更全的杂志信息网

有关行人检测的论文

发布时间:2024-07-08 10:40:40

有关行人检测的论文

参考资料: 行人检测算法 行人检测是使用计算机视觉技术来判断图像或视频中是否存在行人。可以通过跟行人跟踪,行人重识别技术,来应用于人工智能系统,车辆辅助驾驶系统、智能交通等领域① 处理数据 ② 训练模型 ③ 输出目标位置① 外观差异大。包括视觉、姿态、服饰和附着物、光照、成像距离等。行人不同的运动姿态、角度,都会显示出不同的外观,而且成像距离远近不一,也会造成外观大小不同 ② 遮挡问题,在行人密集的地方,会发生行人被遮挡的问题,或者是被周围的建筑物遮挡住 ③ 背景复杂,有些物体的外观、造型、颜色、纹理等都比较接近人体,例如雕塑或人像广告牌、假人等。之前就有个新闻说红绿灯行人越线检测时,把公共汽车上的代言人广告中的代言人也检测了出来 ④ 检测速度,行人检测一般使用了比较复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化Faster R-CNN 文献[16]分析了Faster R-CNN在行人检测问题上的表现,结果表明,直接使用这种算法进行行人检测效果并不满意。作者发现,Faster R-CNN中的RPN网络对提取行人候选区域是相当有效的,而下游的检测网络表现的不好。作者指出了其中的两个原因:对于小目标,卷积层给出的特征图像太小了,无法有效的描述目标;另外,也缺乏难分的负样本挖掘机制。作者在这里采用了一种混合的策略,用RPN提取出候选区域,然后用随机森林对候选区域进行分类。这一结构如下图所示: DeepParts 文献[21]提出了一种基于部件的检测方案,称为DeepParts,致力于解决遮挡问题。这种方案将人体划分成多个部位,分别进行检测,然后将结果组合起来。部位划分方案如下图所示: 整个系统的结构如下图所示: RepLoss RepLoss[14]由face++提出,主要目标是解决遮挡问题。行人检测中,密集人群的人体检测一直是一个难题。物体遮挡问题可以分为类内遮挡和类间遮挡两类。类内遮挡指同类物体间相互遮挡,在行人检测中,这种遮挡在所占比例更大,严重影响着行人检测器的性能。 针对这个问题,作者设计也一种称为RepLoss的损失函数,这是一种具有排斥力的损失函数,下图为RepLoss示意图: RepLoss 的组成包括 3 部分,表示为: 其中L_Attr 是吸引项,需要预测框靠近其指定目标;L_RepGT 和 L_RepBox 是排斥项,分别需要当前预测框远离周围其它的真实物体和该目标其它的预测框。系数充当权重以平衡辅助损失。 HyperLearner 文献[25]提出了一种称为HyperLearner的行人检测算法,改进自Faster R-CNN。在文中,作者分析了行人检测的困难之处:行人与背景的区分度低,在拥挤的场景中,准确的定义一个行人非常困难。 作者使用了一些额外的特征来解决这些问题。这些特征包括: apparent-to-semantic channels temporal channels depth channels 为了将这些额外的特征也送入卷积网络进行处理,作者在VGG网络的基础上增加了一个分支网络,与主体网络的特征一起送入RPN进行处理: 其他的基本上遵循了Faster R-CNN框架的处理流程,只是将anchor参数做了改动。在实验中,这种算法相比Faster R-CNN有了精度上的提升。 从上面的回顾也可以看出,与人脸检测相比,行人检测难度要大很多,目前还远称不上已经解决,遮挡、复杂背景下的检测问题还没有解决,要因此还需要学术界和工业界的持续努力。

