毫米要做5毫米的话,可以将锥面轮向里推,将垫片插入丝杆即可,一个2毫米的垫片可以提高压棍1毫米左右。做6毫米的就再插一片。这个方法可以大大地提高效率。

减压视频:钢化玻璃面临严峻挑战,它能否经受住液压机的考验

钢化玻璃销售策略研究论文

钢化玻璃的质量能否符合标准,除了玻璃原料的原因以外,工艺参数的设定是否合理是决定的因素。只有把它们的作用和相互之间的关系彻底了解,才能生产出优质的钢化玻璃。 所有的参数都是围绕着“均匀加热、迅速冷却”而设计的,但它们不是孤立的,是一个有机的整体,必须综合考虑,才能得到一个完美的工艺。 为了使用户能尽快地掌握和理解,我们把工艺参数以及为了保证工艺的实现而必须达到的机械、电气方面的设计,分为三个方面来叙述:一、 加热 加热均匀是钢化玻璃的一个至关重要的因素,和加热有关的参数是上部温度、下部温度、加热功率、加热时间、温度调整、平衡装置、强制对流(热循环风)装置。1、 上、下部温度的设定 由于玻璃厚度的不同,加热温度的设定也不相同。其原则是玻璃越薄温度越高,玻璃越厚温度越低。其具体数据如下: (表1) 厚度 上部温度 下部温度 720---730度 715---725度 5----6mm 710---720度 705---715度 8----10mm 705---710度 700---705度 12mm 690---695度 685---690度 15---19mm 660---665度 655---660度加热温度确定后,加热时间的确定就非常关键,这是两个密切相关的参数,加热时间确定的原则是—4毫米的玻璃,每毫米厚度为35—40秒左右。5—6毫米的玻璃,每毫米厚度为40—45秒左右。8—10毫米的玻璃,每毫米厚度为45—50秒左右。12毫米的玻璃,每毫米厚度为50—55秒左右。15—19毫米的玻璃,每毫米厚度为55—65秒左右。由于各单位用的原料不同、软化点不同、颜色不同、其厚度的误差也各不相同,设定的温度和功率又各不相同,我们不可能把加热时间说得那么准确,需要各单位在实践中总结,尤其是以前从未接触过钢化玻璃的单位。我们有一条经验可以供参考:当玻璃出炉后,在急冷时间段里破碎,那就说明加热时间不够;如果玻璃表面出现波筋和麻点那就说明加热时间过长。请根据具体情况作出调整。2、 加热功率的运用 加热功率指的是钢化炉加热的能力,一般都设为100%,这是在设计的时候就已经确定了的,由于上、下部加热方法不同,上部主要是靠辐射,而下部则是靠传导和辐射来进行加热,当玻璃进炉后的初始阶段,玻璃的下表面由于先受热而卷曲,随着上部温度逐渐辐射到玻璃的上表面,玻璃也就会逐渐展平。如果在这几十秒内,玻璃卷曲得太厉害的话,出炉后玻璃的下表面的中间会有一条白色的痕迹或者光畸变。为了解决这个问题,除了要把下部温度设定得比上部低以外,还要把下部的功率降低,让陶瓷辊的表面温度降低,使玻璃在这个阶段卷曲得少一点。如果白雾消失后,又大量做玻璃的话,可能玻璃会破碎,就可以再把功率逐步加上去。3、 温度调整的运用 温度调整的功能是北玻公司采用矩阵式加温后设置的,每个加热控制点都能单独调整,它对调整钢化玻璃的工艺有很大的帮助,尤其是5型的设备,运用它比较多,由于5型的弯钢化是靠玻璃的自重而没有加压成型,如果半径比较小的话,就需要把中间的温度适当地加高,如果前端出现炸口就可以把前端的温度加高。另外,做大板面的6毫米以下的玻璃时,可能会出现玻璃中间有球面,可以把上下部中间的温度提高,就能解决。又如:导电膜玻璃由于玻璃的上表面吸热很慢,所以下表面吸热就会过快,出炉后的玻璃中间部分可能会出现光畸变,这就需要除了把下部的温度设低外,还要把下部的功率降低,由于玻璃的长和宽的比例不同,光畸变的程度也会不同,究竟降低到什么程度为好?连续生产时,玻璃表面既无光畸变,玻璃的成品率又能达到指标为佳。温度调整功能的作用较多,关键在于如何运用。4、 热平衡装置 它是一个利用压缩空气,在炉内形成对流的装置,并可以根据需要手动调节压力,起到加快辐射,均衡温度的作用。5、 强制对流(热循环风)装置强制对流(热循环风)装置是北玻集团最新推出的供用户选配的装置,它的作用是加强炉内的对流,缩短加热时间,是钢化离线LOW—E玻璃的理想装置。6、和温度有关的玻璃缺陷及纠正的方法 (1)、波筋 如果设定的温度过高,加热时间又过长的话,玻璃就会出现波浪,这是由于玻璃的加热已经超过临界点,玻璃已经开始软化,出现这种缺陷的话只要把加热时间缩短就能解决。 (2)、麻点 加热时间过长还会造成玻璃的下表面出现麻点,麻点可以分为两种,一种是密集性的,呈桔皮状,这是加热时间过长造成的,(尤其是12毫米以上的厚玻璃,有的单位为了让它不碎而把加热时间设定得很长,)可以根据情况作出调整。另一种是个别的呈星点状的麻点,它是由于上片台和陶瓷辊表面不干净,或者是风栅辊道的玻璃碎没有清理干净造成的。 (3)、白雾 白雾就是在玻璃下表面的中间,出现一条白色的痕迹,它一般出现在初始生产的前几炉,这是由于陶瓷辊的表面温度过高造成的,当玻璃进炉的初始几十秒内,玻璃下表面直接受到热传导而四角卷曲,玻璃与陶瓷辊的接触面变小,与陶瓷辊的摩擦力加大而造成的,随着陶瓷辊表面温度的下降会消失。我们可以在初始生产时把下部温度设定得低一些,把下部的功率也设定得低一些,另外一定要连续生产,不能让炉子空运转,如果暂时不生产可以把加热开关关掉,防止出现白雾。 (4)、弯曲 我们在生产钢化玻璃时,如果出现弯曲一般是靠调整风压,或者调节吹风距离来解决的,非常有效快捷。但有的操作工并不明白上下温度的差异也会造成玻璃的弯曲,假设风栅段的吹风距离,风压的大小是相等的话,如果玻璃四角向上弯,就说明下部温度过低,相反如果玻璃的四角向下弯的话,说明下部的温度过高,如果需要靠调节温度来使玻璃平整的话,并非一两炉就能解决,需要几炉以后才行。 (5)、球面 这是在做6毫米以下薄玻璃而且版面比较大的时候出现的,可以通过温度调整的功能把中间纵向的上下温度各调高就可以了,有时候需要调高30度左右。(由纵向两边第2排起向中间递增)。 一个优秀的操作工应该明白,温度和光学性能的关系是:温度高加热时间长,成品率会高,但光学性能会差;反之温度低,或加热时间短,光学性能好,但成品率会低。这就需要我们认真总结,寻找最佳的效果。 温度的高低与钢化玻璃的颗粒度有很大的关系;在风压相等的条件下,温度高颗粒小,温度低颗粒大。二、 冷却 与冷却相关的参数:急冷风压、急冷时间、冷却风压、冷却时间、滞后吹风时间、风机等待频率、风机提前时间、出炉速度以及其他与冷却有关的机械方面的保证:上下风栅吹风距离、风管导流板的高低、进风口的流量调节螺栓。1、 急冷风压是指玻璃钢化时需要的风压,其原则是玻璃越薄风压越大,玻璃越厚风压越小。NORTH GLASS钢化炉的风压大小是通过电脑设置,改变进风口的开启度,其数值是百分比。有风机变频器的单位是通过电脑改变风机的频率达到需要的风压,其数值也是百分比。各种厚度的玻璃急冷时所需要的理论风压如(表2单位:帕)3mm 4mm 5mm 6mm 8mm 10mm 12mm 15mm 19mm16000 1000 500 300 200 200 由于各国和各地的海拔高度和空气密度不同,环境温度不同以及风路的走向不同,实际需要的风压与表2上的数值有所不同,须作调整,以满足颗粒度的要求。2、 急冷时间是指玻璃钢化时所需要的时间(表3单位:秒)3mm 4mm 5mm 6mm 8mm 10mm 12mm 15mm 19mm3--8 10--30 40-50 50--60 80--100 100-120 150--180 250-、 冷却风压和冷却时间是指玻璃急冷后,冷却时需要的风压,它的作用仅仅使玻璃冷却到需要的温度。其设定的原则是薄玻璃冷却风压要小于急冷风压,厚玻璃冷却风压要大于急冷风压。(表4 单位:帕)3mm 4mm 5mm 6mm 8mm 10mm 12mm 15mm 19mm (表5 单位:秒)3mm 4mm 5mm 6mm 8mm 10mm 12mm 15mm 19mm20 30 50 60 80 120 180 250 300 由于只是为了让玻璃冷却,冷却风压和冷却时间的设置,要求并不严格,但要注意如果玻璃的自爆比较多的话,就应该把急冷风压降低。如果风压已经较低但自爆还是比较多,除了原料的中硫化镍含量过高外,那就要检查急冷时间是否太短了,如果有多工位的话,一般都有专门的冷却段,冷却时间和冷却风压可以不用设定。4、 滞后吹风时间是为了做弯玻璃而单独设定的一个参数,玻璃出炉后不能马上吹风,必须等到玻璃成型后才能吹风,它与玻璃的形状和颗粒有很大的关系,滞后时间长,玻璃软态时在风栅里的往复时间长,弧度会好,但玻璃的破损会多,颗粒会差,这就需要将这两个参数有机地结合,找到最佳点。5、 风机等待频率和风机提前时间这两个参数是为有风机变频器的单位单独设置的,玻璃在炉内加热的时候并不需要风机作高速运转,可以将频率设低,等到玻璃出炉前再把速度提到需要的程度,其设置的原则是:玻璃薄等待频率要高一些,玻璃厚等待频率应该低一些,一般等待频率比工作频率低10—15赫兹较好。风机提前时间也就是从等待频率提升到工作频率所需要的时间,10赫兹约15—20 秒。如果等待频率设定得低那么风机提前时间就要长一些,如果等待频率设得高,风机提前时间可以短一些,设置得当可以节约电耗。6、 出炉速度也是一个与冷却密切相关的一个参数。它的作用不容忽视,尤其是5型的设备为了减少炸口,一般出炉速度都调到600。7、 上下风栅距离和玻璃的颗粒度以及平整度有极大的关系,在风压不变的情况下,风栅距离越近,颗粒越好,一般平玻璃有弯曲的情况基本上是靠调节上风栅的距离来解决的。(表6 单位:毫米)3mm 4mm 5mm 6mm 8mm 10mm 12mm 15mm 19mm12mm 15mm 20mm 25mm 30mm 40mm 50mm 60mm 70mm小弯钢化的风栅由于调节距离比较麻烦,可以将其归结为(表7单位:毫米) 4mm 5mm 6mm 8mm 10mm 12mm15mm 15mm 15mm 20mm 20mm 30mm 30mm 30mm由于半径不同可能如果距离太近,玻璃上表面会有风栅的擦伤,只需要把上风栅的距离调大就可以了。8、 风管导流板是在上下风路的中心设置的一个机构,用于调节风压的大小。