更全的杂志信息网

燃料油在中国的研究现状论文摘要

发布时间:2024-07-04 06:46:44

燃料油在中国的研究现状论文摘要

、目前至2020年我国的石油(成品油)供需形势� (一)研究方法概述� 本研究以情景分析和结构化分析方法为基础,对成品油各用油领域发展规律及用油规律采取了回归分析、时间序列、专家经验多种分析方法预测,并对预测结果以弹性系数法、结构分析法、情景分析法、敏感分析法展开讨论,同时考虑了重大政策调整等多种情景下的节能、安全、能源战略等问题对石油(成品油)需求的影响。 首先,在细分用油行业、研究分行业用油规律的基础上,通过数学模型预测各行业用油的未来发展,得到基准情境下的需求预测。具体预测内容和步骤为:1.对各用油行业的发展进行预测(代表性指标);2.研究各用油行业的用油规律(其中:各行业用油需求=代表性指标×单耗;总用油需求=∑各行业用油需求);继而,针对中国经济社会发展及用油效率变化分别设立三种情景,共得到九个情景组合并进行需求分析;然后,对经济增长、用油效率提高、城市化进程、产业结构变动四方面的影响因素作了敏感性分析。 (二)到2010年和2020年,我国石油消费需求将分别达到和亿吨,成品油消费需求将分别达到亿吨和亿吨 2006年,我国石油表观消费量34655万吨,同比增长%。研究表明,2007~2020年期间我国石油消费仍将保持较高增长速度,预计2010年和2020年我国石油消费量将达亿吨和亿吨,分别比2006年提高%和%;2007~2010年石油需求年均增长率为%,2010~2020年石油需求年均增长率为%。� 从我国石油消费的结构变化趋势来看,2006年我国汽、柴、煤三种成品油的表观消费量合计为16325万吨,同比增长%。预计汽、柴、煤三种成品油的合计需求量2010年和2020年将分别达到亿吨和亿吨,分别比2006年提高%和%;2007~2010年成品油需求年均增长率为%,2010~2020年成品油需求年均增长率为%,均快于同期石油需求的增长速度,使得成品油需求占石油需求比重进一步提高,从2006年的%提高到2010年的%,2020年的%,总体提高12个百分点。就分品种而言,汽油需求量的预计增长速度最快,从2005年的4635万吨上升到2020年的10696万吨,年均增长%;煤油需求量的增长从2005年的1210万吨上升到2020年的2514万吨,年均增长%;柴油需求量从2005年的10938万吨上升到2020年的20279万吨,年均增长%。其间,预计柴油需求量相对汽油的增长速度在2008年前后开始放缓,因此柴汽比在2008年达到:的最高值后开始下降,回落到2020年的:1左右。� (三)2007~2020年我国石油生产和加工的基本情况判断� 从石油的生产来看,目前我国东部油田在减产,西部发展比预期慢,海洋油田产量仍较低,因此我国石油产量不可能大幅增长,预计2010年和2015年我国原油产量将分别达到亿~亿吨和亿~亿吨,呈缓慢上升趋势。2020年我国原油产量预计为亿~亿吨,然后将呈逐年下降的趋势。� 未来一段较长时期内,从保证国民经济的持续稳定发展的角度出发,我国炼油工业将积极围绕满足成品油和化工用油的目标,充分利用国内外两种资源加快发展。未来我国炼油工业发展和调整的重点是适应资源供应格局和区域经济发展的要求,以资源为基础,以市场需求为导向,调整炼油工业布局,提高优化资源配置水平。� (四)从目前至2020年石油(成品油)的贸易来看,未来我国石油对外依存度将不断增加,并于2020年达到% 从未来发展看,2007~2020年期间我国石油需求仍保持较高增长速度,而在原油产量保持稳定缓慢增长的趋势下,预计2010年我国原油净进口量将达亿吨,2020年将达亿吨,分别比2006年多进口亿吨和亿吨。原油净进口量占原油加工量的比重由2006年的%上升到2020年的%。总体来看,在石油消费需求快速增加和国内资源存在限制的共同影响下,我国原油贸易发展趋势主要表现为对进口原油的依赖程度不断提高,2020年我国的石油对外依存度将上升至%。� 成品油贸易中,在给定炼厂开工率(93%)和不同油品收率(成品油%、汽油%、煤油%、柴油%)的基础情形下,根据此前对成品油需求和产量的预测,得出不同年份汽油、煤油和柴油的净进出口量 二、我国石油安全存在的主要问题� (一)我国石油供需矛盾加剧,对国外石油资源的依存度不断提高� 从现在起到2020年之前,正是我国经济完成工业化过程的关键时期,也是我国石油消费处于迅速增长阶段。根据预测我国石油的对外依存度将由2006年的%达到2010年的%,并于2020年进一步上升到%,届时我国石油供应的2/3以上的石油需求将依赖国际石油资源的供给。� (二)我国石油储备不足,难以应对突发性供应暂时中断或短缺� 从目前来看,世界石油资源争夺日益激烈,境外资源空间逐步缩小,我国石油公司对外直接投资时会受到西方跨国公司的挤压和地方势力的排挤;我国对海上石油运输通道控制薄弱,过分依赖中东和非洲地区的石油和单一的海上运输路线,将使我国石油进口的脆弱性提高;而我国目前除了少量的商业性石油储备外,战略石油储备还几乎是空白,对原油突发性供应中断或急剧减少的应变能力较弱,一旦遇到突发事件,处境将十分被动。� (三)我国没有应对国际油价异常波动的手段,给国民经济平稳发展带来风险� 随着我国进口石油数量的持续增加,世界石油价格的上涨对我国经济的影响越来越大。其直接影响表现为降低国内生产总值增长率和物价的上涨,间接影响表现为出口面临着下降的危险。由于我国目前没有影响国际油价的手段,在国际石油市场的价格博弈中常常处于被动承受的境地,我国石油的进口量占世界石油贸易总量的6%,但在影响石油定价的权重上却不到%。并且,我国除了燃料油期货市场外,原油期货市场刚刚筹建,国内缺乏利用期货套期保值规避国际原油价格风险的手段,原油价格暴涨及随后可能出现的暴跌,都有可能对我国的经济构成直接的冲击。 (四)我国石油行业体制和机制不完善,国家石油公司的国际市场经验尚不足� 主要表现为:缺乏统一健全的管理和监督主体,监管职能过于分散,因此对石油工业发展中的一些重大问题缺乏统筹考虑、统一规划;石油法规体系不健全,政策不配套;市场体系尚不完善,缺乏有效的竞争;调控机制不够灵敏,对市场运作和企业行为缺乏规范、有效的监督;我国的三大石油公司在公司的规模和融资能力,科技水平、管理水平,特别是在国际石油市场上的运作经验等方面与美欧的跨国石油公司还有较大的差距。 三、我国石油安全的对策建议� (一)加强国内外的石油供给能力建设� 1.增加国内石油工业上游领域的投入,特别是勘探开发的投入,确保我国石油储量的稳定增长。一方面,国家要采取措施,向前期的石油地质研究领域投资,为新区域的后续勘探开发创造条件,要在税收上鼓励石油行业向上游的勘探开发投资;另一方面,在2010年前后建设一批重点炼油化工基地,依托现有企业进行改造和适当建设新厂,并争取在2020年前主要建成环杭州湾、珠江三角洲、环渤海和西北炼化工业区。� 2.鼓励我国石油公司成为国际石油市场的积极参与者。积极参与开拓国际油气勘探开发,承担石油工程承包,获得海外石油股份和勘探开发区块,建立稳定的海外石油生产基地;积极参与原油和油品的期货和现货交易,根据国内需要对原油和油品进出口进行灵活调剂,努力实现原油的进口来源多元化;积极参与国际能源多边组织,寻求建立商业联盟,广泛多样地开展国际能源合作。� 3.完善我国石油进出口的基础设施建设。在全国输油管线、储油库的建设过程中,由政府统一规划,考虑到原油和油品进出口的长期需要。� (二)推进能源结构的合理化,促进节能和节油� 我国的石油安全要放在能源结构合理化的背景下,走以煤炭为主、多能互补、因地制宜、多元化发展的道路。在促进节能和节油方面,要结构节能和技术节能并重:一方面,通过调整国民经济结构,降低高耗能产业在整个国民经济中的比重。通过调整交通部门的出行结构,尽量发展城市轨道交通和公共交通,控制小轿车的发展。在汽车类别上适当发展清洁燃料的汽车,降低城市交通的能源消耗;另一方面,通过制定节能法规、征收燃油税等财税政策和价格机制,加强对石油消费的引导,提高石油的利用效率,促进使用环节的节能、节油。� (三)大力发展石油替代能源� 21世纪中期特别是后期,将以新能源作为能源消费的主体。对此,我国要加强对石油替代能源的重视,大力发展气代油、煤代油、生物质能源代油和可再生新能源等石油替代能源。政府要未雨绸缪,通过制定相关政策、建立财政税收引导机制和加大科技投入,提前进行技术储备,为石油替代能源的产业化、商品化打好基础,为未来抢占新能源的战略制高点做好准备。� (四)逐步建立和完善石油储备制度� 石油储备是传统的石油安全手段,其中既包括以国家为主的战略储备,也包括以企业为主的商业储备,重点是根据国际石油市场价格的变化情况选择合适的储备时机,以及根据我国的生产和消费状况,确定合理的储备规模和储备方式;我国要争取在2010年完成相当于40天国内需求量的战略石油储备,在2015年完成相当于55天需求的储备量,并建立油田储备和产能储备制度。� (五)建立完善的石油经济管理体制� 未来15年我国应着力解决石油资源的获得及供给安全这一根本问题,兼顾国家石油安全和市场效率,建立既从整体上保障国家石油安全又能充分发挥市场配置资源基础性作用的石油经济管理体制。� 1.要正确处理政府、市场和企业之间的关系,淡化政府的行政审批职能,发挥市场机制配置资源的基础性作用,理顺大型国有石油公司的企业责任和社会责任,建立平等的市场准入制度和公平的企业竞争机制,不断促进行业自律,切实保障原油和油品供应的安全与平稳。� 2.加强宏观调控与市场监管,通过石油行业的市场化改革,建立与市场化改革相适应的政府管制方式:按照“政监分离”的原则,改革石油领域的政府管理机构设置;政府管理石油行业的方式,从供应侧为主向供应、需求侧并重转变;加强事中监管,准入制度应科学化、透明化;监管重点的转变要由以往的经济性监管为主、社会性监管为辅的旧监管模式,转向以社会性监管为主、经济性监管为辅的新监管模式。监管机构在政策法规框架下,对油气资源、市场准入、价格调控、服务标准、信息数据,以及环保、质量、安全等实行统一监管。� 3.完善原油和天然气、成品油的价格形成机制,以适度的高油价和高税收政策为导向,为发展洁净替代能源、建设节约型社会提供支撑;完善石油行业市场准入制度,设置较高的资本、技术、仓储设施或储备能力等门槛要求,鼓励更多的大型国有企业参与炼油和油品销售环节,这对保障国家的石油供应安全具有重要的战略意义。� (六)提高我国石油工业的整体实力和国家石油公司的国际竞争力� 国有大型石油公司中石油、中石化两大集团作为原油和油品供应的主体和中坚力量,作为承担社会责任、经济责任与政治责任的支柱企业,其为经济社会提供动力的定位不能变:首先要在我国市场逐步放开后,对国内石油市场的稳定起到主导作用;其次是能够“走出去”,通过政治、外交和经济手段,促进两大集团提高其在国际市场的竞[]争力,争取在一定程度上能够影响国际市场秩序,向有利于我国石油安全的方向调整。国家要支持我国石油工业的整体实力壮大,支持国有大型石油公司扩大规模、扩大国际化经营;要在上游资源勘探开发、石油储备政策的实施、发展替代能源、参与国际并购重组等方面,给予国家大型石油公司一定的政策支持;在允许国外公司和国内民营企业进入我国石油市场时,要在质量、环保和企业社会责任、规制方面一视同仁,严格市场准入;对于国家大型石油公司,在体制机制不完善的情况下,借助国家政策获取行政性垄断的倾向,也要通过石油行业的体制改革加以纠正。

一、中国石油工业的特点

1.油气储产量不断增长

近年来,中国石油企业加大勘探开发力度,油气储产量稳中有升,诞生了一批大型油气生产基地。

中国石油天然气股份有限公司油气新增探明石油地质储量连续3年超过5亿吨,新增天然气三级储量超过3000亿立方米;先后在鄂尔多斯等盆地发现4个重大油气储量目标区,落实了准噶尔盆地西北缘等7个亿吨级以上石油储量区和苏里格周边等3个数千亿立方米的天然气储量区。经独立储量评估,2006年中国石油天然气集团公司(以下简称“中石油”)实现石油储量接替率,天然气储量接替率,均超过了预期目标,为油气产量的持续稳定增长提供了资源基础与此同时,中石油一批较大油气田相继投入开发,油气业务实现持续增长。长庆油田原油产量一举突破1000万吨,标志着中国石油又一个千万吨级大油田诞生。地处鄂尔多斯盆地的中国储量最大、规模最大的低渗透苏里格气田投入开发,成为世界瞩目的焦点。塔里木油田的天然气产量突破100亿立方米,西气东输资源保障能力增强。西南油气田的年产油气当量突破1000万吨,成为我国第一个以气为主的千万吨级油气田,也是国内第6个跨入千万吨级的大油气田。2006年,中石油新增原油生产能力1222万吨,天然气生产能力91亿立方米。

中国石油化工股份有限公司在普光外围、胜利深层、东北深层等油气勘探获得一批重要发现。全年新增探明石油储量亿吨,探明天然气储量约1600亿立方米,新增石油可采储量约4500万吨,天然气可采储量约739亿立方米。2006年4月3日,中国石油化工集团公司(以下简称“中石化”)正式对外宣布发现了迄今为止中国规模最大、丰度最高的特大型整装海相气田———普光气田,受到国内外广泛关注。经国土资源部审定,普光气田到2005年末的累计探明可采储量为2511亿立方米,技术可采储量为亿立方米根据审定结果,该气田已具备商业开发条件,规划到2008年实现商业气量40亿立方米以上,2010年实现商业气量80亿立方米。

中国海洋石油有限公司2006年在中国海域共获得10个油气发现,其中包括中国海域的第一个深水发现———荔湾3-1,并有6个含油气构造的评价获得成功。该公司2006年实现储量替代率199%,年内新增净探明储量4676万吨油当量。截至2006年年底,中国海洋石油有限公司共拥有净探明储量约亿吨油当量。