之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇,结果还过不了审。 还好后来找到文方网,直接让专业人士帮忙,效率很高,核心的部分帮我搞定了,也给了很多参考文献资料。哎,专业的事还是要找专业的人来做啊,建议有问题参考下文方网吧 下面是之前文方网王老师发给我的题目,分享给大家: 基于深度学习的无人机地面小目标算法研究 基于视觉的智能汽车面向前方车辆的运动轨迹预测技术研究 模拟射击训练弹着点检测定位技术研究 基于深度卷积神经网络的空中目标识别算法的研究 基于可见光图像的飞行器多目标识别及位置估计 无人驾驶车辆手势指令识别研究与实现 车载毫米波雷达目标检测技术研究 基于多传感融合的四足机器人建图方法 中老年人群跌倒风险评估的数据采集系统 基于深度学习的视觉SLAM闭环检测方法研究 真实图片比较视觉搜索任务的年龄效应及对策研究 室内复杂场景下的视觉SLAM系统构建与研究 基于双目内窥镜的软组织图像三维重建 学习资源画面色彩表征影响学习注意的研究 毫米波雷达与机器视觉双模探测关键技术的研究 语义地图及其关键技术研究 多重影响因素下的语音识别系统研究 基于卷积神经网络的自主空中加油识别测量技术研究 基于视觉语义的深度估计、实例分割与重建 重复视觉危险刺激——本能恐惧反应的“二态型”调控机制研究 低成本视觉下的三维物体识别与位姿估计 面向非规则目标的3D视觉引导抓取方法及系统研究 基于物体识别地理配准的跨视频行人检测定位技术研究 基于结构光的非刚体目标快速三维重建关键技术研究 基于机器视觉的动物交互行为与认知状态分析系统 关于单目视觉实时定位与建图中的优化算法研究 动态场景下无人机SLAM在智慧城市中的关键技术研究 面向视觉SLAM的联合特征匹配和跟踪算法研究 基于深度学习的显著物体检测 基于平面波的三维超声成像方法与灵长类动物脑成像应用研究 基于物体检测和地理匹配的室内融合定位技术研究 基于多模态信息融合的人体动作识别方法研究 基于视觉惯性里程计的SLAM系统研究 基于语义信息的图像/点云配准与三维重建 基于种子点选取的点云分割算法研究 基于深度学习的场景文字检测与识别方法研究 基于运动上下文信息学习的室内视频烟雾预警算法研究 基于深度学习的垃圾分类系统设计与实现 面向手机部件的目标区域检测算法的设计与实现 电路板自动光照检测系统的设计与实现 基于机器视觉的工件识别与定位系统的设计与实现 基于深度学习的物件识别定位系统的设计与实现 基于视觉四旋翼无人机编队系统设计及实现 基于视觉惯导融合的四旋翼自主导航系统设计与实现 面向城市智能汽车的认知地图车道层生成系统 基于深度学习的智能化无人机视觉系统的设计与仿真 基于知识库的视觉问答技术研究 基于深度学习的火灾视频实时智能检测研究 结构化道路车道线检测方法研究 基于机器视觉的带式输送机动态煤量计量研究 基于深度学习的小目标检测算法研究 基于三维激光与视觉信息融合的地点检索算法研究 动态环境下仿人机器人视觉定位与运动规划方法研究 瓷砖铺贴机器人瓷砖空间定位系统研究 城市街景影像中行人车辆检测实现 基于无线信号的身份识别技术研究 基于移动机器人的目标检测方法研究 基于深度学习的机器人三维环境对象感知 基于特征表示的扩展目标跟踪技术研究 基于深度学习的目标检测方法研究 基于深度学习的复杂背景下目标检测与跟踪 动态扩展目标的高精度特征定位跟踪技术研究 掩模缺陷检测仪的图像处理系统设计 复杂场景下相关滤波跟踪算法研究 基于多层级联网络的多光谱图像显著性检测研究 基于深度结构特征表示学习的视觉跟踪研究 基于深度网络的显著目标检测方法研究 基于深度学习的电气设备检测方法研究 复杂交通场景下的视频目标检测 基于多图学习的多模态图像显著性检测算法研究 基于面部视频的非接触式心率检测研究 单幅图像协同显著性检测方法研究 轻量级人脸关键点检测算法研究 