向下调是上面风大,向上调是下面的风大。9、 进风口流量调节螺栓(它安装在进风蝶阀的汽缸杆上)是用来调节进风流量的,两台风机的工作应该是均等的,如果两台有差异,可以靠它来调一致。如果其中一台风压高电流大,就把这一台的调节螺栓向下调,直到两台一致即可。10、 和冷却有关的玻璃缺陷与纠正方法(1)、弯曲 这是做平玻璃常见的缺陷,前面已经讲到温度也会造成弯曲,那么假设温度是平衡的话,如果玻璃向下弯,说明在冷却时,上部的冷却速度快于下部,如果玻璃向上弯,说明下部的冷却速度快于上部。一般玻璃向下弯上风栅高度往上调,向上弯向下调。(2)、炸口在做平钢化大版面厚玻璃的时候,玻璃加热时间已经足够长了,但在吹风时玻璃的前端先开始出现裂纹,然后就破碎或一分为二。这是由于版面大,出炉速度慢,导致玻璃前后冷却不一致而破碎。一般只要将出炉速度加快就可以解决。 (3)、自爆 一般的自爆是指玻璃钢化以后,在相当长的一段时间后发生自己爆裂,这是钢化玻璃的一个特性,但这里所说的是在吹风快结束的时候玻璃自爆,其原因除了原料以外,急冷风压过大,或急冷时间太短加上冷却风压高也是一个因素,可根据具体情况加以解决,但要注意玻璃的颗粒是否达到要求。三、 成型 与成型有关的参数是:变弧速度、进栅距离、风栅有效长度、急冷往复速度、边辊下压时间、上压辊作用时间、定位器作用时间、上风栅预提升时间、玻璃长度。1、 变弧速度 它是指玻璃进入风栅后,风栅由平变弯的速度,其设定的原则:半径小、玻璃薄要求快一些;半径大玻璃厚要求慢一些。SM 2型的设备一般不要超过350,SM 5型的设备一般不要超过400。2、 进栅距离 它是指玻璃出炉后,玻璃的前端达到风栅的位置。3、 风栅有效距离 它是指玻璃进入风栅后,玻璃的后端达到的位置与玻璃达到最前端之间的距离。4、 急冷往复速度 它是指玻璃在风栅里摆动的速度。它设定的原则是玻璃薄半径小速度快;玻璃厚半径大速度慢一些。但必须注意,如果急冷往复速度快了以后,玻璃的后端可能会跑出风栅,就必须对风栅有效距离作适当的调整。5、 边辊下压时间 它是SM 2的一个参数,指风栅两头的压辊作用时间,当玻璃出炉后先到达前面第1根压辊,靠汽缸把压辊下压,但玻璃还必须跑到后端把玻璃的后端也压一下,以消除直边,由于生产的玻璃弧长不等,玻璃由前往复到后需要一段时间,这就是边辊下压时间。只有玻璃两端都压过后才能吹风,不然玻璃会断裂。尤其是SM 2—2 5型的设备。6、 上压辊作用时间 由于SM 2小弯段的适用范围比较大可以达到半径450,为了使形状达到要求,采用了对压成型的方法,当玻璃出炉后在风栅里是靠上压辊压住玻璃成型的,一般弧度在半径1000以上的可以不用压力,靠压辊的自重就可以了。半径在1000以下的可以用压力,那就需要一个加压的时间,这就是上压辊作用时间。一般可以把它设为与急冷时间差不多就行了。7、 定位器作用时间 由于玻璃比较窄而且比较长,玻璃从上片台到加热炉,经过一段时间的加温,出炉时高速到风栅,有可能跑偏,玻璃常常会翘角,为了解决这个问题,在风栅里安装了一个定位装置,它能使玻璃调正,消除翘角。它的设定原则是:玻璃出炉到达位置,向后摆动时,就可以下落。8、 上风栅预提升时间 小弯段的上风栅是跟下风栅一起变弧的,变弧后它的链条松的,当吹风结束后,下风栅展平时,它也会展平把玻璃砸坏,这就需要有一个将链条事先收起来的动作,这就是上风栅预提升,它的时间设置的原则是:半径小时间长,半径大时间短,但千万注意链条不能收得太紧,尤其是半径小的时候,太紧了会把风栅拉坏。9、 玻璃长度 这是小弯段多工位设备必须设定的一个参数,玻璃在炉内的位置,完全取决于玻璃长度。玻璃长度设长了,会使玻璃在炉内的往复的距离缩短,出炉后会使风栅有效距离缩短。应该按玻璃的实际长度设定。10、 小弯钢化玻璃的缺陷常见的有:直边、弧度不稳定,压痕太深等为了使用户比较快的理解各参数的运用我们把如何做好小弯玻璃,专门列出供用户参考。 SM 2小弯段上压棍调整方法及各参数的运用洛阳北玻的小弯段是采用对压成型的方法来满足生产的需要,它的特点是适应范围广,可以做R450及各种弧度的玻璃,但有的单位对上压棍的调整方法以及各个参数的运用还不够熟练,现将小弯段上压棍的调整方法以及各个有关参数运用,专门列出供用户参考:1、 上压棍的调整方法:用需要生产的同厚度玻璃,切两片长条,放入小弯段两边,将上风栅落下展平,检查上压棍的气压,将其调到公斤的压力,然后逐个调节每个压棍的锥面轮,调到压棍能用手转动,但又感到比较重即可。每一根都是这样的感觉,千万不要只调了一根就去量锥面轮外面的丝杆的长度,然后统一调丝杆的长短,这是一个误区,因为丝杆并不是一个基准。调整压棍的工作是一项细致的工作,必须认真。2、 上压棍压力的使用:如果玻璃曲率R在1000以下的或者比较厚的玻璃可以使用压力,压力一般在2公斤左右,无须过大,如果压力过大的话,玻璃表面的光学性能会受到影响。消除直边的关键并不仅仅取决于压力的大小。如果R在1000毫米以上的弧度可以不用压力,仅仅靠压棍的自重就可以。3、 定位器(Locating)的选用:定位器的作用是为了防止狭长玻璃在长时间运行中发生跑偏而造成翘角,如果玻璃的弧长在600毫米以下的话,可以用第3根,如果玻璃的弧长在600毫米以上的话最好用第1根风刀作为定位器,这样玻璃在风栅里就可以有足够的往复距离。如果上压棍的间隙调整得好的话,那么往复距离越长,玻璃的弧度就越好,直边就会相应减少或消除。定位器的作用时间可以设定,原则是当玻璃出炉后到达定位器,向反方向运动时它就可以下落。使玻璃校正就可以了。4、 进栅距离 (Enter quench Distance) 的确定:运用定位器后,进栅距离是一个很重要的参数,必须调整到:玻璃到达定位器后马上就向反方向运动。千万不要让玻璃接触定位器后还向前运动,这样不仅会将定位器顶弯,而且会使玻璃的直线边向前凸出,严重的可达4-5毫米。定位器上面的这根压棍的间隙应该相应地调高防止它转动时将定位器向前带弯。和进栅距离密切相关的参数是风栅有效长度(Effecting quench length),它决定了玻璃在风栅里往复的距离,应该充分利用风栅的长度,但如果急冷往复速度比较快的话,可能会使玻璃摆出风栅,需要调整风栅有效长度来控制玻璃往复的位置。5、 滞后吹风时间(Biow postpone time)的设定:它是做好弯玻璃的一个很关键的参数,它与玻璃的颗粒度密切相关,由于玻璃出炉后不是马上就吹风,而必须在玻璃成形后才能吹风,但此时玻璃的温度会以每秒20—30度左右的速度在迅速下降,如果滞后吹风时间过长的话,玻璃就会在吹风时破碎,尤其是、和4毫米的玻璃,为了达到良好的弧度要求,又不影响玻璃的颗粒要求,滞后吹风时间设定应该是:当玻璃达到定位器就向后运动,到位后,再向前运动时吹风为佳。 为了使颗粒度达到要求,可以将急冷往复速度(Quench Oscillating speed)加快,如果R小的话还应该加快变弧速度(ARC—Fotmingspeed)。我们应该明白玻璃在软态时,它在风栅里往复的时间越长,弧度就越好。吹风以后就无法改变玻璃的形状了(如果加快了急冷往复速度后,相同的风栅有效长度,玻璃可能会摆出风栅,需作适当调整)。当然如果玻璃厚度在6毫米以上的话可以将滞后吹风时间适当加长。由于各单位生产的玻璃厚度、形状、大小以及运用的其他参数各不相同,我们无法在此确定具体的时间是多少秒。需要各单位摸索,形成最佳工艺参数。6、 压棍下压时间(Quench upper roller ACT time)的设定:这是压棍在使用压力后需要设定的一个参数,如果你的产品是每炉只能做一片的话,压棍下压的时间原则上是急冷风吹了几秒钟后就可以不压了,如果产品是一排能放多片的话,就应该将下压时间设定得长一些,防止因为风压大而造成玻璃互相碰撞。7、 变弧速度ARC-Forming speed 的设定:这个参数必须在调弧以前就要设定好,其原则是R越小速度要越快,但一般不要超过400,R越大速度则越慢。如果调弧后再设定变弧速度的话有可能玻璃的弧度会与风栅的弧度不一致。8、 温度和弧度的关系:有的单位反映为什么刚开始调弧的时候玻璃的弧度和直边都很好,但做了一段时间后弧度会变浅,直边也出现了,实际上刚开始做的时候炉膛里的温度比较高,玻璃烧得比较软,做了一段时间后,炉膛里的温度相对低一些,玻璃就发生了变化,如果对弧度和直边要求比较高的话,可以适当地增加加热时间,或者把弧度调小一些就可以了。9、 进炉间隔时间Enter Interval (F)是做多工位时必须设定的参数,它的计算方法是:急冷时间乘n,用加热时间减去它们的和,再减两个陶瓷辊的反转时间约20秒,除以n就是进炉间隔时间,(例如:4毫米玻璃的加热时间是220秒,急冷时间是30秒,乘3(工位)等于90秒,220-90等于110,减20秒 ,等于90再除以3等于30秒,所以可以设定为25秒。应该明白每炉玻璃的出炉时间越平均其吻合度越好。10、 几个需要注意的问题:如果发现玻璃的弧度不是很规则的话,就应该注意是否压棍的间隙太小了或者压力太大了,如果发现玻璃的前端(先出炉的一端)弧度是好的,而后出炉的一端有直边而且较长,就应该注意是否往复距离太短了、滞后时间太短了或者压辊的间隙太大了,如果玻璃的前端(直线边)向前凸出,就应该注意出炉距离是否太长了或者定位器作用时间过长了(往往多几个毫米就会造成直线边前凸,尤其是淋浴房窄长条形的玻璃)。如果直边过长需要调整的话,应该明白调整那两根压辊,有的单位只调整定位器附近的压辊,但效果不明显,你应该注意玻璃在风栅里往复吹风时的一瞬间,玻璃在哪个位置上,这就是需要调整的压辊。如果用了定位器,玻璃还有翘角,要注意进栅距离是否太短了,定位器没有起到作用。另外如果上压辊不用压力的话,当风栅打开时玻璃的位置应该在风栅的中心为好,可以避免玻璃的两直边有轻微擦伤。如果不在中心的话,可以将急冷时间缩短或加长1—2秒就行了。 11、 有的单位反映玻璃厚度改变时,压棍的间隙需要重新调整很麻烦,我们建议你可以做一些专用垫片,直径为30毫米内孔为12毫米,开一条槽和内孔一样宽,厚度为2毫米,当你做完4毫米要做5毫米的话,可以将锥面轮向里推,将垫片插入丝杆即可,一个2毫米的垫片可以提高压棍1毫米左右。做6毫米的就再插一片。这个方法可以大大地提高效率。