2006年,全国共生产原油亿吨,同比增长;生产天然气亿立方米,同比增长其中,中石油生产原油亿吨,再创历史新高;生产天然气442亿立方米,连续两年增幅超过20%;中石油的油气产量分别占国内油气总产量的58%和76%。连同海外权益油在内,当年中石油的油气总产量达到亿吨油当量,同比增长。中石化原油生产量超过4000万吨,同比增长;生产天然气超过70亿立方米,同比增长。中石化“走出去”战略获得重要进展。预计海外权益油产量达到450万吨,增长了倍。随着中国海洋石油有限公司的涠州6-1油田、曹妃甸油田群、惠州19-1油田、渤中34-5、歧口17-2东、惠州21-1等油气田的先后投产,全年该公司共生产油气4033万吨油当量,较上年增长,比3年前增长了21%。

2.经济效益指标取得进展

近年来,国际油价持续高涨,2007年底一度接近100美元/桶。在高油价的拉动下,中国石油工业的油气勘探开发形势较好,收获颇丰。2006年,中国石油行业(包括原油和天然气开采业、石油加工业)全年实现现价工业总产值20132亿元,工业增加值6371亿元,产品销售收入19982亿元,利润3227亿元,利税4713亿元,分别较上年增长、、、和

2006年,三大国家石油公司突出主营业务的发展,在全力保障国民经济发展对油气需求的同时,创造了良好的经营业绩,各项主要经济指标再创新高,经济实力显著增强。但是,受油价下降等多方面因素的影响,各公司的利润增幅均有大幅降低。尤其是中石油,该公司2005年的利润增长了38%,但2006年仅增长。中国海洋石油总公司(以下简称“中海油”)的利润增长率也下降了一半以上。

3.炼油和乙烯产能快速增长

近年来,国内油品需求增长较上年加快。面对持续增长的市场需求,中国炼油行业克服加工能力不足、国内成品油价格和进口成品油价格倒挂、检修任务繁重等困难,精心组织生产,主要装置实现满负荷生产。2006年全年共加工原油亿吨,比上年增长,但增幅回落了个百分点。其中,中石油加工原油亿吨,增长;中石化加工原油亿吨,增长。

全年全国共生产成品油亿吨,比上年增长,增幅同比回落个百分点。其中,汽油产量为万吨,比上年增长;柴油产量为万吨,比上年增长;煤油产量为960万吨,比上年下降。中石油生产成品油7349万吨,比上年增长。其中汽油产量为万吨,增长;柴油产量为万吨,增长;煤油产量为万吨,增长。中石化约生产成品油亿吨。其中汽油产量为万吨,增长;柴油产量为万吨,增长;煤油产量为万吨,下降(表1-1)。

由于乙烯需求的快速增长,我国加快了乙烯产能建设的步伐。2006年我国乙烯总产量达到万吨,增长。其中,中石油的产量为207万吨,增长;中石化为633万吨,增长,排名世界第4位。长期以来,我国的乙烯领域为中石化、中石油两大集团所主导,但随着中海油上下游一体化战略的推进,尤其是中海壳牌80万吨乙烯项目于2006年年初建成投产后,其在2006年的乙烯产量就达到了万吨。我国乙烯生产三足鼎立的格局已现雏形(表1-2)。

表1-1 2006年全国原油加工量和主要油品产量单位:万吨

注:①由于统计口径不统一,煤油数据略有出入;②中国海洋石油总公司2006年的燃料油产量为万吨,比上年增长。资料来源:中国石油和化学工业协会。

表1-2 2006年中国乙烯产量单位:万吨

资料来源:三大石油集团及股份公司网站。

2005年国家发布了《乙烯工业中长期发展专项规划》和《炼油工业中长期发展专项规划》,使我国炼化工业的发展方向更为明确,势头更加迅猛。我国一大批炼化项目建成投产或启动。吉林石化70万吨/年、兰州石化70万吨/年、南海石化80万吨/年、茂名石化100万吨/年乙烯新建或改扩建工程建成投产;抚顺石化100万吨/年、四川80万吨/年、镇海炼化100万吨/年乙烯工程,以及天津石化100万吨/年乙烯及配套项目开工建设。2009年镇海炼化100万吨/年乙烯工程投产后,镇海炼化具有2000万吨/年炼油能力和100万吨/年乙烯生产能力,成为国内炼化一体化的标志性企业。值得一提的是,总投资为亿美元、国内最大的合资项目———中海壳牌南海石化项目的投产,标志着中国海油的上下游一体化发展迈出实质性步伐,结束了中海油没有下游石化产业的历史。

2006年是多年来中国炼油能力增长最快的一年。大连石化新1000万吨/年、海南石化800万吨/年炼油项目,以及广州石化1300万吨/年炼油改扩建工程相继建成投产;大连石化的年加工能力超过了2000万吨,成为国内最大的炼油生产基地。与此同时,广西石化1000万吨/年炼油项目也已开工建设。可以看出,我国的炼化工业正在向着基地化、大型化、一体化方向不断推进。

2006年,我国成品油销售企业积极应对市场变化,加强产运销衔接,优化资源流向,继续推进营销网络建设,努力增加市场资源投放量。中石油全年销售成品油7765万吨,同比增长,其中零售量达4702万吨,同比增长。中石化销售成品油亿吨,增长。中石油加油站总数达到18207座,平均单站日销量吨,同比增长。中石化的加油站数量在2006年经历了爆发式增长,通过新建、收购和改造加油站、油库,进一步完善了成品油网络,全年新增加油站800座,其自营加油站数量已经达到万座,排名世界第3位。

4.国际合作持续发展

近年来,中国国有石油公司在海外的油气业务取得了进展,尤其是与非洲国家的油气合作有了很大发展,合作的国家和地区不断扩大。

中石油海外油气业务深化苏丹、哈萨克斯坦和印度尼西亚等主力探区的滚动勘探,稳步开展乍得等地区的风险勘探,全年新增石油可采储量6540万吨。同时加强现有项目的稳产,加快新项目上产,形成了苏丹1/2/4区、3/7区及哈萨克斯坦PK三个千万吨级油田。2006年,中石油完成原油作业量和权益产量分别为5460万吨和2807万吨,同比分别增长1877万吨和804万吨;天然气作业产量为57亿立方米,权益产量为38亿立方米,同比约分别增长17亿立方米和10亿立方米在苏丹,中石油建成了世界上第一套高钙、高酸原油延迟焦化装置,3/7区长输管道工程也投入运营;该公司还新签订乍得、赤道几内亚和乌兹别克斯坦等9个项目合同,中标尼日利亚4个区块;海外工程技术服务新签合同额亿美元,业务拓展到48个国家,形成了7个规模市场。在国内,中石油与壳牌共同开发的长北天然气田已正式投入商业生产,并向外输送天然气。

中石化“走出去”获得重要进展。2006年,中石化完成海外投资约500亿元,获得俄罗斯乌德穆尔特石油公司49%的股权,正在执行的海外油气项目达到32个,初步形成发展较为合理的海外勘探和开发布局。中石化全年新增权益石油可采储量5700万吨,权益产量达到450万吨。该公司还积极开拓海外石油石化工程市场,成功中标巴西天然气管道、伊朗炼油改造等一批重大工程项目。在国内,中石化利用其在下游领域的主导地位,与福建省、埃克森美孚及沙特阿美在2007年年初成立了合资企业“福建联合石油化工有限公司”、“中国石化森美(福建)石油有限公司”。两个合资企业的总投资额约为51亿美元,成为中国炼油、化工及成品油营销全面一体化中外合资项目。项目将把福建炼化的原油加工能力提高到1200万吨/年,主要加工来自沙特的含硫原油;同时建设80万吨/年的乙烯裂解装置,并在福建省管理和经营大约750个加油站和若干个油库。此前,中石化与BP合资的上海赛科90万吨/年乙烯、同巴斯夫公司合资的扬巴60万吨/年乙烯项目已于2005年建成投产。

目前,在政府能源外交的推动下,中国企业“出海找油”的战略已初见成效。但随着资源国对石油资源实行越来越严格的控制,中国企业在海外寻油的旅途上也将面临更多的困难与障碍。

5.管道网络建设顺利进行

我国油气管道网络建设继续顺利推进,并取得了丰硕的成果。目前,我国覆盖全国的油气骨干管网基本形成,部分地区已建成较为完善的管网系统。

原油管道:阿拉山口—独山子原油管道建成投产,使中国首条跨国原油管道———中哈原油管道全线贯通,正式进入商业运营阶段;总长度为1562千米的西部原油成品油管道中的原油干线已敷设完成。

成品油管道:国家重点工程———西部原油成品油管道工程中的成品油管道建成投产,管道全长1842千米,年设计量为1000万吨;干支线全长670千米、年输量300万吨的大港—枣庄成品油管道开工建设;中石化的珠三角成品油管道贯通输油,管道全长1143千米,设计年输量为1200万吨,将中石化在珠三角地区所属的茂名石化、广州石化、东兴炼厂和海南石化等炼油基地连接在一起,有利于资源共享,优势互补,对于提高中石化在南方市场的竞争力有着重要意义。

2006年是中国液化天然气(LNG)发展史上的里程碑。中国第一个LNG试点项目———广东液化天然气项目一期工程投产并正式进入商业运行;一期工程年接收量为260万吨的福建液化天然气项目与印度尼西亚签署了液化天然气的购销协议,资源得到落实;一期工程年进口量为300万吨的上海液化天然气项目开工建设,并与马来西亚签订了液化天然气购销协议。在我国,经国家核准的液化天然气项目有10余个。在能源供应日趋紧张、国际天然气价格持续走高的情况下,气源问题将成为制约中国LNG项目发展的最大瓶颈。

6.科技创新投入加大

科学技术是第一生产力,也是石油企业努力实现稳定、有效、可持续发展的根本。2005年中石油高端装备技术产品研发获得重大突破,EI-Log测井装备和CGDS-I近钻头地质导向系统研制成功。这两项完全拥有自主知识产权的产品均达到或接近国际先进水平,打破了外国公司对核心技术的垄断。中石油全年共申请专利800余项,获授权专利700项,7项成果获国家科技进步奖和技术发明奖,登记重要科技成果600项。2006年,中石油优化科技资源配置、加快创新体系建设令人瞩目。按照“一个整体、两个层次”的架构,相继组建了钻井工程技术研究院、石油化工研究院,使公司层面的研究院已达到8家,覆盖公司10大主体专业、支撑7大业务发展的20个技术中心建设基本完成,初步形成“布局合理、特色鲜明、精干高效、协同互补”的技术创新体系。

中石化基本完成了生产欧Ⅳ标准清洁成品油的技术研究,为油品质量升级储备了技术;油藏综合地质物理技术、150万吨/年单段全循环加氢裂化技术等重大科技攻关项目顺利完成;空气钻井、高效柴油脱硫催化剂等一批技术得到应用;一批自主开发的技术成功应用于新建或改造项目,特别是海南炼油、茂名乙烯的建成投产,标志着中石化自主技术水平和工程开发能力迈上了一个新台阶。中石化及合作单位的“海相深层碳酸盐岩天然气成藏机理、勘探技术与普光气田的发现”的理论和技术成果,带动了四川盆地海相深层天然气储量增长高峰,推动了南方海相乃至中国海相油气勘探的快速发展,是中国海相油气勘探理论的重大突破,获得了2006年度国家科技进步一等奖。2006年,中石化共申请专利1007项,获得中国专利授权948项,其中发明专利占74%;申请国外专利97项,获得授权61项。

中海油2006年的科技投入超过20亿元,约占销售收入的,产生了一批有价值的科技成果。“渤海海域复杂油气藏勘探”、“高浓缩倍率工业冷却水处理及智能化在线(远程)监控技术”荣获2006年国家科技进步二等奖。渤海复杂油气藏勘探理论和技术研究取得突破,发现、盘活了锦州25-1南、旅大27-2等一批渤海复合油气藏和特稠油油群,该公司的海上稠油开发技术达到了世界先进水平。

7.加强可再生能源发展

我国国有石油公司明显加强了可再生能源的发展,尤其是在生物柴油的开发上有了实质性的突破,彰显了从石油公司向能源公司转型的决心和勇气。

中石油与四川省政府签订了合作开发生物质能源框架协议,双方合作的目标是“共同实施‘四川省生物质能源产业发展规划’,把四川建设成‘绿色能源’大省、清洁汽车大省;‘十一五’共同建成年60万吨甘薯燃料乙醇、年产10万吨麻风树生物柴油规模”;与国家林业局签署了合作发展林业生物质能源框架协议,并正式启动云南、四川第一批面积约为4万多公顷的林业生物质能源林基地建设,建成后可实现每年约6万吨生物柴油原料的供应能力。到“十一五”末,中石油计划建成非粮乙醇生产能力超过200万吨/年,达到全国产能的40%以上;形成林业生物柴油20万吨/年商业化规模;支持建设生物质能源原料基地达40万公顷以上,努力成为国家生物质能源行业的领头军。

中石化年产2000吨生物柴油的试验装置已在其位于河北省的生物柴油研发基地建成,成为迄今国内具有领先水平的标志性试验装置,为我国生物柴油产业开展基础性研究和政策制定,提供了强有力技术平台与支撑。中国海洋石油基地集团有限公司与四川攀枝花市签订了“攀西地区麻风树生物柴油产业发展项目”备忘录,计划投资亿元,建设年产能为10万吨的生物柴油厂。

目前,我国生物柴油的发展十分迅猛,但存在鱼龙混杂的现象。国有大企业介入生物柴油领域,不仅可以提高企业自身的可持续发展能力,对整个生物柴油行业的规范化发展也是很有益的。

二、中国石油工业存在的问题

1.油气资源探明程度低,人均占有量低

我国油气资源丰富,但探明程度较低,人均占有量也较低。根据全国6大区115个含油盆地新一轮油气资源评价的结果,我国石油远景资源量为亿吨,其中陆地亿吨,近海亿吨;地质资源量亿吨,其中陆地亿吨,近海亿吨;可采资源量亿吨,其中陆地亿吨,近海亿吨。尽管我国油气资源比较丰富,但人均占有量偏低。我国石油资源的人均占有量为~吨,仅为世界平均水平73吨的1/5~1/6;天然气资源的人均占有量为万~万立方米,是世界平均水平7万立方米的1/5~1/7。与耕地和淡水资源相比,我国人均占有油气资源的情形更差些

2.油气资源分布不均

全国含油气区主要分布情况是:东部,主要包括东北和华北地区;中部,主要包括陕、甘、宁和四川地区;西部,主要包括新疆、青海和甘肃西部地区;西藏区,包括昆仑山脉以南、横断山脉以西的地区;海上含油气区,包括东南沿海大陆架及南海海域。

根据目前油气资源探明程度,从东西方向看,油气资源主要分布在东部;从南北方向上看,绝大部分油气资源在北方。这种油气资源分布不均衡的格局,为我国石油工业的发展和油气供求关系的协调带来了重大影响。从松辽到江汉和苏北等盆地的东部老油区占石油储量的74%,以鄂尔多斯和四川盆地为主体的中部区占,西北区占,南方区占,海域占。而海域中渤海占全国储量的4%。2000年,随着更多的渤海大中型油田被探明,海上也表现出石油储量北部多于南部的特点。