基于决策树和最佳特征选择的神经网络钓鱼网站检测研究 基于深度学习的场景文本检测方法研究 RGB-D图像显著及协同显著区域检测算法研究 多模态融合的RGB-D图像显著目标检测研究 基于协同排序模型的RGBT显著性检测研究 基于最小障碍距离的视觉跟踪研究 基于协同图学习的RGB-T图像显著性检测研究 基于图学习与标签传播优化模型的图像协同显著性目标检测 姿态和遮挡鲁棒的人脸关键点检测算法研究 基于多模态和多任务学习的显著目标检测方法研究 基于深度学习的交通场景视觉显著性区域目标检测 基于生物视觉机制的视频显著目标检测算法研究 基于场景结构的视觉显著性计算方法研究 精神分裂症患者初级视觉网络的磁共振研究 基于fMRI与TMS技术研究腹侧视觉通路中结构优势效应的加工 脑机接口游戏神经可塑性研究 基于YOLOV3算法的FL-YOLO多目标检测系统 基于深度与宽度神经网络显著性检测方法研究 基于深度学习的零件识别系统设计与研究 基于对抗神经网络的图像超分辨算法研究 基于深度学习复杂场景下停车管理视觉算法的研究与实现 镍电解状态视觉检测与分析方法研究 跨界训练对提升舞者静态平衡能力的理论与方法研究 施工现场人员类型识别方法的研究与实现 基于深度学习的自然场景文字检测方法研究 基于嵌入式的交通标志识别器的设计 基于视觉感知特性与图像特征的图像质量评价

运动目标检测与跟踪算法研究 视觉是人类感知自身周围复杂环境最直接有效的手段之一, 而在现实生活中 大量有意义的视觉信息都包含在运动中,人眼对运动的物体和目标也更敏感,能 够快速的发现运动目标, 并对目标的运动轨迹进行预测和描绘。 随着计算机技术、 通信技术、图像处理技术的不断发展,计算机视觉己成为目前的热点研究问题之 一。 而运动目标检测与跟踪是计算机视觉研究的核心课题之一, 融合了图像处理、 模式识别、人工智能、自动控制、计算机等众多领域的先进技术,在军事制导、 视觉导航、视频监控、智能交通、医疗诊断、工业产品检测等方面有着重要的实 用价值和广阔的发展前景。 1、国内外研究现状 运动目标检测 运动目标检测是指从序列图像中将运动的前景目标从背景图像中提取出来。 根据运动目标与摄像机之间的关系, 运动目标检测分为静态背景下的运动目标检 测和动态背景下的运动目标检测。 静态背景下的运动目标检测是指摄像机在整个 监视过程中不发生移动; 动态背景下的运动目标检测是指摄像机在监视过程中发 生了移动,如平动、旋转或多自由度运动等。 静态背景 静态背景下的运动目标检测方法主要有以下几种: (1)背景差分法 背景差分法是目前最常用的一种目标检测方法, 其基本思想就是首先获得一个 背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断 此像素属于运动目标,否则属于背景图像。利用当前图像与背景图像的差分来检 测运动区域,一般能够提供比较完整的特征数据,但对于动态场景的变化,如光 照和外来无关事件的干扰等特别敏感。 很多研究人员目前都致力于开发不同的背 景模型,以减少动态场景变化对运动目标检测的影响。背景模型的建立与更新、 阴影的去除等对跟踪结果的好坏至关重要。 背景差分法的实现简单,在固定背景下能够完整地精确、快速地分割出运动 对象。不足之处是易受环境光线变化的影响,需要加入背景图像更新机制,且只 对背景已知的运动对象检测比较有效, 不适用于摄像头运动或者背景灰度变化很 大的情况。 (2)帧间差分法 帧间差分法是在连续的图像序列中两个或三个相邻帧间, 采用基于像素的时 间差分并阈值化来提取图像中的运动区域。 帧间差分法对动态环境具有较强的自 适应性,但一般不能完全提取出所有相关的特征像素点,在运动实体内部容易产 生空洞现象。