钢化玻璃因其坚固、可靠的品质而广受欢迎,经过特殊处理,钢化玻璃可以为家庭和商业物业提供很高的安全性和标准。然而,很多人并不知道钢化玻璃是什么,以及钢化玻璃和普通有什么区别。本文就来讲解一下两者的区别,以及钢化玻璃的好处。

钢化玻璃,一般比普通玻璃强五倍。这是通过在高温(650°C)下加热普通玻璃,然后非常快速地冷却来实现的。这种工艺使其比普通玻璃更坚韧(因此得名),并且耐热性和抗冲击性高达400%或500%。

增韧过程的目的是主要提高玻璃的结构耐久性和热强度,从而提高其弹性和耐热能力。值得注意的是,这种类型的玻璃在钢化后不能重新切割;它必须在增韧过程之前切割。

钢化玻璃经过特殊处理,使其在压力下会碎成小而钝的碎片,使其比普通玻璃的碎片安全得多。

增韧过程中使用的热或化学方法可提高强度、回弹性和耐高温能力。它的强度至少是普通玻璃的五倍,这意味着它需要大量的力才能破裂。如果破碎,它将均匀地破碎成小块,因此没有碎片或玻璃碎片。在结构和热学上都优于标准玻璃。在增韧过程中,颜色,净度,成分,透光率和硬度不会改变。玻璃可以涂成RAL颜色。

一般钢化玻璃都可以用到台面、桌面、温室玻璃、栏杆和玻璃地板等这些地方。

在研究了钢化玻璃和普通玻璃之间的差异之后。还有一个和钢化玻璃类似的玻璃,叫做夹层玻璃,这两种类型都可以承受更大的冲击和应力,也可以承受高温和低温。这使得它们在健康和安全标准方面都是不错的选择。

由于层数,夹层玻璃比钢化玻璃厚,因此提供更好的隔热和抵抗任何冲击或损坏,无论是意外还是故意。也就是说,夹层玻璃比钢化玻璃更重,更昂贵。

制作工艺不一样,制作成本不一样,玻璃的强度不一样,使用的途径不一样;玻璃的强度比较高热,稳定的效果比较好,安全性比较高。

参考答案 生命的路是进步的,总是沿着无限的精神三角形的斜面向上走,什么都阻止他不得。

工业玻璃钢座椅研究论文

造型易控制、颜色鲜亮更容易与内部装修搭配、贴合设计和审美更好控制,另外玻璃钢表面有镀膜或者保护面,寿命更长,这本身就是适合公区的产物,自然会被大量利用。

工学论文开题报告

工学是理工科内的一大分支,工学的课程带有很强的可操作性和专业性,下面就是我为您收集整理的工学论文开题报告的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!

毕业设计题目:年产4200吨环氧氯丙烷车间氯丙烯合成工段工艺设计

指导教师 :

院 系: 科亚学院

专业班级 : 科化工0401班

学 号:

姓 名:

日 期: XX年 3月 7日

1、环氧氯丙烷的物理、化学性质

环氧氯丙烷(ec)英文名:3—chloro—1,2—epoxypropane;epichlorohydrin。 分子式:c3h5clo ,分子量:92。52 , 熔点—25。6℃,沸点117。9℃,相对密度(水=1):1。18(20℃),相对密度(空气=1): 3。29 ,饱和蒸汽压 (kpa):1。8(20℃) ,自燃点415 ℃,折射率(nd20)1。438。 微溶于水,可混溶于醇、醚、4氯化碳、苯。无色油状液体,有氯仿样刺激气味。用于制环氧树脂,也是1种含氧物质的稳定剂和化学中间体 易燃其蒸气与空气形成爆炸性混合物,遇明火、高温能引起分解爆炸和燃烧。若遇高热可发生剧烈分解,引起容器破裂或爆炸事故。

2、环氧氯丙烷的生产原料及主要产品

环氧氯丙烷是1种重要的有机化工原料和精细化工产品,用途10分广泛。以它为原料制得的环氧树脂具有粘结性强,耐化学介质腐蚀、收缩率低、化学稳定性好、抗冲击强度高以及介电性能优异等特点,在涂料、胶粘剂、增强材料、浇铸材料和电子层压制品等行业具有广泛的应用。此外,环氧氯丙烷还可用于合成甘油、玻璃钢、电绝缘品、表面活性剂、医药、农药、涂料、胶料、离子交换树脂、增塑剂、(缩)水甘油衍生物、氯醇橡胶等多种产品,用作纤维素酯、树脂、纤维素醚的溶剂,用于生产化学稳定剂、化工染料和水处理剂等。

1原料:丙烯

丙烯的化学结构式:ch2=chch2oh 。物理性质::无色透明液体,熔点:—129,沸点:97。1,闪点:28,密度(20):0。854,折光率:1。4135。。

用途::丙烯醇是医药,农药和香料的中间体。主要的衍生物及其用途为:用于合成环氧氯丙烷、甘油、1,4—丁2醇以及烯丙基酮,生产增塑剂和工程塑料等重要有机合成原料。此外,其碳酸盐可以做光学树脂、安全玻璃和显示屏,其醚可以做聚合物的增黏剂等。