目前,我国陆上天然气主要分布在中部和西部地区,分别占陆上资源量的和。天然气探明储量集中在10个大型盆地,依次为:渤海湾、四川、松辽、准噶尔、莺歌海-琼东南、柴达木、吐-哈、塔里木、渤海、鄂尔多斯。资源量大于l万亿立方米的有塔里木、鄂尔多斯、四川、珠江口、东海、渤海湾、莺歌海、琼东南、准噶尔9个盆地,共拥有资源量万亿立方米

3.供需差额逐渐加大

最近5年,石油消费明显加快。2006年全国石油消费量达到亿吨,比2000年净增亿吨。

到2020年前,我国经济仍将保持较高速度发展,工业化进程将进一步加快,特别是交通运输和石油化工等高耗油工业的发展将明显加快。此外,城镇人口将大幅上升,农村用油的比重也将增加。多种因素将使我国石油需求继续保持快速增长。在全社会大力节油的前提下,如果以平均每年的石油需求量大体增加1000万吨的规模估计,到2020年,我国石油需求量将接近5亿吨;进口量3亿吨左右,对外依存度(进口量占总消费量的比率)约60%,超过国际上公认的50%的石油安全警戒线。我国石油安全风险将进一步加大

4.原油采收率较低,成本居高不下

俄罗斯的原油平均采收率达40%,美国为33%~35%,最高达70%,北海油田达50%,国外注水大油田的采收率为50%左右。我国的平均采收率大大低于这一水平。原油包括发现成本、开发成本、生成成本、管理费用和财务费用等在内的完全成本,目前与国际大石油公司相比,我国原油的完全成本非常高。1998年,中石油和中石化重组之前,我国的石油天然气产量一直作为国家指令性计划指标,为保证产量任务的完成,在资金不足的情况下,只有将有限资金投向油气田开发和生产;而在新增可动用储量不足的情况下,只有对老油田实行强化开采,造成油田加速进入中后开发期,综合含水上升很快,大大加速了操作费用的上升。重组后的中石油,职工总数很多,原油加工能力不高,这就导致人工成本太高,企业组织形式不合理,管理水平不高。各油田及油田内部各单位管理机构臃肿,管理层次很多。预算的约束软,乱摊乱进名目不少。在成本管理上,没有认真实行目标成本管理,加之核算制度不够严格和科学,有时还出现成本不实的现象。

5.石油利用效率总体不高

我国既是一个石油生产大国,又是一个石油消费大国,同时也是一个石油利用效率不高的国家。以2004年为例,我国GDP总量为万亿美元,万美元GDP消耗石油吨。这个数字是当年美国万美元石油消费量的2倍,日本的3倍,英国的4倍。目前,国内生产的汽车发动机,百公里油耗设计值比发达国家同类车要高10%~15%。我国现阶段单车平均年耗油量为吨,比美国高21%,比德国高89%,比日本高115%。要把我国2020年的石油总消费量控制在5亿吨以内,就要求在过去15年石油消费的平均增长水平上,每年降低25%以上。以上情况,一方面,说明我国节约用油的潜力很大;另一方面,也反映出节约、控制石油消费过快增长的难度相当大

6.石油科技水平发展较低

我国石油科技落后于西方发达国家,科研创新能力更差。基础研究水平差,大部分基础研究工作只是把国外较为成熟的理论和方法在我国加以具体运用。如地震地层学、油藏描述、水平井技术和地层损害等。另外,国外还有许多先进理论尚未引起国内足够的重视,如自动化钻井、小井眼钻井、模糊理论在油藏工程中的应用等。基础研究的这种局面表现为我国科研工作的创新能力差,缺乏后劲,技术创新能力不足,科技成果转化率不高,科技进步对经济增长的贡献率低。

石油化工产业主要上市公司:目前国内石油化工产业的上市公司主要有中国石化(600028)、中国石油(601857)、东华能源(002221)、华锦股份(000059)、恒逸石化(000703)、荣盛石化(002493)、上海石化(600688)、华鲁恒生(600426)、康普顿(603798)、卫星石化(002648)。

本文核心数据:行业发展、行业现状、行业前景

产业概况

1、定义:原料-石油产品-石油化工产品

石油化工指以石油和天然气为原料,生产石油产品和石油化工产品的加工工业。

石油产品又称油品,主要包括各种燃料油(汽油、煤油、柴油等)和润滑油以及液化石油气、石油焦碳、石蜡、沥青等。生产这些产品的加工过程常被称为石油炼制,简称炼油。

石油化工产品以炼油过程提供的原料油进一步化学加工获得。生产石油化工产品的第一步是对原料油和气(如丙烷、汽油、柴油等)进行裂解,生成以乙烯、丙烯、丁二烯、苯、甲苯、二甲苯为代表的基本化工原料。第二步是以基本化工原料生产多种有机化工原料(约200种)及合成材料(塑料、合成纤维、合成橡胶)。这两步产品的生产均属于石油化工的范围。

有机化工原料继续加工可制得更多品种的化工产品,习惯上不属于石油化工的范围。在有些资料中,以天然气、轻汽油、重油为原料合成氨、尿素,甚至制取硝酸也列入石油化工。

2、产业链剖析:产业流程复杂,产品众多

石油化工产业上游主要是石油开采与炼制行业,包括油气开采和运输、炼油和石油化工产品加工制造过程,中游为基本有机与高分子行业,下游行业为农业、能源、交通、机械、电子、纺织、轻工、建筑、建材等工农业和人民日常生活提供配套和服务。需要注意的是,在石油化工生产过程中,为了促进炼油和分解过程,会添加化工催化剂以提高加工效率。

产业发展历程:一部艰苦奋斗史

我国石油化学工业发展史,也是一部可歌可泣的奋斗史。1949年新中国成立初期,我国石油和化学工业十分落后,广大石油化工干部职工,在旧中国“一穷二白”薄弱基础上艰苦创业,无私奉献。经历了恢复与发展阶段、历史性的转变阶段、新的崛起阶段、新发展时期阶段等四个阶段的不断探索与发展,我国成为世界第二石油和化学品生产、消费大国。

行业政策背景:从大力发展到优化产业布局

石化产业是国民经济重要的支柱产业,近年来我国制定石油化工产业发展建设的相关政策,为中国石油化工产业的快速发展提供保障。

碳中和或带来石油化工行业颠覆性变革和机遇。为实现碳达峰、碳中和目标,钢铁、电力、石化、煤炭等行业正加速转型。不少上市公司制定了碳达峰、碳中和路线图。碳达峰碳中和目标给石化企业的绿色低碳转型带来较大压力,但在转型过程中同时孕育着新的发展机会,包括发展新能源、新材料、新业态的机遇,推动化石能源主导的能源结构、产业结构和经济结构转向由可再生能源主导,这一过程驱动行业重构产业链价值链,需要更加依靠技术创新驱动,在实现碳减排目标过程中从根本上改变石油化工行业的结构形态。

产业发展现状

1、成品油产量:产量再创新高

2020年受疫情的冲击,汽油市场需求大幅下滑。2020年全国汽油产量为万吨,同比下降。全年来看,中国成品油产量低位出现在第一季度,由于2020年春节假期延长,疫情蔓延令众多炼厂开工负荷迅速下滑,主营单位和山东独立炼厂均在一季度迎来年内低点。2-3月份因疫情全国处在封锁状态,3月份汽油产量最低,后随着复产复工,汽油产量逐渐增加,基本恢复至往年同期水平。2021年全年,汽油产量达万吨,累计增长。

我国柴油产量从2018年起,产量连续三年下降,到2020年中国柴油产量下降至万吨,相较于2017年柴油产量下降了万吨。在多种因素的作用下,炼油厂成本不断上升,但是价格却保持稳定,使得炼油厂生产柴油的意愿降低,柴油产量下降。2021年全年柴油产量万吨,累计增长。

2010-2019年,我国煤油产量逐年增加,到2019年产量达到万吨,同比增长;2020年,受国内突发公共卫生事件的影响,春节假期延长,各行业延迟复工,中国煤油产量仅为万吨,同比下降; 2021年中国煤油产量万吨,同比下降。

2010-2019年,我国燃料油产量波动范围较大。2019年我国燃料油产量为万吨,同比增长19%。2020年,燃料油产量为万吨,同比增长。2021年,燃料油产量为万吨,同比累计增长。

石脑油(naphtha)又叫化工轻油,是石油产品之一,是以原油或其他原料加工生产的用于化工原料的轻质油,主要用作重整和化工原料。因用途不同有各种不同的馏程,中国规定馏程为初馏点至220℃左右。作为生产芳烃的重整原料时,采用70℃-145℃馏分,称轻石脑油;用作溶剂时,则称溶剂石脑油;以生产高辛烷值汽油为目的时,采用70℃-180℃馏分,称重石脑油;来自煤焦油的芳香族溶剂也称重石脑油或溶剂石脑油。

近年来,我国石脑油产量逐渐增加。2020年石脑油产量进一步增加至万吨,同比增长,产量实现连续五年增长; 2021年我国石脑油产量万吨,同比增长。

2、化工产品产量:乙烯产量增长显著

近两年,受市场价格回升等影响,停产多年的多套合成橡胶装置恢复生产,中国合成橡胶市场供需保持平稳发展,2020年我国合成橡胶品种产量增长到万吨,增速为,但多套装置能否按时投产,仍存在较大的不确定性。2021年我国主要合成橡胶产量为万吨,同比增长。

根据国家统计局最新数据,2020年我国乙烯产量万吨,同比增长;2021年乙烯产量万吨,同比增长,预计未来新增产能步伐进一步加快。

根据国家统计局最新数据,2020年我国化学纤维产量万吨,同比增长;2021年化学纤维产量万吨,同比增长,预计未来新增产能步伐进一步加快。

产业竞争格局

1、区域竞争:格局分布明显

当前,中国石化产业正在迎来产业重构,企业利用国际国内两个市场两种资源的同时,推进工业结构、产业结构,包括经济结构的调整和优化。近年来我国石油化工产业区域结构在不断提升,落后产能不断淘汰,创新能力不断提升,国际化经营水平也在不断提高。

通过企查猫对“石油化工”进行精确搜索显示,2021年底,石油化工产业现存355291家相关企业,从企业数量上来看,排在前三位的分别是山东省、陕西省和广东省。分别为41531家、31605家和26789家。

注:企查猫数据截至2021年12月31日

从代表性企业分布情况来看,我国石油化工代表企业分布在辽宁、山东、江苏、浙江、广东等沿海省份,以及新疆维吾尔自治区、湖南省、黑龙江省等内陆省份。

2、企业竞争:中石油、中石化为行业龙头

目前,布局了石油化工开采、冶炼、精密加工业务的上市企业中,中石油、中石化在石油化工氧化物、石油化工聚合物等产品产量遥遥领先于其它企业。石油化工产业产业链上的其它代表性企业业务布局及竞争力情况如下:

按主营业务营收金额来看,2020年,中国石油化工集团以2万1千多亿元的营业收入位列第一,占中国石油的市场份额占全行业的比重高达19%,中国石油天然气集团排在第二位,营业没有超过两万亿元大关,以1万9千亿元占据中国石化的市场份额的17%。加上中国海洋石油总公司、中国中化集团有限公司、中国化工集团公司、陕西延长石油(集团)有限公司及荣盛石化五家特大型企业,销售收入总额约占全行业的50%。

产业发展前景及趋势预测

1、石油化工发展趋势:“补短板”和“补空白”

根据中国石油和化学工业联合会发布的《石化和化学工业“十四五”规划指南》中明确提出,“十四五”的主要任务就是推进中国石化产业的现代化。增加化工新材料产品的丰富度和高端化水平,打通“补短板”和“补空白”路径;加大产品应用定制化服务力度。