因此在相邻帧间差分法的基础上提出了对称差分法,它是对图像序 列中每连续三帧图像进行对称差分,检测出目标的运动范围,同时利用上一帧分 割出来的模板对检测出来的目标运动范围进行修正, 从而能较好地检测出中间帧 运动目标的形状轮廓。 帧间差分法非常适合于动态变化的环境,因为它只对运动物体敏感。实际上 它只检测相对运动的物体,而且因两幅图像的时间间隔较短,差分图像受光线 变化影响小,检测有效而稳定。该算法简单、速度快,已得到广泛应用。虽然该 方法不能够完整地分割运动对象,只能检测出物体运动变化的区域,但所检测出 的物体运动信息仍可用于进一步的目标分割。 (3)光流法 光流法就充分的利用了图像自身所携带的信息。在空间中,运动可以用运动 场描述,而在一个图像平面上,物体的运动往往是通过图像序列中图像灰度分布 的不同来体现,从而使空间中的运动场转移到图像上就表示为光流场。所谓光流 是指空间中物体被观测面上的像素点运动产生的瞬时速度场, 包含了物体表面结 构和动态行为等重要信息。 基于光流法的运动目标检测采用了运动目标随时间变 化的光流特性,由于光流不仅包含了被观测物体的运动信息,还携带了物体运动 和景物三位结构的丰富信息。 在比较理想的情况下,它能够检测独立运动的对象, 不需要预先知道场景的任何信息,可以很精确地计算出运动物体的速度,并且可 用于动态场景的情况。 但是大多数光流方法的计算相当复杂,对硬件要求比较高, 不适于实时处理,而且对噪声比较敏感,抗噪性差。并且由于遮挡、多光源、透明 性及噪声等原因,使得光流场基本方程——灰度守恒的假设条件无法满足,不能 正确求出光流场,计算方也相当复杂,计算量巨大,不能满足实时的要求。 动态背景 动态背景下的运动目标检测由于存在着目标与摄像机之间复杂的相对运动, 检测方法要比静态背景下的运动目标检测方法复杂。常用的检测方法有匹配法、 光流法以及全局运动估计法等。 2、运动目标跟踪 运动目标跟踪是确定同一物体在图像序列的不同帧中的位置的过程。 近年来 出现了大批运动目标跟踪方法,许多文献对这些方法进行了分类介绍,可将目标 跟踪方法分为四类:基于区域的跟踪、基于特征的跟踪、基于活动轮廓的跟踪、 基于模型的跟踪,这种分类方法概括了目前大多数跟踪方法,下面用这种分类方 法对目前的跟踪方法进行概括介绍。 (1)基于区域的跟踪 基于区域的跟踪方法基本思想是: 首先通过图像分割或预先人为确定提取包 含目标区域的模板,并设定一个相似性度量,然后在序列图像中搜索目标,把度 量取极值时对应的区域作为对应帧中的目标区域。 由于提取的目标模板包含了较 完整的目标信息,该方法在目标未被遮挡时,跟踪精度非常高,跟踪非常稳定, 但通常比较耗时,特别是当目标区域较大时,因此一般应用于跟踪较小的目标或 对比度较差的目标。该方法还可以和多种预测算法结合使用,如卡尔曼预测、粒 子预测等,以估计每帧图像中目标的位置。近年来,对基于区域的跟踪方法关注 较多的是如何处理运动目标姿态变化引起的模板变化时的情况以及目标被严重 遮挡时的情况。 (2)基于特征的跟踪 基于特征的跟踪方法基本思想是:首先提取目标的某个或某些局部特征,然 后利用某种匹配算法在图像序列中进行特征匹配,从而实现对目标的跟踪。该方 法的优点是即使目标部分被遮挡,只要还有一部分特征可以被看到,就可以完成 跟踪任务,另外,该方法还可与卡尔曼滤波器结合使用,实时性较好,因此常用 于复杂场景下对运动目标的实时、 鲁棒跟踪。 用于跟踪的特征很多, 如角点边缘、 形状、纹理、颜色等,如何从众多的特征中选取最具区分性、最稳定的特征是基 于特征的跟踪方法的关键和难点所在。 (3)基于活动轮廓的跟踪 基于活动轮廓的跟踪方法基本思想是:利用封闭的曲线轮廓表达运动目标, 结合图像特征、曲线轮廓构造能量函数,通过求解极小化能量实现曲线轮廓的自 动连续更新,从而实现对目标的跟踪。