2主要产品:环氧树脂

目前我国的环氧氯丙烷主要用于生产环氧树脂,其消费比例为环氧树脂占85%,合成甘油占7%,氯醇橡胶占2%,其他如溶剂、稳定剂、表面活性剂、阻燃剂、油田化学品、水处理剂等占6%

3、环氧氯丙烷工艺生产方法及选择

目前,工业上环氧氯丙烷的生产方法主要有丙烯高温氯化法和乙酸丙烯酯法两种。

丙烯高温氯化法是工业上生产环氧氯丙烷的经典方法,由美国shell公司于1948年首次开发成功并应用于工业化生产。目前,世界上90%以上的环氧氯丙烷采用此法进行生产。其工艺过程主要包括丙烯高温氯化制氯丙烯,氯丙烯与次氯酸化合成2氯丙醇,2氯丙醇皂化合成环氧氯丙烷3个反应单元。

4、 工艺流程叙述

(1)丙烯高温氯化法:

(1)丙烯高温氯化制氯丙烯

丙烯与氯气经干燥、预热后以摩尔比4~5:1混合进入高温氯化反应器,短时间(约3 s)内进行反应,生成氯丙烯和氯化氢气体。精制后得氯丙烯产品,同时副产d—d混剂(1,2—2氯丙烷和1,3—2氯丙烯),氯化氢气体经水吸收后得到工业盐酸。

ch2=chch2 + cl2 →ch2=chch2cl +hcl

(2)氯丙烯次氯酸化合成2氯丙醇

氯气在水中生成次氯酸(或采用介质叔丁醇和氯气在naoh溶液中反应生成叔丁基次氯酸盐,该盐水解生成次氯酸,叔丁醇循环使用),次氯酸与氯丙烯反应生成2氯丙醇(过程中2氯丙醇浓度1般控制在4%左右)。

2ch2=chch2cl +2hocl→ clch2chclch2oh + clch2chohch2cl

2,3—2氯丙醇,70%) (1,3—2氯丙醇,30%)

(3)2氯丙醇皂化合成环氧氯丙烷

2氯丙醇水溶液与ca(oh)2或naoh反应生成环氧氯丙烷。

(3)2氯丙醇皂化合成环氧氯丙烷

2氯丙醇水溶液与ca(oh)2或naoh反应生成环氧氯丙烷。

clch2chclch2oh + clch2chohch2cl + 1/2 ca(oh)2→

clch2chclch2oh + clch2chohch2cl + 1/2 ca(oh)2→

丙烯高温氯化法的特点是生产过程灵活,工艺成熟,操作稳定,除了生产环氧氯丙烷外,还可生产甘油、氯丙烯等重要的有机合成中间体,副产d—d混剂(1,3—2氯丙烯和1,2—2氯丙烷)也是合成农药的重要中间体。缺点是原料氯气引起的设备腐蚀严重,对丙烯纯度和反应器的材质要求高,能耗大,氯耗量高,副产物多,产品收率低。生产过程产生的含氯化钙和有机氯化物污水量大,处理费用高,清焦周期短。

(2)乙酸丙烯酯法

前苏联科学院与日本昭和电工均开发了利用乙酸丙烯酯为原料生产环氧氯丙烷的生产工艺。前苏联是采用先氯化后水解工艺,昭和电工则采用先水解后氯化工艺。其工艺过程主要包括合成乙酸丙烯酯,乙酸丙烯酯水解制烯丙醇,合成2氯丙醇以及2氯丙醇皂化生成环氧氯丙烷4个反应单元。

(1)在钯和助催化剂作用下,丙烯与氧在温度160~180 ℃、压力0。5~1。0 mpa,乙酸存在下反应生成乙酸丙烯酯。

ch2=chch2+ 1/2o2 + ch3cooh→ ch2=chch2ococh3 +h2o

(2)在温度60~80 ℃、压力0。1~1。0 mpa下,以强酸性阳离子交换树脂为催化剂,乙酸丙烯酯经水解反应生成烯丙醇。

ch2=chch2ococh3 +h2o→ ch2=chch2oh +ch3cooh

(3)在温度0~10 ℃,压力0。1~0。3 mpa条件下,烯丙醇与氯通过加成反应生成2氯丙醇。

ch2=chch2oh + cl2→ ch2clchclch2oh

(4)2氯丙醇与氢氧化钙发生皂化反应生成环氧氯丙烷。

ch2clchclch2oh+ 1/2ca(oh)2→ ch2— chch2cl + 1/2cacl2 +h2o

与传统的丙烯高温氯化法相比较,乙酸丙烯酯法具有以下优点:(1)避免了高温氯化反应,反应条件温和,易于控制,不结焦、操作稳定,丙烯、氢氧化钙和氯气的用量大大减少,反应副产物和含氯化钙废水的排放量也大大减少。(2)开发了丙烯醇的氯化加成反应系统,成功地将氧引入环氧化物中,首次实现了由氧氧化代替氯氧化的技术,减少了醚化副反应,提高了系统的收率。(3)工艺过程无副产盐酸产生。(4)可以较容易获得目前技术还不能得到的高纯度烯丙醇。主要缺点是工艺流程长,催化剂寿命短,投资费用相对较高。

5、安全环保措施

(1)燃烧爆炸危险性:

危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高温能引起分解爆炸和燃烧。若遇高热可发生剧烈分解,引起容器破裂或爆炸事故。易燃性(红色):3 反应活性(黄色):2

灭火方法:泡沫、2氧化碳、干粉、砂土。消防器具(包括scba)不能提供足够有效的防护。若不小心接触,立即撤离现场,隔离器具,对人员彻底清污。高温下能发生自反应,阻塞安全阀,导致罐体爆炸。蒸气能扩散到远处,遇点火源着火,并引起回燃。封闭区域内的蒸气遇火能爆炸。如果该物质或被污染的流体进入水路,通知有潜在水体污染的下游用户。

(2)包装与储运

储存于阴凉、通风仓间内。远离火种、热源。仓温不宜超过 30℃。防止阳光直射。包装要求密封,不可与空气接触。应与氧化剂、酸类、碱类分开存放。储存间内的照明、通风等设施应采用防爆型。罐储时要有防火防爆技术措施。禁止使用易产生火花的机械设备和工具。搬运时要轻装轻卸,防止包装及容器损坏。 erg指南:131 erg指南分类:易燃液体—有毒的

(3)毒性危害

接触限值:中国mac:1mg/m3[皮] 前苏联mac:1mg/m3 美国tlv—twa:acgih 2ppm,7。6mg/m3 美国tlv—stel:未制订标准。

蒸气对呼吸道有强烈刺激性。反复和长时间吸入能引起肺、肝和肾损害。高浓度吸入致中枢神经系统抑制可致死。蒸气对眼有强烈刺激性,液体可致眼灼伤。皮肤直接接触液体可致灼伤。口服引起肝、肾损害,可致死。慢性中毒:长期少量吸入可出现神经衰弱综合征和周围神经病变。 iarc评价:2a组,可疑人类致癌物;动物证据充分 ntp:可疑人类致癌物 idlh:75ppm,潜在致癌物嗅阈:0。934ppm osha:表z—1空气污染物 niosh标准文件:niosh 76—206 健康危害(蓝色):

(4)防护措施

密闭操作,全面排风。空气中浓度超标时,戴面具式呼吸器。紧急事态抢救或撤离时,建议佩戴自给式呼吸器。戴化学安全防护眼镜。穿紧袖工作服,长筒胶鞋。戴防化学品手套。工作后,淋浴更衣。保持良好的卫生习惯。防止皮肤和粘膜的损害。

(5)泄漏处置:

疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。应急处理人员戴自给式呼吸器,穿防护服。不要直接接触泄漏物,在确保安全情况下堵漏。喷水雾可减少蒸发。用砂土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

6、当前生产中存在的问题及建议

(1) 积极发展环氧氯丙烷下游产品,带动环氧氯丙烷的生产与发展今后几年,世界主要国家和地区的环氧氯丙烷下游各消费领域依然会发展较快,各地区的环氧氯丙烷的生产主要是自用,估计会有少量出口。今后几年我国的汽车工业,住宅建设,电子工业等领域将有1个高速发展的阶段,随着我国西部大开发,将有大规模的基础设施投入建设,因此,今后几年,我国的环氧氯丙烷的下游产品,如:环氧树脂、合成甘油等的市场需求量将会很大,美国、西欧及日本主要

一、课题的依据和意义:

1、依据:时尚是有艺术品位的生活,时知务也,尚在品质!时尚一族的生活是艺术化的,所追求的生活随着时间的变化也会不断的提高的,但不变的是一直在追求高品质的生活。为了满足这一人群的需要,时尚产品也在不断的更新,向更高的品质发展。

概念车可以理解为未来汽车,汽车设计师利用概念车向人们展示新颖、独特、超前的构思,反映着人类对先进汽车的梦想与追求。概念车往往只是处在创意、试验阶段,也许永不投产。与大批量生产的'商品车不同,每一辆概念车都可以摆脱生产制造工艺的束缚,尽情地夸张地展示自己的独特魅力。时尚一族这个人群在未来的社会中,随着生活水平和精神追求的提高将会愈来愈庞大。为了满足这一人群的旅游出行进行交通设计是又必要性的。