2、石油化工前景预测:互联网+时代,石化行业迎来发展新机遇

石化产业和互联网的深度融合为企业转型提供了发展机遇,未来随着互联网+化工模式逐步深入,企业将从生产型逐步向服务型转变,最终实现与金融市场的紧密结合。

更多行业相关数据请参考前瞻产业研究院《中国石油化工产业发展前景预测与投资战略规划分析报告》。

燃料电池国内外研究现状论文

在中国的燃料电池研究始于1958年,原电子工业部天津电源研究所最早开展了MCFC的研究。70年代在航天事业的推动下,中国燃料电池的研究曾呈现出第一次高潮。其间中国科学院大连化学物理研究所研制成功的两种类型的碱性石棉膜型氢氧燃料电池系统(千瓦级AFC)均通过了例行的航天环境模拟试验。1990年中国科学院长春应用化学研究所承担了中科院PEMFC的研究任务,1993年开始进行直接甲醇质子交换膜燃料电池(DMFC)的研究。电力工业部哈尔滨电站成套设备研究所于1991年研制出由7个单电池组成的MCFC原理性电池。“八五”期间,中科院大连化学物理研究所、上海硅酸盐研究所、化工冶金研究所、清华大学等国内十几个单位进行了与SOFC的有关研究。到90年代中期,由于国家科技部与中科院将燃料电池技术列入"九五"科技攻关计划的推动,中国进入了燃料电池研究的第二个高潮。在中国科学工作者在燃料电池基础研究和单项技术方面取得了不少进展,积累了一定经验。但是,由于多年来在燃料电池研究方面投入资金数量很少,就燃料电池技术的总体水平来看,与发达国家尚有较大差距。我国有关部门和专家对燃料电池十分重视,1996年和1998年两次在香山科学会议上对中国燃料电池技术的发展进行了专题讨论,强调了自主研究与开发燃料电池系统的重要性和必要性。近几年中国加强了在PEMFC方面的研究力度。 2000年大连化学物理研究所与中科院电工研究所已完成30kW车用用燃料电池的全部试验工作。北京富原公司也宣布,2001年将提供40kW的中巴燃料电池,并接受订货。科技部副部长徐冠华在EVS16届大会上宣布,中国将在2000年装出首台燃料电池电动车。此前参与燃料电池研究的有关概况如下:1:PEMFC的研究状况中国最早开展PEMFC研制工作的是长春应用化学研究所,该所于1990年在中科院扶持下开始研究PEMFC,工作主要集中在催化剂、电极的制备工艺和甲醇外重整器的研制已制造出100WPEMFC样机。1994年又率先开展直接甲醇质子交换膜燃料电池的研究工作。该所与美国CaseWesternReserve大学和俄罗斯氢能与等离子体研究所等建立了长期协作关系。 中国科学院大连化学物理所于1993年开展了PEMFC的研究,在电极工艺和电池结构方面做了许多工作,现已研制成工作面积为140cm2的单体电池,其输出功率达。复旦大学在90年代初开始研制直接甲醇PEMFC,主要研究聚苯并咪唑膜的制备和电极制备工艺。厦门大学与香港大学和美国的CaseWesternReserve大学合作开展了直接甲醇PEMFC的研究。1994年,上海大学与北京石油大学合作研究PEMFC(“八五”攻关项目),主要研究催化剂、电极、电极膜集合体的制备工艺。北京理工大学于1995年在兵器工业部资助下开始了PEMFC的研究,单体电池的电流密度为150mA/cm2。中国科学院工程热物理研究所于1994年开始研究PEMFC,主营使用计算传热和计算流体力学方法对各种供气、增湿、排热和排水方案进行比较,提出改进的传热和传质方案。天津电源研究所1997年开始PEMFC的研究,拟从国外引进的电池,在解析吸收国外先进技术的基础上开展研究。1995年北京富原公司与加拿大新能源公司合作进行PEMFC的研制与开发,5kW的PEMFC样机现已研制成功并开始接受订货。2:MCFC的研究简况在中国开展MCFC研究的单位不太多。哈尔滨电源成套设备研究所在80年代后期曾研究过MCFC,90年代初停止了这方面的研究工作。1993年中国科学院大连化学物理研究所在中国科学院的资助下开始了MCFC的研究,自制LiAlO2微粉,用冷滚压法和带铸法制备出MCFC用的隔膜,组装了单体电池,其性能已达到国际80年代初的水平。90年代初,中国科学院长春应用化学研究所也开始了MCFC的研究,在LiAlO2微粉的制备方法研究和利用金属间化合物作MCFC的阳极材料等方面取得了很大进展。北京科技大学于90年代初在国家自然科学基金会的资助下开展了MCFC的研究,主要研究电极材料与电解质的相互作用,提出了用金属间化合物作电极材料以降低它的溶解。3:SOFC的研究简况最早开展SOFC研究的是中国科学院上海硅酸盐研究所他们在1971年就开展了SOFC的研究,主要侧重于SOFC电极材料和电解质材料的研究。80年代在国家自然科学基金会的资助下又开始了SOFC的研究,系统研究了流延法制备氧化锆膜材料、阴极和阳极材料、单体SOFC结构等,已初步掌握了湿化学法制备稳定的氧化锆纳米粉和致密陶瓷的技术。吉林大学于1989年在吉林省青年科学基金资助下开始对SOFC的电解质、阳极和阴极材料等进行研究组装成单体电池,通过了吉林省科委的鉴定。1995年获吉林省计委和国家计委450万元人民币的资助,先后研究了电极、电解质、密封和联结材料等,单体电池开路电压达,电流密度400mA/cm2,4个单体电池串联的电池组能使收音机和录音机正常工作。1991年中国科学院化工冶金研究所在中国科学院资助下开展了SOFC的研究,从研制材料着手制成了管式和平板式的单体电池,功率密度达~,电流密度为150mA/cm2~180mA/cm2,工作电压为~。1994年该所从俄罗斯科学院乌拉尔分院电化学研究所引进了20W~30W块状叠层式SOFC电池组,电池寿命达1200h。他们在分析俄罗斯叠层式结构、美国Westinghouse的管式结构和德国Siemens板式结构的基础上,设计了六面体式新型结构,该结构吸收了管式不密封的优点,电池间组合采用金属毡柔性联结,并可用常规陶瓷制备工艺制作。华南理工大学于1992年在国家自然科学基金会、广东省自然科学基金、汕头大学李嘉诚科研基金、广东佛山基金共一百多万元的资助下开始了SOFC的研究,组装的管状单体电池,用甲烷直接作燃料,最大输出功率为4mW/cm2,电流密度为17mA/cm2,连续运转140h,电池性能无明显衰减。 发达国家都将大型燃料电池的开发作为重点研究项目,企业界也纷纷斥以巨资,从事燃料电池技术的研究与开发,已取得了许多重要成果,使得燃料电池即将取代传统发电机及内燃机而广泛应用于发电及汽车上。值得注意的是这种重要的新型发电方式可以大大降低空气污染及解决电力供应、电网调峰问题,2MW、、11MW成套燃料电池发电设备已进入商业化生产,各等级的燃料电池发电厂相继在一些发达国家建成。燃料电池的发展创新将如百年前内燃机技术突破取代人力造成工业革命,也像电脑的发明普及取代人力的运算绘图及文书处理的电脑革命,又如网络通讯的发展改变了人们生活习惯的信息革命。燃料电池的高效率、无污染、建设周期短、易维护以及低成本的潜能将引爆21世纪新能源与环保的绿色革命。如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四代发电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,它已是能源、电力行业不得不正视的课题。磷酸型燃料电池(PAFC)受1973年世界性石油危机以及美国PAFC研发的影响,日本决定开发各种类型的燃料电池,PAFC作为大型节能发电技术由新能源产业技术开发机构(NEDO)进行开发。自1981年起,进行了1000kW现场型PAFC发电装置的研究和开发。1986年又开展了200kW现场性发电装置的开发,以适用于边远地区或商业用的PAFC发电装置。 富士电机公司是日本最大的PAFC电池堆供应商。截至1992年,该公司已向国内外供应了17套PAFC示范装置,富士电机在1997年3月完成了分散型5MW设备的运行研究。作为现场用设备已有50kW、100kW及500kW总计88种设备投入使用。下表所示为富士电机公司已交货的发电装置运行情况,到1998年止有的已超过了目标寿命4万小时。东芝公司从70年代后半期开始,以分散型燃料电池为中心进行开发以后,将分散电源用11MW机以及200kW机形成了系列化。11MW机是世界上最大的燃料电池发电设备,从1989年开始在东京电力公司五井火电站内建造,1991年3月初发电成功后,直到1996年5月进行了5年多现场试验,累计运行时间超过2万小时,在额定运行情况下实现发电效率。在小型现场燃料电池领域,1990年东芝和美国IFC公司为使现场用燃料电池商业化,成立了ONSI公司,以后开始向全世界销售现场型200kW设备"PC25"系列。PC25系列燃料电池从1991年末运行,到1998年4月,共向世界销售了174台。其中安装在美国某公司的一台机和安装在日本大阪梅田中心的大阪煤气公司2号机,累计运行时间相继突破了4万小时。从燃料电池的寿命和可靠性方面来看,累计运行时间4万h是燃料电池的长远目标。东芝ONSI已完成了正式商用机PC25C型的开发,早已投放市场。PC25C型作为21世纪新能源先锋获得日本通商产业大奖。从燃料电池商业化出发,该设备被评价为具有高先进性、可靠性以及优越的环境性设备。它的制造成本是$3000/kW,将推出的商业化PC25D型设备成本会降至$1500/kW,体积比PC25C型减少1/4,质量仅为14t。2001年,在中国就将迎来第一座PC25C型燃料电池电站,它主要由日本的MITI(NEDO)资助的,这将是我国第一座燃料电池发电站。质子交换膜燃料电池(PEMFC)著名的加拿大Ballard公司在PEMFC技术上全球领先,它的应用领域从交通工具到固定电站,其子公司BallardGenerationSystem被认为在开发、生产和市场化零排放质子交换膜燃料电池上处于世界领先地位。BallardGenerationSystem最初产品是250kW燃料电池电站,其基本构件是Ballard燃料电池,利用氢气(由甲醇、天然气或石油得到)、氧气(由空气得到)不燃烧地发电。Ballard公司正和世界许多著名公司合作以使BallardFuelCell商业化。BallardFuelCell已经用于固定发电厂:由BallardGenerationSystem,GPUInternationalInc.,AlstomSA和EBARA公司共同组建了BallardGenerationSystem,共同开发千瓦级以下的燃料电池发电厂。经过5年的开发,第一座250kW发电厂于1997年8月成功发电,1999年9月送至IndianaCinergy,经过周密测试、评估,并提高了设计的性能、降低了成本,这导致了第二座电厂的诞生,它安装在柏林,250kW输出功率,也是在欧洲的第一次测试。很快Ballard公司的第三座250kW电厂也在2000年9月安装在瑞士进行现场测试,紧接着,在2000年10月通过它的伙伴EBARABallard将第四座燃料电池电厂安装在日本的NTT公司,向亚洲开拓了市场。在不同地区进行的测试将大大促进燃料电池电站的商业化。第一个早期商业化电厂将在2001年底面市。下图是安装在美国Cinergy的Ballard燃料电池装置,正在测试。图是安装在柏林的250kW PEMFC燃料电池电站:在美国,PlugPower公司是最大的质子交换膜燃料电池开发公司,他们的目标是开发、制造适合于居民和汽车用经济型燃料电池系统。1997年,PlugPower模块第一个成功地将汽油转变为电力。PlugPower公司开发出它的专利产品PlugPower7000居民家用分散型电源系统。商业产品在2001年初推出。家用燃料电池的推出将使核电站、燃气发电站面临挑战,为了推广这种产品,1999年2月,PlugPower公司和GEMicroGen成立了合资公司,产品改称GEHomeGen7000,由GEMicroGen公司负责全球推广。此产品将提供7kW的持续电力。GE/Plug公司宣称其2001年初售价为$1500/kW。他们预计5年后,大量生产的燃料电池售价将降至$500/kW。假设有20万户家庭各安装一个7kW的家用燃料电池发电装置,其总和将接近一个核电机组的容量,这种分散型发电系统可用于尖峰用电的供给,又因分散式系统设计增加了电力的稳定性,即使少数出现了故障,但整个发电系统依然能正常运转。 在Ballard公司的带动下,许多汽车制造商参加了燃料电池车辆的研制,例如:Chrysler(克莱斯勒)、Ford(福特)、GM(通用)、Honda(本田)、Nissan(尼桑)、VolkswagenAG(大众)和Volvo(富豪)等,它们许多正在使用的燃料电池都是由Ballard公司生产的,同时,它们也将大量的资金投入到燃料电池的研制当中,克莱斯勒公司给Ballard公司注入4亿5千万加元用于开发燃料电池汽车,大大的促进了PEMFC的发展。1997年,Toyota公司就制成了一辆RAV4型带有甲醇重整器的跑车,它由一个25kW的燃料电池和辅助干电池一起提供了全部50kW的能量,最高时速可以达到125km/h,行程可达500km。这些大的汽车公司均有燃料电池开发计划,虽然燃料电池汽车商业化的时机还未成熟,但几家公司已确定了开始批量生产的时间表,Daimler-Benz公司宣布,到2004年将年产40000辆燃料电池汽车。因而未来十年,极有可能达到100000辆燃料电池汽车。熔融碳酸盐燃料电池(MCFC)50年代初,熔融碳酸盐燃料电池(MCFC)由于其可以作为大规模民用发电装置的前景而引起了世界范围的重视。在这之后,MCFC发展的非常快,它在电池材料、工艺、结构等方面都得到了很大的改进,但电池的工作寿命并不理想。到了80年代,它已被作为第二代燃料电池,而成为实现兆瓦级商品化燃料电池电站的主要研究目标,研制速度日益加快。MCFC的主要研制者集中在美国、日本和西欧等国家。预计2002年将商品化生产。美国能源部(DOE)2000年已拨给固定式燃料电池电站的研究费用4420万美元,而其中的2/3将用于MCFC的开发,1/3用于SOFC的开发。美国的MCFC技术开发一直主要由两大公司承担,ERC(EnergyResearchCorporation)(现为FuelCellEnergyInc.)和M-CPower公司。他们通过不同的方法建造MCFC堆。两家公司都到了现场示范阶段:ERC1996年已进行了一套设于加州圣克拉拉的2MW的MCFC电站的实证试验,正在寻找3MW装置试验的地点。ERC的MCFC燃料电池在电池内部进行无燃气的改质,而不需要单独设置的改质器。根据试验结果,ERC对电池进行了重新设计,将电池改成250kW单电池堆,而非原来的125kW堆,这样可将3MW的MCFC安装在英亩的场地上,从而降低投资费用。ERC预计将以$1200/kW的设备费用提供3MW的装置。这与小型燃气涡轮发电装置设备费用$1000/kW接近。但小型燃气发电效率仅为30%,并且有废气排放和噪声问题。与此同时,美国M-CPower公司已在加州圣迭戈的海军航空站进行了250kW装置的试验,计划在同一地点试验改进75kW装置。M-CPower公司正在研制500kW模块,计划2002年开始生产。日本对MCFC的研究,自1981年"月光计划"时开始,1991年后转为重点,每年在燃料电池上的费用为12-15亿美元,1990年政府追加2亿美元,专门用于MCFC的研究。电池堆的功率1984年为1kW,1986年为10kW。日本同时研究内部转化和外部转化技术,1991年,30kW级间接内部转化MCFC试运转。1992年50-100kW级试运转。1994年,分别由日立和石川岛播磨重工完成两个100kW、电极面积1m2,加压外重整MCFC。另外由中部电力公司制造的1MW外重整MCFC正在川越火力发电厂安装,预计以天然气为燃料时,热电效率大于45%,运行寿命大于5000h。由三菱电机与美国ERC合作研制的内重整30kWMCFC已运行了10000h。三洋公司也研制了30kW内重整MCFC。石川岛播磨重工有世界上最大面积的MCFC燃料电池堆,试验寿命已达13000h。日本为了促进MCFC的开发研究,于1987年成立了MCFC研究协会,负责燃料电池堆运转、电厂外围设备和系统技术等方面的研究,它已联合了14个单位成为日本研究开发主力。欧洲早在1989年就制定了1个Joule计划,目标是建立环境污染小、可分散安装、功率为200MW的"第二代"电厂,包括MCFC、SOFC和PEMFC三种类型,它将任务分配到各国。进行MCFC研究的主要有荷兰、意大利、德国、丹麦和西班牙。荷兰对MCFC的研究从1986年已经开始,1989年已研制了1kW级电池堆,1992年对10kW级外部转化型与1kW级内部转化型电池堆进行试验,1995年对煤制气与天然气为燃料的2个250kW系统进行试运转。意大利于1986年开始执行MCFC国家研究计划,1992-1994年研制50-100kW电池堆,意大利Ansodo与IFC签定了有关MCFC技术的协议,已安装一套单电池(面积1m2)自动化生产设备,年生产能力为2-3MW,可扩大到6-9MW。德国MBB公司于1992年完成10kW级外部转化技术的研究开发,在ERC协助下,于1992年-1994年进行了100kW级与250kW级电池堆的制造与运转试验。现在MBB公司拥有世界上最大的280kW电池组体。资料表明,MCFC与其他燃料电池比有着独特优点:a.发电效率高比PAFC的发电效率还高;b.不需要昂贵的白金作催化剂,制造成本低;c.可以用CO作燃料;d.由于MCFC工作温度600-1000℃,排出的气体可用来取暖,也可与汽轮机联合发电。若热电联产,效率可提高到80%;e.中小规模经济性与几种发电方式比较,当负载指数大于45%时,MCFC发电系统成本最低。与PAFC相比,虽然MCFC起始投资高,但PAFC的燃料费远比MCFC高。当发电系统为中小规模分散型时,MCFC的经济性更为突出;f.MCFC的结构比PAFC简单。固体氧化物燃料电池(SOFC)SOFC由用氧化钇稳定氧化锆(YSZ)那样的陶瓷给氧离子通电的电解质和由多孔质给电子通电的燃料和空气极构成。空气中的氧在空气极/电解质界面被氧化,在空气燃料之间氧的分差作用下,在电解质中向燃料极侧移动,在燃料极电解质界面和燃料中的氢或一氧化碳反应,生成水蒸气或二氧化碳,放出电子。电子通过外部回路,再次返回空气极,此时产生电能。SOFC的特点如下:由于是高温动作(600-1000℃),通过设置底面循环,可以获得超过60%效率的高效发电。由于氧离子是在电解质中移动,所以也可以用CO、煤气化的气体作为燃料。由于电池本体的构成材料全部是固体,所以没有电解质的蒸发、流淌。另外,燃料极空气极也没有腐蚀。l动作温度高,可以进行甲烷等内部改质。与其他燃料电池比,发电系统简单,可以期望从容量比较小的设备发展到大规模设备,具有广泛用途。在固定电站领域,SOFC明显比PEMFC有优势。SOFC很少需要对燃料处理,内部重整、内部热集成、内部集合管使系统设计更为简单,而且,SOFC与燃气轮机及其他设备也很容易进行高效热电联产。下图为西门子-西屋公司开发出的世界第一台SOFC和燃气轮机混合发电站,它于2000年5月安装在美国加州大学,功率220kW,发电效率58%。未来的SOFC/燃气轮机发电效率将达到60-70%。被称为第三代燃料电池的SOFC正在积极的研制和开发中,它是正在兴起的新型发电方式之一。美国是世界上最早研究SOFC的国家,而美国的西屋电气公司所起的作用尤为重要,现已成为在SOFC研究方面最有权威的机构。 早在1962年,西屋电气公司就以甲烷为燃料,在SOFC试验装置上获得电流,并指出烃类燃料在SOFC内必须完成燃料的催化转化与电化学反应两个基础过程,为SOFC的发展奠定了基础。此后10年间,该公司与OCR机构协作,连接400个小圆筒型ZrO2-CaO电解质,试制100W电池,但此形式不便供大规模发电装置应用。80年代后,为了开辟新能源,缓解石油资源紧缺而带来的能源危机,SOFC研究得到蓬勃发展。西屋电气公司将电化学气相沉积技术应用于SOFC的电解质及电极薄膜制备过程,使电解质层厚度减至微米级,电池性能得到明显提高,从而揭开了SOFC的研究崭新的一页。80年代中后期,它开始向研究大功率SOFC电池堆发展。1986年,400W管式SOFC电池组在田纳西州运行成功。燃料电池另外,美国的其它一些部门在SOFC方面也有一定的实力。位于匹兹堡的PPMF是SOFC技术商业化的重要生产基地,这里拥有完整的SOFC电池构件加工、电池装配和电池质量检测等设备,是目前世界上规模最大的SOFC技术研究开发中心。1990年,该中心为美国DOE制造了20kW级SOFC装置,该装置采用管道煤气为燃料,已连续运行了1700多小时。与此同时,该中心还为日本东京和大阪煤气公司、关西电力公司提供了两套25kW级SOFC试验装置,其中一套为热电联产装置。另外美国阿尔贡国家实验室也研究开发了叠层波纹板式SOFC电池堆,并开发出适合于这种结构材料成型的浇注法和压延法。使电池能量密度得到显著提高,是比较有前途的SOFC结构。 在日本,SOFC研究是“月光计划”的一部分。早在1972年,电子综合技术研究所就开始研究SOFC技术,后来加入"月光计划"研究与开发行列,1986年研究出500W圆管式SOFC电池堆,并组成发电装置。东京电力公司与三菱重工从1986年12月开始研制圆管式SOFC装置,获得了输出功率为35W的单电池,当电流密度为200mA/cm2时,电池电压为,燃料利用率达到58%。1987年7月,电源开发公司与这两家公司合作,开发出1kW圆管式SOFC电池堆,并连续试运行达1000h,最大输出功率为。关西电力公司、东京煤气公司与大阪煤气公司等机构则从美国西屋电气公司引进3kW及圆管式SOFC电池堆进行试验,取得了满意的结果。从1989年起,东京煤气公司还着手开发大面积平板式SOFC装置,1992年6月完成了100W平板式SOFC装置,该电池的有效面积达400cm2。现Fuji与Sanyo公司开发的平板式SOFC功率已达到千瓦级。另外,中部电力公司与三菱重工合作,从1990年起对叠层波纹板式SOFC系统进行研究和综合评价,研制出406W试验装置,该装置的单电池有效面积达到131cm2。在欧洲早在70年代,联邦德国海德堡中央研究所就研究出圆管式或半圆管式电解质结构的SOFC发电装置,单电池运行性能良好。80年代后期,在美国和日本的影响下,欧共体积极推动欧洲的SOFC的商业化发展。德国的Siemens、DomierGmbH及ABB研究公司致力于开发千瓦级平板式SOFC发电装置。Siemens公司还与荷兰能源中心(ECN)合作开发开板式SOFC单电池,有效电极面积为67cm2。ABB研究公司于1993年研制出改良型平板式千瓦级SOFC发电装置,这种电池为金属双极性结构,在800℃下进行了实验,效果良好。现正考虑将其制成25~100kW级SOFC发电系统,供家庭或商业应用。