自Kass在1987年提出Snake模型以来,基 于活动轮廓的方法就开始广泛应用于目标跟踪领域。相对于基于区域的跟踪方 法,轮廓表达有减少复杂度的优点,而且在目标被部分遮挡的情况下也能连续的 进行跟踪,但是该方法的跟踪结果受初始化影响较大,对噪声也较为敏感。 (4)基于模型的跟踪 基于模型的跟踪方法基本思想是: 首先通过一定的先验知识对所跟踪目标建 立模型,然后通过匹配跟踪目标,并进行模型的实时更新。通常利用测量、CAD 工具和计算机视觉技术建立模型。主要有三种形式的模型,即线图模型、二维轮 廓模型和三维立体模型口61,应用较多的是运动目标的三维立体模型,尤其是对 刚体目标如汽车的跟踪。该方法的优点是可以精确分析目标的运动轨迹,即使在 目标姿态变化和部分遮挡的情况下也能够可靠的跟踪, 但跟踪精度取决于模型的 精度,而在现实生活中要获得所有运动目标的精确模型是非常困难的。 目标检测算法,至今已提出了数千种各种类型的算法,而且每年都有上百篇相 关的研究论文或报告发表。尽管人们在目标检测或图像分割等方面做了许多研 究,现己提出的分割算法大都是针对具体问题的,并没有一种适合于所有情况的 通用算法。 目前, 比较经典的运动目标检测算法有: 双帧差分法、 三帧差分法(对 称差分法)、背景差法、光流法等方法,这些方法之间并不是完全独立,而是可 以相互交融的。 目标跟踪的主要目的就是要建立目标运动的时域模型, 其算法的优劣直接影响 着运动目标跟踪的稳定性和精确度, 虽然对运动目标跟踪理论的研究已经进行了 很多年,但至今它仍然是计算机视觉等领域的研究热点问题之一。研究一种鲁棒 性好、精确、高性能的运动目标跟踪方法依然是该研究领域所面临的一个巨大挑 战。基于此目的,系统必须对每个独立的目标进行持续的跟踪。为了实现对复杂 环境中运动目标快速、稳定的跟踪,人们提出了众多算法,但先前的许多算法都 是针对刚体目标,或是将形变较小的非刚体近似为刚体目标进行跟踪,因而这些 算法难以实现对形状变化较大的非刚体目标的正确跟踪。 根据跟踪算法所用的预 测技术来划分,目前主要的跟踪算法有:基于均值漂移的方法、基于遗传算法的 方法、基于Kalman滤波器的方法、基于Monto Carlo的方法以及多假设跟踪的方 法等。 运动检测与目标跟踪算法模块 运动检测与目标跟踪算法模块 与目标跟踪 一、运动检测算法 1.算法效果 算法效果总体来说,对比度高的视频检测效果要优于对比度低的视频。 算法可以比较好地去除目标周围的浅影子,浅影的去除率在 80%以上。去影后目标的 完整性可以得到较好的保持,在 80%以上。在对比度比较高的环境中可以准确地识别较大 的滞留物或盗移物。 从对目标的检测率上来说,对小目标较难进行检测。一般目标小于 40 个像素就会被漏 掉。对于对比度不高的目标会检测不完整。总体上来说,算法在对比度较高的环境中漏检率 都较低,在 以下,在对比度不高或有小目标的场景下漏检率在 6%以下。 精细运动检测的目的是在较理想的环境下尽量精确地提取目标的轮廓和区域, 以供高层 进行应用。同时在分离距离较近目标和进行其它信息的进一步判断也具有一定的优势。 反映算法优缺点的详细效果如下所示: 去影子和完整性 效果好 公司内视频 左边的为去影前,右边的 为去影后的结果,可以看出在 完整 性和去影率上 都有所 突 出。 这两个视频的共周特点 城市交通 是,影子都是浅影子,视频噪 声不太明显。目标与背景的对 比度比较高。 效果差 这两个视频的特点是影子 都是深影子。虽然影子没有去 掉,但是物体的完整性是比较 高的。主要原因就是场景的对 路口,上午 十点 比度比较高。 滞留物检测和稳定性 效果好 会议室盗移 效果好的原因,一是盗移或 滞留目标与背景对比度较大,二 是目标本身尺寸较大。 