概念车的最大功能就是发现与引导这些变化的方向。肯·奥库亚马说过世界在变,汽车在变,在今后的10年到20年内会变得很剧烈。交通工具也要随着这种变化不管更新、改变。未来概念车的设计可以推动我们的交通发展,解决很多我们生活中现有的一些问题,使我们未来的出行、旅游更加方便。

天马行空、随心所欲在设计中不再是不切实际,对于概念车的设计天马行空的创意和随心所欲的想象已经成为一种珍贵财富。舞动的概念、迸发的理念塑造了经典概念车的楷模。概念车体现了汽车设计师的灵感和风

格,概念车甚至不受量产车的条件限制,可任意采用未经充分验证的新工艺、新材料和新设计,充分发挥想象力和创造力。

针对时尚一族的概念车设计需要打造出时尚、艺术、高品位的产品,因为品质与美是要艺术的手法去塑造,艺术提高品位,艺术是脱俗的,出类拔萃的;时尚是高尚的,时尚离不开艺术,艺术可以创造时尚。

2、意义:时尚赋予人们不同的内涵和神韵,带给人的是一种愉悦的心情和优雅、纯粹与不凡感受,能体现不凡的生活品味,精致、展露个性。人类对时尚的追求,在精神上的或是物质上的追求都促进了人类生活。概念车是汽车中内容最丰富、最深刻、最前卫、最能代表世界汽车科技发展和设计水平的汽车。概念车是时代的最新汽车科技成果,代表着未来汽车的发展方向,因此它展示的作用和意义很大,能够给人以启发并促进相互借鉴学习。因为概念车有超前的构思,体现了独特的创意,并应用了最新科技成果,所以它的鉴赏价值极高。概念车也是艺术性最强、最具吸引力的汽车。

针对时尚一族未来型概念车的设计,将会改变未来生活的方式,改变时尚潮流的走向,引领未来生活中交通方式的发展方向。

二、国内外研究概况及发展趋势:

1、国内概况:中国概念车设计的起步较晚,1999年在上海国际车展,中国以吉祥动物麒麟为名的第一款概念车吸引了世人的目光,这是第一辆由中国人设计,在中国制造并面向中国市场的经济型汽车。稚嫩的车型,俗气的颜色,平平的参数是人不得不感慨中国汽车设计的落后。但是他最

大的意义就是唤起了中国概念车的设计。

2003年的“鲲鹏”是中国感念车的一个亮点。终于有了对外形和颜色的思考,但是不得不说造型依然很丑。虽然不足还有很多,但是“鲲鹏”对所在微型车细分领域的全新探索,演练了低成本构造,泛亚以每两年一辆概念车的速度成长,这使得中国汽车厂商在目睹这一个又一个的中国概念车之后开始醒悟,中国需要概念车的设计。

2、国外概况:国外概念车的设计尤其是欧美国家的概念车设计较为成熟,不论技术上、造型上、色彩搭配上、还是使用方式等创新都处在世界的前端。

发展趋势:

趋势一:传统车型分类被打破交叉车型成趋势。如今越来越多的车型打出了交叉车型的概念。如大众概念车ConceptA亮点:运动轿车与SUV的结合;斯柯达概念车Yeti亮点:SUV、轿车、旅行车等集于一身。趋势二:传统能源殆尽新能源汽车代替。能源问题是目前汽车技术的最大课题,其也直接影响到节能、环保等一系列技术。如雪佛兰Sequel氢燃料电池车亮点:最先进的氢燃料电池车型;福特Reflex柴电混合动力概念车亮点:利用太阳能的柴油电力混合动力。

趋势三:打破汽车结构的未来智能行走机器。设计师们不满足于这些传统汽车概念,他们需要打破常规的、面向未来的智能行走机器。如丰田全新未来概念车Fine—T亮点:智能交通下的未来车。

趋势四:个性化的突破设计。外形设计的突破性,是一款概念车的基

本要求。如雷诺Zoe概念车亮点:不对称的车门设计;福特iosis概念车亮点:奠定福特未来风格的雕塑感设计

三、研究内容及基本思路:

1、研究内容:

造型上,整车为流线型设计,考虑空气力学,要有效地减小风阻,车体设计时尚前卫,动感活力,遵循简约主义的同时又要凸显个性。整车将采用仿生学进行形态设计,将会运用一些中国传统元素穿插在设计之中。把中国风贯彻在在设计中,要体现原创性。

结构上,整车为两厢设计,发动机中置,车门为双开门上旋打开方式。车型初步定为跑车类汽车。

材料上,材料主要以环保型材料取代钢铁和塑料,可能采用碳纤维,不过更多的将会使用采用铝或者钢这样的常见材料。

色彩上,定位人群为时尚一族,因此选用较亮丽的彩色,多种配色方案。

人机上,考虑人与机器的关系,遵循人机工程学。

2、基本思路:

打造一款时尚的未来型概念跑车,形态上拥有张力,在年轻的90后上寻找灵感,根据时尚的90后们的喜好来进行设计。收集一些相关的资料,研究90后时尚人群中的习惯和遇到的问题,这些研究在设计中得以体现。结构设计会在现有的一些汽车结构基础上进行改进,尽量保持楔形车型。

四、进度安排:

1、前期阶段(—):

1)—制定工作计划,指导教师资格审定;

2)10月13日下午召开毕业设计(论文)动员大会(全院);

3)—指导老师制定毕业设计题目,学生进行选题;指导老师与学生双向选择,题目

上要求做到一人一题。下达具体任务书;

2、中期阶段(—寒假前)

1)—开题报告,毕业设计调研分析及材料整理;前期发散草图;

2)—课题研究报告,毕业设计前期方案、方案初选及深入;

3)—方案定稿,深入草图,毕业论文前三章初稿。

4)2011年12月18日学院毕业设计(论文)中期检查;

5)—寒假放假毕业设计建模、渲染、版面,寒假放假前集中检查;