作者: Raymond George Klaus Hassmann【摘要】燃料电池具有非同寻常的性能: 电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market. 燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类 目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。 可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。 表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。 实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。 最适于用来驱动汽车的是低温型燃料电池。 根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,这2种燃料电池最终都可以达到l000美元/KW的投资成本这一假设条件而推导出来的。 2 高温燃科电池 高温型燃料电池具有许多适于在静止式装置上使用的特性。但是在高温型燃料电池产生出电能之前需要较长的加热过程,因而这种技术不能应用于要求在短时间内频繁起动的各种实用装置。此外,高温型燃料电池还具有以下特点: (1)不需要使用贵金属来催化电化学反应。一般情况下使用陶瓷材料。 (2)对CO完全没有限制。CO参加到电化学反应过程并像H2一样被氧化。 (3)对燃料表现出高度灵活性。可以给这类燃料电池发电设备供应天然气,天然气在设备内部被转换成H2和CO。这意味着无需任何外部燃料,从而大大简化了发电设备的平衡问题。 (4)高温可以将燃气轮机连接到该系统上,在这种情况下,燃料电池发电设备是在300kPa压力下运行,并在不考虑燃气轮机输出的情况下将燃料电池的功率密度提高约20%,因此使总的电效率提高10%,可成倍地降低使用期限成本。 (5)较高的运行温度也为排热提供了更多的灵活性。在电效率达60%或更高水平的联合循环系统中可限制废热排放,而在单循环下则会排放出更多的热量。 MCFC和SOFC是这类高温型燃料电池的2种技术。它们使用的材料不同。MCFC是在一只陶瓷容器中放入液态的金属碳酸盐作为电解液,如果没有采取防止电极老化的措施,燃料电他的使用寿命会受到影响。 在MCFC中电化学反应是由CO3离子引发的。MCFC采用的是颊型电池,和SOFC型的管形设计方案相比,这种颊型电他的功率密度要稍微高一些。这在成本上要比SOFC型装置优越。但在另一方面,由于SOFC所用的陶瓷材料非常稳定,可以用在950-1000℃范围内,所以SOFC装置在抗老化性能上更具优越性。到目前为止,所有的长期电池试验和正在运行的试验性机组都表明SOFC型装置的使用寿命可以达到70 000-80 000h,是MCFC型的2倍。 MCFC和SOFC 2种技术在进行100-250kW功率范围的单循环现场试验中,成本都有大幅度的下降。目前在MCFC开发上占有主导地位的是美国的Fuel Cell Energy公司及其在德国的授权单位MTU,日本的Ishikawajima-Harima重工(IHI)和三菱公司等。而Siemens Westinghouse在SOFC开发上处于领先水平。3 中温型燃料电池 目前磷酸类燃料电池(PAFC)是具有最先进技术的燃料电池。80年代,IFC(国际燃料电池公司)决定对其前期商业化生产线进行投资,制造和销售200kW的PAFC装置,并将其投入市场。东芝公司在80年代末就已经努力使PAFC技术进入商用市场。从此,PAFC技术就一直在静止燃料电池的市场中占据着显赫的位置。迄今为止,全球已经安装了150多套PAFC燃料电池装置。 研究表明,这种燃料电池未能实现市场商业化的原因大致有以下几方面: (1)电效率最高为40%,超过维修期限后会降到35%甚至更低水平。通常情况下设备的使用期限不超过20 000运行h。 (2)有些试验性的设备(如东芝公司管理的1套11MW设备未能达到顶期的性能水平。 (3)美国和日本政府大幅度削缩用于PAFC技术研究和开发的投资。 (4)从迄今积累的经验及在改善设计参数和降低产品成本方面的潜力来看,让PAFC技术成功地跻身于当今的市场中的可能性是极低的。4 SOFC在配电市场方面的潜力 Siemens Westinghouse公司根据对市场的分析,决定采取必要的措施加快SOFC技术进入市场的步伐。预计在2003-2004年提供第l批产品,进入商业性生产前的试验阶段,装置容量从目前的2MW扩大到15MW。 北美和欧洲被认为是SOFC燃料电池技术最有希望的市场。Hagler Bailly公司和西门子公司对功率范围为250 kW-l MW的市场进行了调查,结果表明到2005年SOFC燃料电池的市场容量为每年10000MW。北美和欧洲几乎各占50%。考虑到北美洲用户的结构和他们的需求,在北美洲各类小型发电机组的总容量在2010年可能达到每年约1000MW,其中600MW可能是燃料电池发电装置。在各种类型的燃料电池中,SOFC的市场份额约占40%,到2010年在北美洲SOFC的全年销售额将达到亿美元。 在竞争日益激烈的配电市场中的另一个获胜者是微型燃气轮机,主要是作为备用电源或辅助电源。由于SOFC和微型燃气轮机的特性适于不同的应用场所,SOFC效率高但投资成本也高,而微型燃气轮机成本低但效率也低,因而这2种技术不会产生市场上竞争。而往复式发动机会逐渐失去其在市场中的份额。 欧洲电网要比北美洲电网强大得多,欧洲电网强化了集中的大型发电厂的作用。因此在北美洲经常出现的分散式电热设备和动力装置的供电质量和供电可靠性问题在欧洲是不突出的。但另一方面,在欧洲对能量储存更为敏感。 此外,一些国家政府将颁布新的规程和法律及新的能源价格,预计欧洲各国之间市场份额会有重大差异。在有些情况下这个过程会给SOFC用于配电装置起到一定的促进作用。此外,欧洲的自由化近程落后于北美洲。因此,市场预测结果会有很大程度的不确定性。5 SOFC技术应用的扩展 使用天然气作为燃料的SOFC是车载式装置,其扩展应用可有以下几种形式:(1)家庭应用:新一代燃料电池将是扁平管型的,其功率密度是目前所用圆柱型燃料电池技术的2倍,因而将制造出5kW的燃料电池装置。这种设计方案是可行的,在配电市场中可以替代圆柱型燃料电池。(2)l0MW以上的系统装置:很显然,只要SOFC技术占有了功率范围在250-10MW的市场,那么下一步最必然的是要争取占有l0MW以上更大规模发电设备的市场。通过把更多SOFC链接起来便能实现这个目标,也满足了高效率低成本的要求。20MW级规模燃料电池的电效率已经接近甚至超过70%。(3)用液态燃料运行:使用天然气作为燃料将SOFC的应用局限在靠近天然气供气网的区域内,从而使这项新技术的应用受到限制。因此存在着让SOFC使用液态燃料的迫切要求。因此,应与大型石油公司合作进行该课题的研究开发,选择一种适宜的液体燃料并设计出最适于使用这种新燃料的SOFC发电装置,以便为边远的用户服务。 (4)C02的分离:Shell公司和 Siemens Westinghouse公司正在共同研制一种能将CO2从完全反应后的燃料中分离的SOFC设飞方案。例如,当把其装在用于回收油的平台上时,可以把CO2用泵压到地下储层中,这不但可省去CO2的排放税,还可提高原油的产出量。 (5)综合性应用:CO2分离装置可能是点火的火花装置,它使得SOFC在一种封闭且可再生的能量循环中成为关键性部件。经过-段时间,SOFC能产生出热量和电力,例如用于大型暖房的设施中,SOFC装置产生的C02可用来加快植物的生长。而任何一种农作物收获后的剩余有机物都可以转化为气体供给SOFC作燃料。

立帜汽车制造网 随着世界能源危机和环保问题日益突出,汽车工业面临着严峻的挑战。一方面,石油资源短缺,汽车是油耗大户,且目前内燃机的热效率较低,燃料燃烧产生的热能大约只有35%—40%用于实际汽车行驶,节节攀升的汽车保有量加剧了这一矛盾;另一方面,汽车的大量使用加剧了环境污染,城市大气中CO的82%、NOx的48%、HC的58%和微粒的8%来自汽车尾气,此外,汽车排放的大量CO2加剧了温室效应,汽车噪声是环境噪声污染的主要内容之一。我国作为石油进口国和第二大石油消费大国,污染严重,世行认定的20个污染最严重的城市有16个在中国。国内汽车产品水平与国外差距很大,平均油耗高出10%—30%,排放约为15—20倍,汽车工业面临的压力更大。上个世纪末以来世界各国和各大汽车公司以及国内各大科研机构和高等院校纷纷致力于开发清洁节能汽车,新能源汽车获得了长足发展。汽油和柴油是传统内燃机汽车的能源,利用除此以外的能源提供汽动力的汽车均可称为新能源汽车。目前正在开发的新能源包括天然气、液化石油气、醇类、二甲醚、氢、合成燃料、生物气、空气以及电荷燃料电池等。本文介绍新能源汽车技术的发展概况,并对其发展前景提出看法。1 新能源汽车的种类及其特点 天然气汽车和液化石油气汽车天然气汽车又被称为“蓝色动力”汽车,主要以压缩天然气(CNG)、液化天然气(LNG)、吸附天然气(ANG)为燃料,常见的是压缩天然气汽车(CNGV)。液化石油气汽车(LPGV)是以液化石油气(LPG)为燃料。CNG和LPG是理想的点燃式发动机燃料,燃气成分单一、纯度高,与空气混合均匀,燃烧完全,CO和微粒的排放量较低,燃烧温度低因而NOx排放较少,稀燃特性优越,低温起动及低温运转性能好。其缺点是储运性能比液体燃料差、发动机的容积效率较低、着火延迟期较长。这两类汽车多采用双燃料系统,即一个汽油或柴油燃料系统和一个压缩天然气或液化石油气系统,汽车可由其中任意一个系统驱动,并能容易地由一个系统过渡到另一个系统。康明斯与美国能源部正合作开发名为“先进往复式发动机系统(ARES)”的新一代天然气发动机,根据开发目标,该发动机热效率达50%(热电联产时达到80%以上),NOx排放量低于/km,制造成本为400450美元/kW,维护费用低于美元/kwh,在满足这些目标的同时,发动机具有较高的可靠性。 醇类汽车醇类汽车就是以甲醇、乙醇等醇类物质为燃料的汽车,使用比较广泛的是乙醇,乙醇来源广泛,制取技术成熟,最新的一种利用纤维素原料生产乙醇的技术其可利用的原料几乎包括了所有的农林废弃物、城市生活有机垃圾和工业有机废弃物。目前醇类汽车多使用乙醇与汽油或柴油以任意比例掺和的灵活燃料驱动,既不需要改造发动机,又起到良好的节能、降污效果,但这种掺和燃料要获得与汽油或柴油相当的功率,必须加大燃油喷射量,当掺醇率大于15%—20%时,应改变发动机的压缩比和点火提前角。乙醇燃料理论空燃比低,对发动机进气系统要求不高,自燃性能差,辛烷值高,有较高的抗爆性,挥发性好,混合气分布均匀,热效率较高,汽车尾气污染可减少30%以上。这种汽车最早由福特公司在20世纪80年代中期开发,到2003年底,美国有230多万辆乙醇汽车,其中多数是道奇和克莱斯勒厢式车——2003年已卖出233466辆。 氢燃料汽车氢是清洁燃料,采用氢气作燃料,只需略加改动常规火花塞点火式发动机,其燃烧效率比汽油高,混合气可以较大程度地变稀,所需点火能量小,有利于节约燃料。氢气也可以加入其它燃料(如CNG)中,用于提高效率和减少N02排放。氢的质量能量密度是各种燃料中最高的一种,但体积能量密度最低,其最大的使用障碍是储存和安全问题。宝马公司一直致力于氢气发动机研制,开发了多款氢发动机汽车,其装有V12氢发动机的7系列轿车是世界上首批量产的氢发动机,该发动机可使用氢气和汽油两种燃料。 二甲醚汽车二甲醚(DME)是一种无色无味的气体,具有优良的燃烧性能,清洁、十六烷值高、动力性能好、污染少,稍加压即为液体,非常适合作为压燃式发动机的代用能源,使用该燃料的车辆可达到美国加州的超低排放标准。日本NKK公司成功地开发出用劣质煤生产二甲醚的设备,并且和住友金属工业公司于1998年完成了用二甲醚作为汽车燃料的试验,二甲醚汽车(DMEV)不会排放黑色气体污染环境,产生的NOX比柴油少20%。 气动汽车以压缩空气、液态空气、液氮等为介质,通过吸热膨胀做功供给驱动能量的汽车称为气动汽车,气动发动机不发生燃烧或其他化学反应,排放的是无污染物辐射的空气或氮气,真正实现了零污染。目前开发比较成功的是压缩空气动力汽车(APV),工作原理类似于传统内燃机汽车,只不过驱动活塞连杆机构的能量来源于高压空气。APV介质来源方便、清洁,社会基础设施建设费用不高,较容易建造。无燃料燃烧过程,对发动机材料要求低,结构简单,可借鉴现有内燃机技术因而研发周期短,设计和制造容易。但目前APV能量密度和能量转换率还不够高,续驶里程短。1991年法国工程师Guy Negre获得了压缩空气动力发动机的专利,并加盟MDI公司,2000年MDI公司推出的名为“进化”(evolution)的APV,质量仅700kg,其发动机质量仅为35kg,速度可达120km/h,一次充满压缩空气可行驶200km,充气费用仅为美元,在城市中约可行驶10h,在压缩空气站充气2min就可完成,用气泵充气3h可完成。 电动汽车世界上第一辆电动车(EV)由美国人在19世纪90年代制造。EV大致分为蓄电池电动汽车(BEV)、燃料电池电动汽车(FCEV)和混合动力电动汽车(HEV)。电动汽车的一个共同特点是汽车完全或部分由电力通过电机驱动,能够实现低排放和零排放。蓄电池电动汽车是最早出现的电动汽车。使用铅酸电池的汽车整车动力性、续驶里程与传统内燃机汽车有较大的差距,而使用高性能镍氢电池或者锂电池又会使成本大大增加。而JtBEV都需有一定充电时间及相应的充电设备,使用场合受到了限制。燃料电池具有近65%的能量利用率,能够实现零排放、低噪声,国外最新开发的高性能燃料电池已经能够实现几乎与传统内燃机汽车相当的动力性能,发展前景很好,但成本却是制约其产业化的瓶颈。在加拿大进行的示范试验表明,使用燃料电他的公共汽车制造成本为120万加元,而使用柴油机的公共汽车仅为万加元。混合动力汽车融合了传统内燃机汽车和电动汽车的优点,同时克服了两者的缺点,近年来获得了飞速发展,并已经实现了产业化和商业化,PRIUS和INSIGHT两款混合动力汽车的成功向人们展现了混合动力技术的魅力和巨大的市场潜力。 以植物油为燃料的汽车为了寻找可代替石油的新能源,科学家也将目光投向了植物油,正在研制以植物油如大豆油、玉米油及向日葵油为原料的内燃机油。科学家们还在研究生物柴油,这是一种以植物油为原料的燃料,将来可作为柴油的替代品大量用于卡车和轮船。生物柴油中不含硫,因此不会对环境造成酸雨威胁。为生产生物柴油,化学家们正在对植物油进行酯化加工,使之变成甲基酯化合物,燃烧起来更干净,发动机内残留物也较少。2 我国新能源汽车的发展概况我国天然气资源丰富,分布广泛,海南、北京、上海、重庆等省市被列为国家燃气汽车重点示范城市,各地均在燃油汽车基础上研制开发改装了压缩天然气汽车和液化石油气汽车,主要用于出租车、公交客车、大型车辆和工程设施等。一汽—大众公司开发了捷达LPG,上海交大研制成LPG轿车并和申沃客车联合开发成功改装型LPG城市bus,北京开发了CNG城市bus。山西是产煤大省,甲醇汽车项目已进行多年,目前已达到商业运行阶段,所用甲醇汽车采用灵活燃料系统,既可用甲醇,也可用汽油,将乙醇当作有氧燃料使用,现在在河北和黑龙江等地推广。同时国家制定了乙醇汽油燃料相关标准。我国云岗汽车公司大同汽车制造厂开发了甲醇中巴车。我国煤炭资源丰富,政府支持以煤炭为原料制造车用燃料项目。煤直接液化和间接液化制取车用燃料的项目正在积极进行。“十五”期间在云南和陕西建立了煤直接液化示范厂,以煤为原料合成石油或二甲醚等车用燃料。西安交通大学与中国科学院煤化工研究所经过5年协同攻关,于2000年研制出了“超低排放二甲醚汽车”,通过在TYll00单缸柴油机及装备有大连柴油机厂生产的CA498柴油机的面包车上燃用二甲醚的试验,发现发动机的功率可提高10%-15%,热效率提高2—3个百分点,噪声降低10%-15%。我国从事燃料电池研究的单位有20余家,质子交换膜(PEM)燃料电池技术已取得较大进展,但与国外还有不小差距,例如,国外将功率50—80kW的PEM燃料电池用于轿车,而我国最大的PEM燃料电池单堆功率为5kW,离轿车使用相距甚远。我国的金属燃料电池技术已经达到世界先进水平。我国的镍氢电池和锂电池技术水平也已经达到国际先进水平,比亚迪在2005年上海车展展出的E1电动车已经具备了很好的整车动力性能。目前国内对压缩空气动力汽车的研究报道最多的是浙江大学,他们已经开发出压缩空气动力摩托车研究平台,探索出不少有益的结论,正在进一步深入研究,此外重庆大学和同济大学也做过一些探索性研究。应当说APV在国内的发展才刚刚起步。3 代用燃料汽车的发展前景在各种汽车代用燃料中,LPG和CNG最方便投入使用,而且目前已经具有好的配套基础设施。在排放和经济性能要求较高而动力性能要求一般的公共交通领域具有很好的应用前景,美国近年来新型公交客车中天然气汽车就占据了较大比例。在中国这样的农业大国特别是一些农业大省,乙醇资源丰富,乙醇汽车有良好的应用前景。二甲醚等合成燃料具有很好的排放特性,也将具有很好的应用前景,特别是作为代用柴油应用于混合动力汽车。混合动力汽车毫无疑问是下一代汽车动力系统的主要形式。蓄电池电动汽车的使用性能不如混合动力汽车和燃料电池汽车,且成本高。氢燃料发动机的能量利用率不如氢氧燃料电池。因而蓄电池电动汽车和氢发动机汽车的发展前景不是十分乐观。当然随着太阳能电池技术的发展和突破,也许纯电动汽车能迎来一个不错的发展局面。压缩空气动力汽车虽然实现了零污染,但其整车性能与传统汽车相差太远,只能在较小的范围内应用于特定场合。燃料电池是目前技术条件下能量利用率最高的车用能源。燃料电池的比能量可达200—350Wh/kg,为锂离子电池的2—3倍;能量转换效率高达60%~80%,是汽油机或柴油机的~2倍,能实现超低污染甚至零污染,而且燃料电池使用的氢能源是可再生的。目前以甲醇燃料电池技术最为成熟。国外各大石油公司和汽车均在致力于燃料电池汽车的研发以抢占在未来汽车发展中的滩头。戴姆勒—奔驰汽车公司从1993年到2000年先后推出了NecarI—NecarⅣ和Nebas等系列FCEV,2001年5月Necar4在美国试车,功率55kW,最高车速145km/h,装载行程450km,最新推出的Necar V-FCEV采用甲醇燃料电池。1997年Ballard动力公司和福特汽车公司组建了Xcellsis公司开发燃料电池轿车,美国AR—CO、壳牌、德士古等石油公司和加州CARB先后加盟,组成世界上最强大的燃料电池车开发联盟。日本电力中央研究所正在开发一种全面使用耐热陶瓷的燃料电池,电池在发电效率非常高的1000℃的高温下工作,电解质的输出功率达到1W/cm2,相当于传统燃料电池的5倍。EvomR公司致力于开发铝和锌燃料电池,已具有相当水平。总之对代用燃料的综合评价应考虑以下因素:燃料成本;车辆成本;对进口石油的依赖程度;有效能源利用率;温室效应;排放污染;生产、储运、分销、加注设施;装载行驶里程和加注时间;安全性。基于这些因素,目前最容易投入使用的代用燃料是CNG和LPG。电、甲醇和乙醇的综合评价指数都低于汽油。可以预计LPG和CNG以及乙醇的市场份额将会不断增加。二甲醚和合成柴油在十年后其市场份额会快速稳定增长。混合动力汽车会进一步发展,迅速增加市场份额。而燃料电池汽车会在20年之后开始实现产业化逐渐增加市场份额。传统汽油机汽车的市场份额会在20年之后开始出现明显的下降,但柴油车会在重型车辆领域继续保持很高的市场份额。4 结束语在未来的20年内,汽油和柴油仍是汽车主要的能量来源,但汽油和柴油的质量要求越来越高,发动机技术将快速发展以提高能量利用率。代用燃料会得到迅速运用,天然气汽车和乙醇汽车会率先大规模投入使用,二甲醚和合成燃料会逐步扩大应用。混合动力系统会得到快速发展和应用,混合动力汽车将至少在30年内都是汽车工业最切实可行的解决能源问题和污染问题的途径。因此应当整合资源加速混合动力汽车的开发,抢占汽车技术发展的新高地。燃料电池是最有前途的车用能量,也是未来汽车的主要能量源,国内石油工业应该与汽车工业联手开发先进的燃料电池技术,抢占未来先进汽车技术的前沿阵地!

论文中国外研究现状资料在哪找

国外研究现状可以通过参考文献的方式来查找。开题报告有关国内外进展研究现状主要是通过在数据库查找相关文件获得。

国外研究现状的介绍

该书共分为十章。第一章,研究生教育评估制度,详细介绍了研究生教育自我评估以及研究生教育外部评估的相关理论内容,第二章,美国研究生教育评估制度,阐述了美国研究生教育发展概况、发展历程,管理制度,外部质量保障,内部质量评估体系与运行机制。

教育评估与质量保障的特色与启示,第三章,英国研究生教育评估制度,呈现了英国研究生教育发展现状简介,研究生教育评估体系发展简史,评估体系,外部评估的实施措施,以及以剑桥大学为例的内部质量保障体系和自我评估,质量评估体系的特点。

第四章,澳大利亚研究生教育评估制度,介绍了澳大利亚研究生教育概况,研究生培养的主要环节,教育评估组织体系,评估的内容,评估的主要工具及案例等。

国外研究现状通过数据库查找。国外研究现状一般是通过数据库查找。国外研究现状的文献很多,数据库太多,每一个人不可能把所有的文献情况查找到,所以你需要找一些权威的杂志。从权威杂志上面了解你这个行业的发展情况。然后从这些权威杂志上的文献情况来阐述发展研究的现状。

国外研究现状的文献不是一次就能找齐的,是需要你在研究的过程中助逐渐积累的,也就是在初期从sci或者ei的网站上下载足够的相关文献,然后自己阅读总结相关内容,这个积累的过程需要一定时间,并且需要投入较大的工作量。然后才能有研究现状。所以国外研究现状通过数据库查找。

国外研究现状叙述

国内外标准化现状及发展趋势研究精是其中之一,内容包括国际标准化现状及发展趋势研究,国外典型区域和国家标准化现状及发展趋势研究,我国标准化现状及标准化典型案例研究等。

国内外标准化现状注重系统性和理论性,首先,深入研究和剖析了国际标准化组织的发展现状,分析了国际和国外发达国家标准化管理经验,预测了国际标准化的发展趋势。其次,提出了我国标准化发展总体战略,明确了以提高标准适应性和竞争力为核心的战略指导思想。

从技术创新,国际竞争,法律法规,政策环境,保障条件等方面提出了一系列的战略措施。其三,站在全面提升标准化水平的高度,从标准化法规,管理体制,运行机制,实施监督机制和保障体系等各个方面,全面剖析了我国现行国家标准体系的现状和问题。

你好,我刚写完硕士论文,是这样,你可以找一些和你选题相关的书籍看一下,到图书馆或是书店,然后认真阅读,最关键是他后面的参考文献,你一定要留心注意,他可以用到的,你也许也会用到。祝你成功,希望对你有帮助!