因为成本。

玻璃钢塑形容易,造价便宜,可以大批量生产。

其他材质,价格比较贵。

如果是钢材或者木材,还要考虑耐磨、耐腐蚀等问题。

玻璃钢面板的制造工艺研究论文

国际杂志 1. Jian S. Dai, Tieshi Zhao, and C. Nester Sprained Ankle Physiotherapy Based Mechanism Synthesis and Stiffness Analysis of a Robotic Rehabilitation Device, Autonomous Robots 16 207-218, 2004 (SCI,EI)2. Na Li, Tieshi Zhao, Yanzhi Zhao , Yongguang Lin. Design and realization of a snake-like robot system based on a spatial linkage mechanism. Robotica, 2009,27(5): 779-788 doi: 4708005195(SCI)3. Jingjun Yu, and Tieshi Zhao, Type synthesis of parallel mechanisms with three translational degrees of freedom, PROGRESS IN NATURAL SCIENCE, (7):536-545 July 2003, (SCI,EI)4. Tieshi Zhao, and Jian S. Dai, Dynamics and Coupling Actuation of Elastic Underactuated Manipulators,Journal of Robotic Systems,2003, , , pp135-146 (Indexed by SCI,EI)5. Tieshi Zhao, Jian S. Dai and Z. Huang, Geometric Synthesis of Spatial Parallel Manipulators with fewer than Six Degree- of-Freedom, Int. Journal of Mechanical Engineering Science, 2002,216(12): 1175-1185 (Indexed by SCI and EI)6. Tieshi Zhao, Jian S. Dai and Z. Huang, Geometric Analysis of Overconstrained Parallel Manipulators with three and four degrees-of-freedom, JSME International Journal Series C, 2002, , , pp1-11 (Indexed by SCI and EI)7. Jian S. Dai, and Tieshi Zhao, Stiffness Characteristics and Kinematics Analysis Of Two-Link Elastic Underactuated Manipulators, Journal of Robotic Systems, , , (2002) (Indexed by SCI,EI)8. . Zhao, L. Lu,Tieshi Zhao, . Du and , Dynamic performance analysis of six-legged walking machines, Mechanism and Machine Theory, 2000, (Indexed by SCI and EI)9. Tieshi Zhao, . Zhao and , Study on adeptability of a sea crab and its bionics mechanism model, Mechanism and Machine Theory, 1999, (Indexed by SCI and EI)10. . Zhao, L. Lu,Tieshi Zhao, . Du and , The novel approaches for computing the dynamic load-capacity of multiple cooperating robotic manipulators, Mechanism and Machine Theory, 1998, (Indexed by SCI and EI) 国际会议论文 11. Zhao Tieshi, Bian Hui, Li Ningning. Type synthesis of overconstrained dual parallel mechanisms with three and four degrees of freedom, Proceedings of the 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, ReMAR 2009, p 200-204, 2009, (EI检索20094612456091:)12. Tieshi Zhao, Yanzhi Zhao and Zhen Huang. A Novel Approach to Kinematic Characteristics Analysis of Parallel Manipulators with Fewer Than Six DOF. The Proceeding of the IEEE International Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, 2006, pp. 353-357. (EI检索: 073110732836)13. Yanzhi Zhao, Tieshi Zhao and Rui Wen. Performance Analysis and Optimization of Sizable 6-axis Force Sensor Based on Stewart Platform. The Proceeding of the IEEE International Conference on Mechatronics and Automation, Harbin, China, 2007, pp. 2189-2193. (EI检索: 075110979568).14. Tieshi Zhao, Yanzhi Zhao and Liju Shi. Stiffness Characteristics and Kinematics Analysis of Parallel 3-DOF Mechanism with Flexible Joints. The Proceeding of the IEEE International Conference on Mechatronics and Automation, Harbin, China, 2007, pp. 1822-1827. (EI检索: 075110979504).15. Yanzhi Zhao, Tieshi Zhao and Rui Wen. Friction Model of Sizable Stewart Platform-based Force/Torque Sensor. IEEE International Conference on Robotics and Biomimetics, Sanya, China, 2007, pp. 1682-1687. (EI检索)16. Na Li; Tieshi Zhao. A snake-like robot based on a spatial linkage mechanism and its kinematics. IEEE International Conference on Robotics and Biomimetics, ROBIO 2007, . (EI 检索 083411464268)17. Na Li and Tieshi Zhao. The Dynamic Modeling of Snake-like Robot by Using Nominal Mechanism Method. 1st International Conference on Intelligent Robotics and Applications, ICIRA 2008, . (EI 检索 084911762285)18. Tieshi Zhao, Yanwen Li, and Jiang Chen, A Novel Four-DOF Parallel Manipulator Mechanism and its Kinematics,The IEEE International Conference on Robotics, Automation and Mechatronics,2006, P0407 (IE收录)19. Tieshi Zhao and Jian S Dai, Constraint And Stiffness Of Coordinative Manipulators With Passive Flexible-Joints,Proceedings of the 11th World Congress in Mechanism and Machine Science,May 27~30, 2004, Tianjin, China (EI 收录:7111140737, ISTP收录)20. Hongbin Wang, Yueling Wang, Tieshi Zhao, Hongrui Wang. Passivity-based Variable Structure Control of Two-link underactuated Robot. Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, 26-29 August 2004,496-499 (EI 收录:04458446480;ISTP 收录)21. Yu, Jingjun; Bi, Shusheng; Zong, Guanghua; Zhao, Tieshi; Huang, Zhen Type synthesis of three-dof translational parallel mechanisms, Proceedings of the 2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 29th Design Automation Conference, p 1107-1115 (EI收录)22. Tieshi Zhao, and , A novel three-dof translational platform mechanism and its kinematics, ASME DETC2000/MECH-14101 (EI收录)23. Z. Huang Tieshi Zhao and . Li , Theory of the Synthesis of Parallel Manipulators, International Conference of Mechanical Engineering, Shanghai, 2000,1024. . Zhao, . Du, Tieshi Zhao, and , The novel approach for the optimal dynamic loads distribution of motiple cooperating manipulation, Proceedings of International. Conference on Mechanical, Transmission and Mechanisms, China, Tianjing, 1997, 970-97325. . Zhao, Tieshi Zhao, and , Task space dynamic analysis of walking machine, Proceedings of The 3rd Asia Conf. on Robotics and Its Application, Japan, 1997, 405-41026. and Tieshi Zhao, The specific resistance of seacrab’s walking-legged system model, IEEE Conf. on System, Man and Cybernetics, Canada, 1995, (Indexed by SCI and EI) 国内杂志论文 27. 赵铁石, 赵延治. 空间并联机构连续刚度非线性映射研究. 机械工程学报. 2008,44(8)20-25(EI检索)28. 赵铁石,李娜, “蛇形机器人动力建模的虚设机构法” 《机械工程学报》 2007, 43(8):66-71. (EI检索)29. 赵铁石,林永光,缪磊,王春雨,一种基于空间连杆机构的蛇形机器人, 《机器人》(6):629-635 (EI)30. 赵延治, 赵铁石, 师丽菊. 弹性铰平面闭环六杆机构刚度特性研究. 中国机械工程, 2008, 19(5):509-513. (EI检索: 081511196874)31. 赵延治,赵铁石,温锐,王宏光,并联结构六维力传感器性能分析与优化设计,《中国机械工程》,2006,(增刊):299-30232. 李宁宁,赵铁石,并联式四自由度定位平台误差分析,机器人,2008,30(3):223-230(EI检索)33. 李宁宁,赵铁石,并联式四自由度定位平台性能优化,机器人,2008,30(2):130-137(EI检索)34. 于海波,赵铁石,李仕华,李艳文,空间3-SPS对顶双锥机构的运动学分析,机械设计,2007,(2):11-1335. 温锐, 赵铁石, 赵延治等. 大型铰接并联六维测力平台摩擦建模. 机械设计与研究, 2008, 24(1):. 赵延治, 赵铁石, 温锐等. 基于结构变形的大型并联六维力传感器精度研究. 机械设计, 2007, 24(9):. 李宁宁,赵铁石,边辉,双重驱动四自由度并联机构型综合,《机械设计与研究》,2008,24(1):. 赵铁石, 张立先, 赵玉勤,虚系数与被约束刚体连续运动判别,机械设计与研究,2006(专刊):290-29339. 赵铁石,陈江,王家春,黄真,“4-UPU并联机器人机构及其运动学”,《中国机械工程》,2005,(22):2034-2037(EI收录)40. 赵铁石,于海波,戴建生,一种基于3-RSS/S并联机构的踝关节康复机器人, 《燕山大学学报》,2005,(6):471-47541. 李宏,赵铁石,黄真,一种3-P(4U)并联机器人运动学分析, 《燕山大学学报》,2003,(2):133-13942. 于靖军,赵铁石,毕树生,宗光华,黄真,三维平动并联机构型综合的研究,自然科学进展,2003年,13(8):843-850(EI收录)43. 赵铁石,黄真,“欠秩并联机器人输入选取的理论和应用”, 《机械工程学报》,2000年第10期, 55-61 (EI 收录)44. 赵铁石,黄真,“仿蟹步行机构模型灵活度分析”《中国机械工程》1998,Vol..9(3):52-5445. 赵铁石,黄真,“能实现三维移动的并联3-RRC平台机构运动学分析”,《中国机械工程》,2001,(6):613-61646. 赵铁石,黄真,“海蟹步行族系仿生模型轻动性研究”,《机器人》, 中国自动化协会主办,1995,(5):309-315 (EI 收录)47. 赵铁石,赵永生,王晶,刘乐春,黄真,“空间缩放式六自由度并联机构模型及位置分析”,《机器人》,中国自动化协会主办,1998,Vol..20(5):,346-35148. 黄真,赵铁石,王晶,“欠秩三自由度并联平台机构工作空间中的单纯性路径”, 《机器人》,中国自动化协会主办,1999,Vol..21(3):,229-23349. 赵铁石,赵永生,黄真,“欠秩并联机器人能实现连续转动转轴存在的物理条件和数学判据”,《机器人》,中国自动化协会主办,1999,Vol..21(5):,347-35150. 黄真,赵铁石,“一种新型三维移动并联机构及其运动学分析” 《机器人》,1999,(7):507-51351. 赵永生,杜永辉,赵铁石,黄真,“步行机动力学操作性研究及机构参数优化” 〈〈光学精密工程〉〉1998,VOL6(1):75-8052. 赵永生,任敬轶,赵铁石,黄真,“多机器手协同系统的动载协调数值仿真研究” 〈〈光学精密工程〉〉1999,VOL7(3):63-7053. 赵铁石,高英杰,杨铁林,赵永生,黄真,“混合型四自由度并联平台机构及其位置分析”,〈〈光学精密工程〉〉2000,(1):42-4554. 赵铁石,黄真,一种新型四自由度并联平台机构及其位置分析《机械科学与技术》, 2000,. 赵铁石,黄真,混合型三维移动并联机构及其运动学分析 《机械传动》2000, (2):1-456. 赵铁石,赵永生,刘爱秀,李晨霞,黄真,“海蟹足系仿生机构模型及位置反解” 〈〈东北重型机械学院学报〉〉1996,(1):10-1457. 赵铁石,赵永生,黄真,“一种空间缩放式六自由度平台机构及位置反解” 〈〈燕山大学学报〉〉1998,(3)248-25158. 赵铁石,黄真,“欠秩3-RPS立方角台机器人位置解”,《燕山大学学报》,2000,(1):4-759. 赵铁石,黄真,“被约束刚体连续运动的充分必要条件”,《燕山大学学报》,2000,(2):60. 卜勇力,刘才,姜文光,赵铁石,“基于模糊推理的机械手表设计专家系统的研究” 〈〈燕山大学学报〉〉1998。 VOL 22(3):241-24361. 赵铁石,赵永生,黄真,“螃蟹步足海底适应性及参数测量” 〈〈机械工业的未来〉〉北京航空航天大学出版社,1996年,P211-21562. 赵铁石,,杨铁林,祁晓野,孔祥东,“P80KV玻璃钢型材拉挤机的设计与制造”,〈〈机械设计与制造〉〉1998,(4):44-4663. 杨铁林,姜波,赵铁石,“玻璃钢型材拉挤机加紧机构的研究与改进设计” 〈〈液压与气动〉〉,1999,. 赵铁石,黄真,“混合型三维移动并联机构及其运动学分析”,《机械传动》,2000, . 卜勇力,刘才,姜文光,赵铁石,“机械手表步局智能化设计与实现”,〈〈钟表〉〉,中国钟表协会主办,1997,(2):25-26

树脂是一种有机化工材料,有很多品种包括不饱和树脂、饱和树脂、环氧树脂、乙烯基树脂等,根据不同的用途光学用的树脂其透明度很好,一般常见的钮扣也是由树脂做成的,这个东西一般市面上也不常见,所以还不好讲得通俗,因为涉及到较多的专业用词。有机玻璃也是一种树脂制成,叫压克力树脂(属于饱和树脂);玻璃钢则是由玻璃纤维和树脂混合加热固化后所制成的产品,一般常见的有保安亭、街道用的垃圾桶、汽车前后保险罩、游艇等多数均为玻璃钢制成。