在哪找论文中国外研究状况

1、看中文相关专著和文章都引用了哪些资料,再到外网找这些学者的研究现状。

2、如没有中文专著或者数量有限,就根据你研究的题目,在国外相关学科的杂志上搜索关键词,会找到介绍该题目或相关问题的研究综述,这种外文杂志大学图书馆里有。

3、你应该知道你这个题目外国有哪个人研究吧,只要知道一个,就在外网上搜索他的专著和文章,特别是文章,一定会引用其它研究者的情况,以此类推,就会了解更详细的研究现状。

4、最直接的方式:问自己导师有哪位外国学者研究该题目。

中国知网、elsevier和Springer等专业外文期刊网站查找。

1、如果需要中文的国外研究现状,直接去中国知网找中文综述类文章和硕博论文的第一章综述部分,就可以查到。

2、如果需要英文的国外研究现状,可以去elsevier和Springer等专业外文期刊网站查取外文文献获取。

3、在百度上搜索中国知网,选择并打开,打开之后,选择所要研究的方向以及关键字,进行搜索。例如:以“教育”为关键字进行搜索,选择一篇论文,通常情况下,硕博论文中研究现状比较全面。

4、打开论文标题链接,选择阅读模式为“在线阅读”,有权限的可以直接进行下载,找到第一章中的“研究现状”,之后就可以进行简单的引用了。

中国白糖期货现状研究论文摘要

稳定白糖价格。 可以对白糖的定价形成一定影响。使糖农 降低种植风险之类的吧。你去期货那里找找。。

白糖期货介绍      白糖是天然甜味剂,是人们日常生活的必需品,同时也是饮料、糖果、糕点等含糖食品和制药工业中不可或缺的原料。白砂糖(以下简称“白糖”)几乎是由蔗糖这种单一成份组成的,白糖的蔗糖含量一般在95%以上。我国是重要的白糖生产国和消费国,糖料种植在我国农业经济中占有重要地位,其产量和产值仅次于粮食、油料、棉花,居第四位。      在国际期货市场上,白糖是成熟的也是较活跃的交易品种。世界上第一份白糖期货合约从诞生至今已有90年的历史。世界上很多国家开展白糖期货、期权交易,最主要的白糖期货市场是纽约期货交易所(NYBOT)和伦敦国际金融期货期权交易所(LIFFE),分别交易原糖和白砂糖,其形成的期货价格已被世界糖业界称作“国际糖价”,成为国际贸易定价和结算的依据。2006年1月6日,白糖期货正式在郑商所挂牌上市。 影响白糖期货价格的主要因素      影响白糖期货价格波动的原因较多,既有国内生产供给和国际市场供求变化的影响,又有白糖消费、市场体系和宏观调控等方面的因素,据统计,在世界市场15种农产品中,白糖是价格波动最大的商品。      (一)影响国际白糖价格的主要因素      1、主要出口国及消费国情况      巴西、印度、泰国、澳大利亚、古巴等是全球白糖主要生产国(地区)和出口国(地区),这些国家或地区的产量、出口量、价格及政策是影响国际白糖市场价格的主要因素。      欧盟、俄罗斯、中国、印度尼西亚、巴基斯坦等国是全球主要白糖消费国或进口国,这些国家的白糖消费量、消费习惯、进口政策、本国产量等也是影响国际白糖市场价格的主要因素。      2、自然灾害对主要产糖国白糖生产的影响      作为农产品,各国的白糖生产不可避免地将受到洪涝和干旱天气等自然灾害的影响,近年来自然灾害对白糖生产的冲击尤为明显。      3、国际石油价格对白糖市场的影响      随着国际石油价格不断上涨,一些国家为减少对石油的依赖性加入了寻找蔗制酒精等生物替代能源的行列,甘蔗已不再单一地作为一种农产品,市场方面已越来越把糖看作是一种能源产品,石油价格的涨跌不仅影响全球经济状况,影响国际运费,还会影响酒精产量,进而影响全球白糖产量。因此,石油价格的涨跌不可避免地将影响白糖价格的走势。      4、美元币值变化和全球经济增长情况对白糖市场的影响      作为用美元计价的商品,白糖价格的走势除受自然灾害的影响外,无疑还受美元币值的升降和全球经济增长快慢的影响。通常情况下,美元币值下跌意味着非美元区购买白糖的成本下降,购买力增强,对国际白糖市场的支撑力增强,反之,将抑制非美元区的消费需求。      5、主要白糖进口国政策变化对白糖市场的影响      主要白糖进口国政策和关税政策变化对白糖市场的影响很大。国际白糖组织的有关政策、欧盟国家对白糖生产者的补贴,美国政府的生产支持政策等,对全世界白糖供给量均有重要影响。如美国实行白糖的配额制度管理,按照配额从指定国家进口白糖,进口价格一般高于国际市场价格。美国不出口原糖,但却大量出口由原糖精炼而成的食用糖浆。因此,产糖国若向美国出口,必须首先获得美国的进口配额。巴西、古巴、欧盟用控制种植面积的方法,有计划地控制产糖量。印度、菲律宾、泰国政府则依据国内市场情况控制出口数量,随时调整有关政策。      近几年,俄罗斯和欧盟是全球最主要的两大白糖进口国,这两大经济体的糖业政策变化对国际白糖市场的影响力比较大。印度尼西亚、巴基斯坦等国的进口政策也会在一定程度上影响国际市场糖价。      6、投资基金大量涌入使国际糖市充满变数      作为期糖市场上左右糖市走向的最强大的力量,投资基金的取舍很大程度决定着糖价的涨跌,分析糖价走势是绝对不可以无视投资基金的动向。历史上,投资基金进驻商品市场的规模基本上与全球经济增长快慢成正比,即全球经济高速增长,投资基金在商品市场上做多的规模也扩大,反之亦然。      (二)影响国内白糖价格的主要因素      1、糖料生产的波动。糖料生产的波动是白糖市场波动的根本原因。制糖业是典型的农产品加工业,制糖原料是决定白糖供给的基础因素。影响糖料产量的有:      (1)播种面积。在正常情况下,糖料播种面积增加会导致糖业原料增加,从而导致白糖产量增加,糖价会下跌,反之,糖价会上涨。多年以来,糖料生产由于生产周期和产业链较长,对市场变化的反应相对滞后,致使糖料种植、白糖生产和市场往往脱节,特别是市场信息的不准确甚至失真,容易对糖料种植形成误导,加大了糖料种植面积的不稳定性,引起市场的连锁反应,糖料产量直接影响白糖的生产,成为影响白糖市场的根本原因。      (2)气候。甘蔗在生长期具有喜高温、光照强、需水量大、吸肥多等特点,因此,对构成气候资源的热、光、水等条件有着特殊的依赖性。干旱、洪涝、大风、冰雹、低温霜冻等天气对生长期中甘蔗具有灾害性的影响,而且这种影响一旦形成便是长期的。如1999年底在我国甘蔗主产区发生的霜冻,使宿根蔗的发芽率降低,导致1999/2000制糖期白糖减产200多万吨。      2、产销关系。白糖产销不稳定是造成价格波动的主要原因。我国白糖消费主要依靠国内生产,国内白糖产量的大幅变化,直接引起了市场供求关系的不稳定,导致市场价格的波动。同时,消费量的变化也是影响供求关系的重要因素。近年来我国白糖消费进入快速增长期,在这种情况下,产销关系变化将变的更加不稳定。      3、季节性因素。白糖是季产年销的大宗商品,白糖行业有“七死八活九回头”的说法。五月以前,由于各产区都在生产,货源充足,商家选择的形成余地比较大,再加上糖厂急需资金,所以价格是混乱的。进入六月份后,糖厂停榨,总体的趋势还没有形成,此时,价格是平稳的,持观望态度的较多,也有人顺价销售。进入七月以后,很多厂家资金压力减轻了,产销率的压力也小了,出于对后势的一种本能的看好,或者说惜售心理较重,自然要放慢销售的节奏,而商家又觉得囤货为时还早,真正意义上的旺季又还没有到来,七月的糖市就会没有多少活力。进入八月份后,销售的时间只剩两个月,传统的中秋节在即,用糖高峰也就开始了,于是市场又有了一定的活力。到了九月,随着老糖销售接近尾声,新糖又还没有上市,价格可能会出现翘尾行情。      4、国家宏观调控。国家调控部门对白糖市场的宏观调控就成为影响国内白糖价格变化的主要因素之一,当白糖供应在某个榨季出现短缺时,国家动用白糖储备投放市场,当供应出现过剩时,国家对白糖实行收储,宏观调控已经对国内的白糖市场多年来的平稳运行起到了决定性的作用。国家收储以及工业临时收储加上糖商的周转库存在全国范围内形成一个能影响市场糖价的库存。预估当年及下一年的库存和国家对白糖的收储与抛售对于正确估测白糖价格具有重要意义。一般情况下,国家收储是重要的利好因素,抛储是重要的利空因素。      5、 替代品。白糖的替代品主要有糖精、甜味剂、玉米淀粉糖等,被广泛用于点心、饮料、蜜饯等食品中,虽不可能完全取代白糖,但它的使用减少了白糖的正常市场份额,对糖的供给、价格有一定的影响。      6、 节假日的影响。在一年中,春节和中秋节是我国白砂糖消耗的最大的节假日。两个节假一月由于食品行业的大量用糖,使糖的消费进入高峰期,这个时期的糖价往往比较高。两个节日之后的一段时期,由于白砂糖消费量的降低,糖价往往回落。八九月份是用糖高峰期,月饼、北方的蜜饯、饮料、饼干都很需要糖,会拉动刺激白糖消费。      7、国际市场的变化及进口量。在世界主要产糖国中,我国和澳大利亚是唯一没有对国内糖业实行高关税保护,实行白糖贸易自由化的国家,这决定了国内白糖市场与国际市场具有较强的相关性。      作为白糖净进口国,我国白糖进口量成为影响国际市场和国内市场的直接原因。我国准白糖自由贸易政策,在很多时候并不需要发生实际的贸易,国际白糖市场价格的变化对国内价格也可以产生立刻的影响。由于国内白糖的生产流通和使用的各个企业,均认识到国际白糖市场通过进口可以在很多时候影响到国内白糖市场价格和供求的变化,普遍对国际白糖市场的变化较为关心,在国际白糖市场发生较大变化时,往往会采取与之相应的商业行为,因此国内白糖市场的变化经常与国际白糖变化形势的密切相联,亦步亦趋,这种情况并不是因为从国际上进口白糖以后改变了国内市场的供求状态后才发生的,而是国际白糖市场变化对国内市场产生的心理上、情绪上的影响。      8、人民币汇率的变化。人民币对美元处于持续升值状态,人民币升值将有助于降低进口成本,增加进口数量。据有关测算,人民币升值2%对进口糖完税成本价的影响是60元/吨。      9、其它因素。一些不发达国家如古巴、菲律宾、多米尼加等主要靠白糖的出口换取外汇。这些国家的耕地只适合于种植甘蔗而不能改种其他作物,甘蔗的减产将在很大程度上影响这些国家的经济状况,从而导致这些国家白糖产量一直维持供给过多的情况。另外,一些国家用甘蔗提炼乙醇,其中巴西是用甘蔗生产乙醇的主要国家。用于乙醇生产的甘蔗数量直接影响到用于加工白糖的甘蔗的数量,乙醇生产的数量影响着白糖生产数量,巴西可以将全国甘蔗不用于生产白糖而改为生产乙醇,所以巴西甘蔗提炼乙醇的数量和比例对预测全世界白糖产量具有重要影响。 郑州商品交易所白糖期货合约      郑州商品交易所白糖交割质量规定符合《郑州商品交易所白砂糖期货交割质量标准》(Q/ZSJ 002-2005,下称《所标》)的一级白砂糖为标准交割品。期货交易用白砂糖的理化指标如下:      色值小于等于170IU,其他指标符合《所标》的二级白糖,可以在本制糖年度(每年的10月1日至次年的9月30日)的9月和该制糖年度结束后的当年11月合约替代交割,贴水标准为50元/吨。      符合《所标》的一级和二级(色值小于等于170IU)进口白糖(含进口原糖加工而成的白糖)可以交割。      某一制糖年度生产的白糖,只能交割到该制糖年度结束后的当年11月份,且从当年9月合约交割起(包括9月合约)每交割月增加贴水20元/吨,即9月贴水20元/吨,11月贴水40元/吨,贴水随货款一并结算。

据说这轮白糖上涨,主力和现货商有关系哦~不容忽视……

由于500元对应7000元的甘蔗联动价格,2012年价格区间将会逐渐上移,国家承认了白糖价格低于7000是不合理的,政策上有了支持,同时200万吨的缺口也将造成供需的继续不平衡。