机制玻镁复合风管 由玻璃布镁菱土机制而成 难燃 比重大 玻璃钢风管 有玻璃布树脂复合而成 易燃 重量轻。 风管,是用于空气输送和分布的管道系统。有复合风管和无机风管两种。风管可按截面形状和材质分类。风管制作不锈钢风管制作是在咬口缝、铆钉缝、法兰翻边四角等缝隙处涂上密封胶(如中性玻璃胶)。涂密封胶前应清除表面尘土和油污。按截面形状,风管可分为圆形风管,矩形风管,扁圆风管等多种,其中圆形风管阻力最小的高度尺寸最大,制作复杂。所以应用以矩形风管为主。按材质,风管可分为金属风管,复合风管,高分子风管。

不清楚你指的锚杆是做什么用的!外形是什么样子!我只知道树脂锚杆和玻璃钢锚杆相比,玻璃钢是由树脂和玻璃纤维复合而成的一类材料。 树脂的脆性较大在外力的撞击之下很容易开裂破坏;树脂的密度比玻璃钢的密度低,树脂的密度在左右而玻璃钢的密度在左右;树脂的强度没有玻璃钢的强度高;不过树脂的耐腐蚀效能比玻璃钢的优越;树脂的在高温条件下使用没有玻璃钢的稳定性好。

玻璃钢:玻璃纤维增强塑料。 环氧树脂是塑料的一种。 他们之间是相辅相成的关系。

改性环氧树脂胶

玻璃钢和树脂纤维不存在谁好谁不好的问题,因为玻璃钢就是树脂和玻璃纤维制作而成的。 树脂和纤维都是玻璃钢的原材料,在混合固化剂和促进剂、在一定温度作用下,粘有树脂的玻璃纤维,因树脂的固化而被粘合在一起,就形成了玻璃钢材质。 玻璃钢具有高强、轻质、耐腐蚀的特点,属于复合材料,也就是集合了多种材料的优点而制作出的一种材料。 玻璃钢有狭义范畴和广义范畴的说法,狭义就是指玻璃纤维和树脂制作而成的,而广义的玻璃钢,还包括树脂和其它纤维制作成的复合材料,比如碳纤维玻璃钢(比如多数钓鱼竿)、涤纶纤维玻璃钢等等。

有机玻璃和亚克力就是一种东西,高阶的优质的有机玻璃称为亚克力,这种材料看起来就好像玻璃一样透明光亮,但是有些塑料的性质,不易碎,耐压性较强,这是一种高分子材料,是工业制品,然后水晶是一种天然矿石,天然形成的就好像石头一样,好一些的水晶看起来也是好像玻璃一样透明光亮,但它的硬度比较高,就像石头一样坚硬,没有亚克力那样的弯曲性

环氧树脂是玻璃钢原材料的一种

区别就是 树脂的镜片:不小心碰到了不容易损伤你的眼睛 不容易碎 还有就是轻便 但容易刮花 玻璃镜片:比较重 易碎 但透光度比较高就是看东西会清晰点

是901树脂的固化剂和促进剂的新增比例吗?下面两个方案供参考。 1、 6%的辛酸钴(促进剂) 100% DMA(加速剂) 过氧化甲乙酮 (固化剂) 2、 6%辛酸钴 100%DMA 80% CHP 2%

冷藏车玻璃钢即纤维强化塑料,具有质轻而硬、不导电、性能稳定.、机械强度高、耐腐蚀的优点;1.隔热性:保温冷藏车复合板自重轻、不变形、板材内部不留间隙,冷藏保温隔热性能优异;2.易安装性:采用高强度铝型材与复合板组装保温冷藏车,安装简易快捷。组装的保温冷藏车表面平整无接缝,表面光洁度好,美观且耐用;3.不透水性:冷藏车厂家复合板的表面玻璃钢面板具有不透水性,硬质聚氨酯泡沫闭孔率大,具有极佳的耐水性;4.耐腐蚀性:玻璃钢单板外表面采用的彩色胶衣,使复合板表面光洁,污物能够轻易除掉,整个面板色彩鲜艳,且对大气、水和一般浓度的酸、碱、盐等介质有着良好的化学稳定性,能长时间保持表面光洁不变色、耐腐蚀。

玻璃钢复合材料论文模板

玻璃钢是一种复合材料,它以玻璃纤维及其制品玻璃布、带、毡、纱等作为增强材料,以合成树脂作基体材料制成。由于它的强度相当于钢材,又含有玻璃组分,也具有玻璃那样的色泽、形体、耐腐蚀、电绝缘、隔热等性能,因此被人们形象的称为“玻璃钢”。 玻璃硬而易碎,具有很好的透明性以及耐高温、耐腐蚀等性能;而钢铁硬度大并且不易碎,也具有耐高温的特点。人们经过反复的试验研究,终于制出了能与钢铁比肩的玻璃钢。它既具有玻璃的硬度、耐高温、抗腐蚀的性质,又具有钢铁一样坚硬不碎的特点。 玻璃钢兼具玻璃与钢材的优点,它的重量很轻,相对密度在之间,只有碳钢的1/4-1/5,但它的拉伸强度却与碳钢接近,甚至超过碳钢。它也具有很轻的耐腐蚀性,对大气、水和一般浓度的酸、碱、盐以及多种油类和溶剂都有较好的抵抗能力。除此之外,玻璃钢还具有很好的绝缘性和可设计性等优良特性。 玻璃钢优雅奇异造型、可定制、色彩随意调配等特点,深受各商家和销售者的青睐。现如今,玻璃钢主要用于建筑行业、化学化工行业、汽车及摩托车制造业、铁路业、船舶工业、电气工业及通讯工程等各类行业。这些行业应用的主要玻璃钢产品有冷却塔、耐腐蚀管道、汽车制造用材及部件、火车车窗、大型钢船艇配套零部件、电缆保护管等。 需要的可以联系我。

由于纤维增强材料的材料特性,常用的基本成型工艺有几种:手糊成型工艺、拉挤成型工艺、缠绕成型工艺和模压成型工艺。手糊成型1.手糊成型法原理手糊成型工艺又称接触成型,是树脂基复合材料生产中最早也是应用最广泛的成型方法。手糊成型工艺(Hand-pastemoldingprocess)是以含有固化剂的树脂混合物为基体,以玻璃纤维及其织物为增强材料,在涂有脱模剂的模具上手工复合,使之粘合在一起制造玻璃钢制品的一种工艺方法。基体通常是不饱和聚酯树脂或环氧树脂,增强材料通常是无碱或中碱玻璃纤维及其织物。手糊成型工艺中,机械设备使用较少,适合多品种、小批量产品的生产,不受产品种类和形状的限制。2.成型工艺流程手糊成型工艺的工艺流程是:首先将脱模剂涂抹在清洗或表面处理过的模具成型面上;充分干燥后,将加入固化剂(引发剂)、促进剂、颜料膏等添加剂并搅拌均匀的胶衣或树脂混合物涂在模具成型面上,然后将切好的玻璃布(毡)等增强材料铺在模具成型面上,注意浸泡树脂,排除气泡。重复上述铺设操作,直至达到设计厚度,然后固化脱模。3.成型设备手糊成型工艺使用的设备较少,制作模型使用的设备有木工车床、木工刨床、木工圆锯等。一般是空压机、起重设备等。将用于脱模。压塑成型1.压缩成型法的原理热固性成型是在预热的模具中加入一定量的成型材料,然后加热、加压、固化形成塑料制品的方法。基本过程是:将一定量的经过预处理的成型材料放入预热的模具中,施加较高的压力使成型材料充满模具型腔。在一定的压力和温度下,模塑料逐渐固化,然后从模具中取出产品,进行必要的辅助加工,得到产品。2.成型工艺流程成型过程主要分为压制前准备和压制两个阶段。3.成型设备(1)浸渍机制备胶带的主要设备是浸胶机,浸胶机由送布架、热处理炉、浸胶槽、烘干箱和牵引辊组成。根据热处理炉和烘干箱的位置,可分为卧式浸胶机和立式浸胶机。(2)预浸机组该方法中使用的设备包括切割机、捏合机和撕裂机。常用的切割机有冲床式、砂轮式、三辊式和单转刀辊式。捏合机的作用是充分均匀地混合树脂体系和纤维体系。混合桨一般采用Z型桨结构。在捏合过程中,主要控制两个主要参数,捏合时间和树脂体系的粘度。有时,装有热水和冷水的夹套安装在混合室结构中,以控制混合温度。混合时间越长,纤维强度损失越大。在某些树脂体系中,捏合时间过长也会导致明显的热效应。混合时间太短,树脂和纤维混合不均匀。树脂粘度控制不当也会影响树脂对纤维的均匀浸润和渗流速度,也会对纤维强度产生一定的影响。拉丝机的主要功能是将揉好的面团打松。该剥离机主要由进料辊和一对剥离机辊组成,进料球通过剥离机辊的反向运动被扯开。(3)片状模塑料单元一套完整的SMC机组一般由机架、输送系统、PE供膜装置、刮刀、玻璃纤维切刀、浸渍压实装置、卷绕装置等7个主要部分和3个必要的辅助系统组成,如玻璃纤维纱架、树脂糊制备和加料系统、静电消除器等。(4)新闻压机是成型的主要设备。压机的作用是提供成型所需的压力和开模取出产品所需的脱模力。现在大多用液压机。缠绕成型1.缠绕成型法原理纤维缠绕工艺是树脂基复合材料的主要制造工艺之一。在控制张力和预定线型的条件下,用特殊的缠绕装置将连续的纤维或布带连续、均匀、规则地缠绕在芯模或内衬上,然后在一定的温度环境下固化,形成一定形状的制品。2.成型设备纤维缠绕机是纤维缠绕技术的主要设备,纤维缠绕产品的设计和性能要通过纤维缠绕机来实现。绕线机按控制形式可分为机械绕线机、数控绕线机、微机控制绕线机和计算机数控绕线机,这实际上是绕线机发展的四个阶段。最常用的绕线机是机械式和电脑数控绕线机。纤维缠绕机是纤维缠绕工艺的主要设备,通常由机体、传动系统和控制系统组成。辅助设备包括浸胶装置、张力测控系统、纱架、芯模加热器、预浸纱加热器和固化设备。拉挤成型1.拉挤原理拉挤工艺是将纱架上的无捻玻璃纤维、毛毡等增强材料的粗纱,通过牵引装置的连续牵引,浸入胶液中,然后经过加热的固定截面形状的模具,在模具中固化成型,实现连续脱模的自动化生产工艺。对于固定截面尺寸的玻璃钢制品,拉挤成型工艺具有明显的优势。首先,由于拉挤成型是一种自动化连续生产工艺,与其他玻璃钢生产工艺相比,拉挤成型生产效率最高。其次,拉挤产品的原料利用率也是最高的,一般在95%以上。此外,拉挤产品成本低,性能优良,质量稳定,外形美观。由于拉挤成型具有这些优点,其产品可以替代金属、塑料、木材、陶瓷等产品,广泛应用于化工、石油、建筑、电力、交通、市政工程等领域。2.成型工艺流程增强材料(玻璃纤维粗纱、玻璃纤维连续毡和玻璃纤维表面毡等。)在拉挤设备的牵引下在浸渍槽中充分浸渍胶液,并通过一系列预成型模板的合理引导,最终进入加热的金属模具,在高温的作用下反应固化,从而获得连续、表面光滑、尺寸稳定、强度极高的玻璃钢型材。3.成型设备实现拉挤成型的设备主要是拉挤机,大致可分为卧式和立式两种。卧式拉挤机一般结构简单,操作方便,对生产车间的结构没有特殊要求。而且卧式拉挤机可以采用多种固化方式(如热模法、高频加热固化等。),所以广泛应用于拉挤行业。立式拉挤机各工序沿垂直方向布置,主要用于制造中空型材。这是因为芯模只能在一端支撑,另一端是自由的、无支撑的,所以立式拉挤机不会因为芯模悬臂下垂造成拉挤产品壁厚不均。由于其局限性和产品单一,这种拉挤机已不再使用。水平和垂直拉挤主要由五部分组成:喂纱装置、浸渍装置、成型模具和固化装置、牵引装置和切割装置。它们相应的工艺流程是排纱、浸胶、喂入和固化、牵引和切割。