燃料电池膜电极研究现状论文

作者: Raymond George Klaus Hassmann【摘要】燃料电池具有非同寻常的性能: 电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market. 燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类 目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。 可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。 表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。 实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。 最适于用来驱动汽车的是低温型燃料电池。 根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,这2种燃料电池最终都可以达到l000美元/KW的投资成本这一假设条件而推导出来的。 2 高温燃科电池 高温型燃料电池具有许多适于在静止式装置上使用的特性。但是在高温型燃料电池产生出电能之前需要较长的加热过程,因而这种技术不能应用于要求在短时间内频繁起动的各种实用装置。此外,高温型燃料电池还具有以下特点: (1)不需要使用贵金属来催化电化学反应。一般情况下使用陶瓷材料。 (2)对CO完全没有限制。CO参加到电化学反应过程并像H2一样被氧化。 (3)对燃料表现出高度灵活性。可以给这类燃料电池发电设备供应天然气,天然气在设备内部被转换成H2和CO。这意味着无需任何外部燃料,从而大大简化了发电设备的平衡问题。 (4)高温可以将燃气轮机连接到该系统上,在这种情况下,燃料电池发电设备是在300kPa压力下运行,并在不考虑燃气轮机输出的情况下将燃料电池的功率密度提高约20%,因此使总的电效率提高10%,可成倍地降低使用期限成本。 (5)较高的运行温度也为排热提供了更多的灵活性。在电效率达60%或更高水平的联合循环系统中可限制废热排放,而在单循环下则会排放出更多的热量。 MCFC和SOFC是这类高温型燃料电池的2种技术。它们使用的材料不同。MCFC是在一只陶瓷容器中放入液态的金属碳酸盐作为电解液,如果没有采取防止电极老化的措施,燃料电他的使用寿命会受到影响。 在MCFC中电化学反应是由CO3离子引发的。MCFC采用的是颊型电池,和SOFC型的管形设计方案相比,这种颊型电他的功率密度要稍微高一些。这在成本上要比SOFC型装置优越。但在另一方面,由于SOFC所用的陶瓷材料非常稳定,可以用在950-1000℃范围内,所以SOFC装置在抗老化性能上更具优越性。到目前为止,所有的长期电池试验和正在运行的试验性机组都表明SOFC型装置的使用寿命可以达到70 000-80 000h,是MCFC型的2倍。 MCFC和SOFC 2种技术在进行100-250kW功率范围的单循环现场试验中,成本都有大幅度的下降。目前在MCFC开发上占有主导地位的是美国的Fuel Cell Energy公司及其在德国的授权单位MTU,日本的Ishikawajima-Harima重工(IHI)和三菱公司等。而Siemens Westinghouse在SOFC开发上处于领先水平。3 中温型燃料电池 目前磷酸类燃料电池(PAFC)是具有最先进技术的燃料电池。80年代,IFC(国际燃料电池公司)决定对其前期商业化生产线进行投资,制造和销售200kW的PAFC装置,并将其投入市场。东芝公司在80年代末就已经努力使PAFC技术进入商用市场。从此,PAFC技术就一直在静止燃料电池的市场中占据着显赫的位置。迄今为止,全球已经安装了150多套PAFC燃料电池装置。 研究表明,这种燃料电池未能实现市场商业化的原因大致有以下几方面: (1)电效率最高为40%,超过维修期限后会降到35%甚至更低水平。通常情况下设备的使用期限不超过20 000运行h。 (2)有些试验性的设备(如东芝公司管理的1套11MW设备未能达到顶期的性能水平。 (3)美国和日本政府大幅度削缩用于PAFC技术研究和开发的投资。 (4)从迄今积累的经验及在改善设计参数和降低产品成本方面的潜力来看,让PAFC技术成功地跻身于当今的市场中的可能性是极低的。4 SOFC在配电市场方面的潜力 Siemens Westinghouse公司根据对市场的分析,决定采取必要的措施加快SOFC技术进入市场的步伐。预计在2003-2004年提供第l批产品,进入商业性生产前的试验阶段,装置容量从目前的2MW扩大到15MW。 北美和欧洲被认为是SOFC燃料电池技术最有希望的市场。Hagler Bailly公司和西门子公司对功率范围为250 kW-l MW的市场进行了调查,结果表明到2005年SOFC燃料电池的市场容量为每年10000MW。北美和欧洲几乎各占50%。考虑到北美洲用户的结构和他们的需求,在北美洲各类小型发电机组的总容量在2010年可能达到每年约1000MW,其中600MW可能是燃料电池发电装置。在各种类型的燃料电池中,SOFC的市场份额约占40%,到2010年在北美洲SOFC的全年销售额将达到亿美元。 在竞争日益激烈的配电市场中的另一个获胜者是微型燃气轮机,主要是作为备用电源或辅助电源。由于SOFC和微型燃气轮机的特性适于不同的应用场所,SOFC效率高但投资成本也高,而微型燃气轮机成本低但效率也低,因而这2种技术不会产生市场上竞争。而往复式发动机会逐渐失去其在市场中的份额。 欧洲电网要比北美洲电网强大得多,欧洲电网强化了集中的大型发电厂的作用。因此在北美洲经常出现的分散式电热设备和动力装置的供电质量和供电可靠性问题在欧洲是不突出的。但另一方面,在欧洲对能量储存更为敏感。 此外,一些国家政府将颁布新的规程和法律及新的能源价格,预计欧洲各国之间市场份额会有重大差异。在有些情况下这个过程会给SOFC用于配电装置起到一定的促进作用。此外,欧洲的自由化近程落后于北美洲。因此,市场预测结果会有很大程度的不确定性。5 SOFC技术应用的扩展 使用天然气作为燃料的SOFC是车载式装置,其扩展应用可有以下几种形式:(1)家庭应用:新一代燃料电池将是扁平管型的,其功率密度是目前所用圆柱型燃料电池技术的2倍,因而将制造出5kW的燃料电池装置。这种设计方案是可行的,在配电市场中可以替代圆柱型燃料电池。(2)l0MW以上的系统装置:很显然,只要SOFC技术占有了功率范围在250-10MW的市场,那么下一步最必然的是要争取占有l0MW以上更大规模发电设备的市场。通过把更多SOFC链接起来便能实现这个目标,也满足了高效率低成本的要求。20MW级规模燃料电池的电效率已经接近甚至超过70%。(3)用液态燃料运行:使用天然气作为燃料将SOFC的应用局限在靠近天然气供气网的区域内,从而使这项新技术的应用受到限制。因此存在着让SOFC使用液态燃料的迫切要求。因此,应与大型石油公司合作进行该课题的研究开发,选择一种适宜的液体燃料并设计出最适于使用这种新燃料的SOFC发电装置,以便为边远的用户服务。 (4)C02的分离:Shell公司和 Siemens Westinghouse公司正在共同研制一种能将CO2从完全反应后的燃料中分离的SOFC设飞方案。例如,当把其装在用于回收油的平台上时,可以把CO2用泵压到地下储层中,这不但可省去CO2的排放税,还可提高原油的产出量。 (5)综合性应用:CO2分离装置可能是点火的火花装置,它使得SOFC在一种封闭且可再生的能量循环中成为关键性部件。经过-段时间,SOFC能产生出热量和电力,例如用于大型暖房的设施中,SOFC装置产生的C02可用来加快植物的生长。而任何一种农作物收获后的剩余有机物都可以转化为气体供给SOFC作燃料。

燃料电池的演化及发展探析摘要:对燃料电池的工作原理进行了详细的分析;对其演化过程进行了简述;对其最新技术进行了详细的研究;对国内燃料电池技术的发展提供了参考意见。关键词:燃料电池;碱性燃料电池;磷酸型燃料电池;熔融碳酸型燃料电池;固体氧化物燃料电池;直接醇类燃料电池;固体高分子膜燃料电池随着工业化过程的进一步加强,大气中二氧化碳的排放量和污染程度加剧,导致了温室效应越来越明显,因此环保问题引起了各国政府的重视。为此,绿色能源技术引起了各国的普遍关注,并且正在逐步成为一种趋势。经过了各方的互相协作和努力,燃料电池技术正日趋成熟。作为一项重要技术,从本质上讲,它是一种电化学的发电装置,等温地按电化学方式,直接将化学能转化为电能而不必经过热机过程,不受卡诺循环限制,因而能量转化效率高,且无噪音,无污染,因此正在成为理想的替代能源。1 燃料电池的演化过程1.1 燃料电池的演化过程燃料电池是一种新型的无污染、高效率汽车、游艇动力和发电设备,在本质上是一种能量转化装置。1839年,格罗夫发表了第一篇有关燃料电池研究的报告。1889年,蒙德和朗格尔采用了浸有电解质的多孔非传导材料为电池隔膜,一铂黑为电催化剂,以钻孔的铂或金片为电流收集器组装出燃料电池。但此后的一段时间里,奥斯卡尔德等人在探索燃料电池发电过程的实验都因为反映速度太慢而使实验没有成功。与此同时,热机研究却取得了突破性进展并成功运用而迅速发展。因此燃料电池技术在数十年内没能取得大的进展。直到1923年,由施密特提出了多孔气体扩散电极的概念,在此基础上,培根提出了双孔结构电池概念,并成功开发出中温度培根型碱性燃料电池。以此为基础,经过一系列发展,这项燃料电池技术得到了突飞猛进的发展。在20世纪60年代由普拉特一惠特尼公司研制出的燃料电池系统,并成功应用于宇航飞行,使得燃料电池进入了应用阶段。1.2 燃料电池的基本工作原理燃料电池是一种能量转化装置,它就是按电化学原理,即原电池工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。从本质上说是水电解的一个“逆”装置。电解水过程中,通过外加电源将水电解,产生氢和氧;而在燃料电池中,则是氢和氧通过电化学反应生成水,并释放出电能。因此,燃料电池的基本结构与电解水装置是相类似的,它主要由4部分组成,即阳极、阴极、电解质和外部电路。其阳极为氢电极,阴极为氧电极。通常,阳极和阴极上都含有一定量的催化剂,目的是用来加速电极上发生的电化学反应。两极之间是电解质,电解质可分为碱性型、磷酸型、固体氧化物型、熔融碳酸盐型和质子交换膜型等类型。燃料电池的工作原理如下(以磷酸型或质子交换膜型为例):(1)氢气通过管道或导气板到达阳极;(2)在阳极催化剂的作用下,1个氢分子解离为2个氢离子,即质子,并释放出2个电子;(3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,同时,氢离子穿过电解质到达阴极,电子通过外电路也到达阴极;(4)在阴极催化剂的作用下,氧与氢离子和电子发生反应生成水;与此同时,电子在外电路的连接下形成电流,通过适当连接可以向负载输出电能。1.3 燃料电池的特点由上所述可知,燃料电池在本质上是电化学转化装置,它能够通过电化学过程直接将化学能转化为电能和热能,因而具有如下优点:1)干净清洁。利于环保,可减少二氧化碳的排放;无噪音,并自给供水;2)高效。由于其转化过程没有经过热机过程,因此效率高。3)适用性。由于污染小,无噪音,可靠,可使用于终端用户,因而可减少各种损失,并节省设备投资。4)可调制性。由于它是组合的结构,因而可以调节,以满足需求。5)燃料多样性。由于燃料可以是氢气、天然气、煤气、沼气的功能碳氢化合物燃料。基于以上特点。燃料电池成为绿色能源技术发展的重点。成为本世纪最有发展前途的技术之一。2 国内外燃料电池的最新进展2.1 碱性燃料电池(AFC)AFC技术是第一代燃料电池技术,已经在20世纪60年代就成功地应用于航天飞行领域。它是最早开发的燃料电池技术。目前德国一家公司开发的AFC在潜艇动力实验上获得了成功。国内对AFC的研究工作是从20世纪60年代开始的,主要是集中在中科院的下属研究机构。武汉大学和中科院长春应化所在上世纪60年代中期即开始对AFC进行基础研究。上世纪70年代,由于航天工业的需求,天津电源研究所研制出lkW AFX2系统。与此同时,A型号(即以纯氢、纯氧为燃料和氧化剂)、B型号(即以N2H4分解气、空气氧为燃料和氧化剂)燃料电池系统也在中科院大连化物所研制成功。此外,其它的研究机构也都展开了对AFC的研究。2.2 磷酸型燃料电池(PAFC)PAFC也是第一代燃料电池技术,也是目前最为成熟的应用技术。已经进入了商业化应用和批量生产。目前美国、日本、欧洲各国已有100多台200KW 发电机组投入使用或在安装中,最长的已经运行了37000小时。因此已经证实了PAFC是高度可靠的电源。只是由于其成本太高,目前只能作为区域性电站来现场供电、供热。国内对PAFC的研究工作相对较少。尽管如此,在对PAFC的研究过程中仍进行了卓有成效的工作,取得了不俗成绩。如国内学者魏子栋等人在对氧化还原发应的电催化剂研究过程中发现了Fe、Co对Pt的锚定效应。2.3 熔融碳酸型燃料电池(MCF℃)MCFC是属于第二代燃料电池技术。目前对MCF℃ 的研究国家有美国、日本和西欧,主要是应用于设备发电,目前还处于试验阶段。美国对MCFC的研究单位有国际燃料电池公司和能源研究公司及M—C动力公司。而日本对MCFC的主要是NEIX)公司、电力公司、煤气公司和机电设备厂商组成的MCFC研究开发组。大坂工业技术研究所从1991年开始10kW的MCFC单电池的长期运行试验,到1995年l1月止,累计运行了4万小时,确证了MCFC实用化的可能。德国MTU宣布在MCFC技术方面取得了突破。由该公司开发出来的世界上最大的280kW 的单电池还在运行。国内对MCFC的研究是中科院大连化物所从1993年开始的。现在正处于组合电池的研究阶段。而经过多年的艰苦努力与创新突破,上海交通大学科研人员率先在国内成功进行了1~1.5l 的熔融碳酸型燃料电池(M ℃)发电实验,取得了在国外一些国家至少需要6年甚至10年左右时间才能获得的成果。参加项目评审的专家认为,它整体水平达到了当前国内领先水平、国际20世纪90年代初同类技术的先进水平。2.4 质子交换膜型燃料电池系统(PEMF℃)PEMFC是属于第三代燃料电池技术。20世纪60年代,美国就已将PEMFC应用于宇航飞行,但由于技术问题,使得在其发展过程中受到了影响。直到20世纪80年代,加拿大Ballad公司才展开对PEMFC的研究工作。并取得了突破性进展。目前开发出来的电池组合功率达到了1000W/L、700W/kg的指标,因此这一技术引起了各国的广泛关注。目前Ballad公司在这一技术领域处于领先地位。国内对PEMFC的研究是从20世纪70年代天津电源研究所展开一聚苯乙烯蟥酸膜为电解质的PEM—FC基础研究。但进展缓慢。而国外在这一领域发展较快。因此在90年代开展了PEMFC的跟踪研究。目前,在PEM 方面,国内技术在多个方面取得了突破,北京富原新技术开发总公司已出现了50W、75W、150W、5KW 等样机。而上海神力科技有限公司已研制出5KW,10KW 的大功率型质子交换墨燃料电池系统,这大大缩小了与世界先进水平的距离。

燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。由于燃料电池是通过电化学反应把燃料的化学能中的吉布斯自由能部分转换成电能,不受卡诺循环效应的限制,因此效率高; 另外,燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术。我国燃料电池研究始于20世纪50年代末,70年代国内的燃料电池研究出现了第一次高峰,主要是国家投资的航天用AFC,如氨/空气燃料电池、肼/空气燃料电池、乙二醇/空气燃料电池等.80年代我国燃料电池研究处于低潮,90年代以来,随着国外燃料电池技术取得了重大进展,在国内又形成了新一轮的燃料电池研究热潮.1996年召开的第59次香山科学会议上专门讨论了“燃料电池的研究现状与未来发展”,鉴于PAFC在国外技术已成熟并进入商品开发阶段,我国重点研究开发PEMFC、MCFC和SOFC.中国科学院将燃料电池技术列为“九五”院重大和特别支持项目,国家科委也相继将燃料电池技术包括DAFC列入“九五”、“十五”攻关、“ 863”、“973”等重大计划之中.燃料电池的开发是一较大的系统工程,“官、产、研”结合是国际上燃料电池研究开发的一个显著特点,也是必由之路.目前,我国政府高度重视,研究单位众多,具有多年的人才储备和科研积累,产业部门的兴趣不断增加,需求迫切,这些都为我国燃料电池的快速发展带来了无限的生机。另一方面,我国是一个产煤和燃煤大国,煤的总消耗量约占世界的25%左右,造成煤燃料的极大浪费和严重的环境污染.随着国民经济的快速发展和人民生活水平的不断提高,我国汽车的拥有量(包括私人汽车)迅猛增长,致使燃油的汽车越来越成为重要的污染源.所以开发燃料电池这种洁净能源技术就显得极其重要,这也是高效、合理使用资源和保护环境的一个重要途径。[7]2020年7月10日,著名期刊《科学》刊发中国地质大学(武汉)科研团队学术论文,宣布通过半导体异质界面电子态特性,把质子局限在异质界面,设计和构造了具有低迁移势垒的质子通道。高离子电导率的电解质开发,是解决目前燃料电池应用的关键。中国地质大学(武汉)科研团队的研究如同给质子修建高速公路,即利用半导体异质界面场诱导金属态,助推超质子实现又快又好地‘跑起来’,从而获得优异的电导率。

燃料电池是很有发展前途的新的动力电源,般以氢气、碳、甲醇、硼氢化物、煤气或天然气为燃料,作为负极,用空气中的氧作为正极和一般电池的主要区别在于一般电池的活性物质是预先放在入的,因而电池容量取决于贮存的活性物质的量;而燃料电池的活性物质(燃料和氧化剂)是在反应的同时源源不断地输入的,因此,这类电池实际上只是一个能量转换装置。这类电池具有转换效率高、容量大、比能量高、功率范围广、不用充电等优点,但由于成本高,系统比较复杂,仅限于一些特殊用途,如飞船、潜艇、军事、电视中转站、灯塔和浮标等方面。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2