玻璃钢:别名玻璃纤维增强塑料,俗称FRP,即纤维增强复合塑料。根据采用的纤维不同分为玻璃纤维增强复合塑料,碳纤维增强复合塑料,硼纤维增强复合塑料等。它是以玻璃纤维及其制品(玻璃布、带、毡、纱等)作为增强材料,以合成树脂作基体材料的一种复合材料。纤维增强复合材料是由增强纤维和基体组成。纤维(或晶须)的直径很小,一般在10μm以下,缺陷较少又较小,断裂应变约为千分之三十以内,是脆性材料,易损伤、断裂和受到腐蚀。基体相对于纤维来说,强度、模量都要低很多,但可以经受住大的应变,往往具有粘弹性和弹塑性,是韧性材料。玻璃钢主要用途:1、建筑行业:冷却塔、玻璃钢门窗;建筑结构、围护结构;室内设备及装饰件、玻璃钢平板、波形瓦、装饰板;卫生洁具及整体卫生间、桑拿浴室、冲浪浴室;建筑施工模板、储仓建筑、混凝土模板、筋材;以及太阳能利用装置等等。2、化学化工行业:耐腐蚀管道、贮罐贮槽、耐腐蚀输送泵及其附件、耐腐阀门、格栅、通风设施,以及污水和废水的处理设备及其附件等等。3、汽车及铁路交通运输行业:汽车壳体及其他部件,全塑微型汽车;大型客车的车体外壳、车门、内板、主柱、地板、底梁、保险杠、仪表屏;小型客货车,以及消防罐车、冷藏车、拖拉机的驾驶室及机器罩等。4、铁路运输方面:有火车窗框、车内顶弯板、车顶水箱、厕所地板、行李车车门、车顶通风器、冷藏车门、储水箱,以及某些铁路通讯设施等。5、公路建设方面:有交通路标、隔离墩、标志桩、标志牌、公路护栏等等,船艇及水上运输行业。6、船舶方面:内河客货船、捕渔船、气垫船、各类游艇、赛艇、高速艇、救生艇、交通艇,以及玻璃钢航标浮鼓及系船浮筒等等。7、电气工业及通讯工程:灭弧设备、电缆保护管,发电机定子线圈和支撑环及锥壳,绝缘管、绝缘杆、电动机护环、高压绝缘子、标准电容器外壳、电机冷却用套管、发电机挡风板等强电设备;配电箱及配电盘、绝缘轴、玻璃钢罩等电器设备;印刷线路板、天线、雷达罩等电子工程应用。

玻璃钢(FRP)亦称作GFRP,即纤维强化塑料,一般指用玻璃纤维增强不饱和聚酯、环氧树脂与酚醛树脂基体。以玻璃纤维或其制品作增强材料的增强塑料,称谓为玻璃纤维增强塑料,或称为玻璃钢,不同于钢化玻璃。

由于所使用的树脂品种不同,因此有聚酯玻璃钢、环氧玻璃钢、酚醛玻璃钢之别。质轻而硬,不导电,性能稳定,机械强度高,回收利用少,耐腐蚀。可以代替钢材制造机器零件和汽车、船舶外壳等。

玻璃钢学名纤维增强塑料,俗称FRP(Fiber Reinforced Plastics),即纤维增强复合塑料。根据采用的纤维不同分为玻璃纤维增强复合塑料(GFRP),碳纤维增强复合塑料(CFRP),硼纤维增强复合塑料等。它是以玻璃纤维及其制品(玻璃布、带、毡、纱等)作为增强材料,以合成树脂作基体材料的一种复合材料。纤维增强复合材料是由增强纤维和基体组成。纤维(或晶须)的直径很小,一般在10μm以下,缺陷较少又较小,断裂应变约为千分之三十以内,是脆性材料,易损伤、断裂和受到腐蚀。基体相对于纤维来说,强度、模量都要低很多,但可以经受住大的应变,往往具有粘弹性和弹塑性,是韧性材料。

轻质高强

相对密度在之间,只有碳钢的1/4~1/5,可是拉伸强度却接近,甚至超过碳素钢,而比强度可以与高级合金钢相比。因此,在航空、火箭、宇宙飞行器、高压容器以及在其他需要减轻自重的制品应用中,都具有卓越成效。某些环氧FRP的拉伸、弯曲和压缩强度均能达到400Mpa以上。

耐腐蚀

FRP是良好的耐腐材料,对大气、水和一般浓度的酸、碱、盐以及多种油类和溶剂都有较好的抵抗能力。已应用到化工防腐的各个方面,正在取代碳钢、不锈钢、木材、有色金属等。

电性能好

是优良的绝缘材料,用来制造绝缘体。高频下仍能保护良好介电性。微波透过性良好,已广泛用于雷达天线罩。

热性能良好

FRP热导率低,室温下为(m·h·K),只有金属的1/100~1/1000,是优良的绝热材料。在瞬时超高温情况下,是理想的热防护和耐烧蚀材料,能保护宇宙飞行器在2000℃以上承受高速气流的冲刷。

可设计性好

(1)可以根据需要,灵活地设计出各种结构产品,来满足使用要求,可以使产品有很好的整体性。

(2)可以充分选择材料来满足产品的性能,如:可以设计出耐腐的,耐瞬时高温的、产品某方向上有特别高强度的、介电性好的,等等。

工艺性优良

(1)可以根据产品的形状、技术要求、用途及数量来灵活地选择成型工艺。

(2)工艺简单,可以一次成型,经济效果突出,尤其对形状复杂、不易成型的数量少的产品,更突出它的工艺优越性。

缺点

弹性模量低

FRP的弹性模量比木材大两倍,但比钢(E=×105)小10倍,因此在产品结构中常感到刚性不足,容易变形。

可以做成薄壳结构、夹层结构,也可通过高模量纤维或者做加强筋等形式来弥补。

长期耐温性差

一般FRP不能在高温下长期使用,通用聚酯FRP在50℃以上强度就明显下降,一般只在100℃以下使用;通用型环氧FRP在60℃以上,强度有明显下降。但可以选择耐高温树脂,使长期工作温度在200~300℃是可能的。

老化现象

老化现象是塑料的共同缺陷,FRP也不例外,在紫外线、风沙雨雪、化学介质、机械应力等作用下容易导致性能下降。

剪切强度低

层间剪切强度是靠树脂来承担的,所以很低。可以通过选择工艺、使用偶联剂等方法来提高层间粘结力,最主要的是在产品设计时,尽量避免使层间受剪。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2