另外盗移物或滞留物在保持 各自的状态期间不能受到光照变 化或其它明显运动目标的干扰, 要不然有可能会造成判断的不稳 定。 效果差 会议室 遗留 物 大部分时间内,滞留的判断 都是较稳定的,但是在后期出现 了不稳定。主要原因是目标太小 的原故。 因此在进行滞留物判断时, 大目标,对比度较高的环境有利 于判断的稳定性和准确性。 漏检率 效果好 城市交通 在对比度高的环境下, 目标相对都较大的情况下 (大于 40 个像素) 可以很 , 稳定的检测出目标。 在这种 条件下的漏检率通常都是 非常低的,在 以下。 效果差 行人-傍晚 和“行人”目录下 的 其 它 昏 暗 条件 下的视频 在对 比度较低的 情况 下,会造成检测结果不稳 定。漏检率较高。主要原因 是由于去影子造成的。 这种 对比度下的漏检率一般在 6%以下。 除了 对比度低是 造成 漏检的原因外, 过小的目标 也会造成漏检,一般是 40 个像素以下的目标都会被 忽略掉。 算法效率内存消耗(单位:b) .MD_ISRAM_data .MD_ISRAM_bss .MD_SDRAM_data 0x470 0x24 0x348 .MD_SDRAM_bss .MD_text 0x1a8480 0x6d40 速度 ms 运动区域占 2/3 左右时 CPU 占用率 一帧耗时 Max:57% Min: Avg: Max:23 Min: Avg:15 运动区域占 1/3 左右时 Max:45% Min: Avg:20% Max:18 Min: Avg:8 检测参数说明 检测参数说明 检测到的滞留物或盗走物的消失时间目前分别设定在 200 帧和 100 帧, 可以通过参数来 自行调整。 目前目标与背景的差异是根据局部光照强度所决定的, 范围在 4 个像素值以上。 目前参 数设置要求目标大小要在 20 个像素以上才能被检测到,可以通过参数来自行调整。 目标阴影的去除能力是可以调整的, 目前的参数设置可以去除大部分的浅影子和较小的 光照变化。 适用环境推荐光照条件较好(具有一定的对比度)的室内环境或室外环境。不易用它去检测过小的目 标,比如小于 40 个像素的目标。室外环境不易太复杂。输出目标为精细轮廓目标,可以为 后面高层应用提供良好的信息。 二、目标跟踪 稳定运行环境要求此版本跟踪算法与运动检测算法紧密结合, 对相机的架设和视频的背景环境和运动目标 数量运动方式有一定要求: 背景要求: 由于运动跟踪是基于运动检测的结果进行的, 所以对背景的要求和运动检测一样, 背景要求: 运动目标相对于背景要有一定反差。 运动目标:由于运动检测中,对较小的目标可能过滤掉。所以运动目标的大小要符合运动检 运动目标: 测的要求。运动目标的速度不能太大,要保证前后帧运动目标的重合面积大于 10 个像素。此阈值可修改(建议不要随意修改,过小,可能把碎片当成原目标分 裂出来的小目标,过大,可能失去跟踪。当然可试着调节以适应不同场景)。该 算法对由于运动检测在地面上产生的碎片抗干扰性比较差, 运动目标和碎片相遇 时,容易发生融合又分离的现象,造成轨迹混乱。消失目标和新生目标很容易当 成同一目标处理,所以可能出现一个新目标继承新生目标的轨迹。 运动方式: 运动目标的最大数量由外部设定。 但运动跟踪对运动目标比较稀疏的场景效果比 运动方式: 较好。 算法对由于运动检测在运动目标上产生的碎片有一定的抗干扰。 算法没对 物体的遮挡进行处理。对于两运动目标之间的遮挡按融合来处理。 拍摄角度: 拍摄角度:拍摄视野比较大,且最好是俯视拍摄。

hogsvm行人检测论文

姓名:王梦妮 学号:20021210873 学院:电子工程学院 【嵌牛导读】本文主要介绍了无人驾驶中所需的行人检测算法 【嵌牛鼻子】无人驾驶 环境感知 计算机视觉 SVM Adaboost算法 【嵌牛提问】无人驾驶中所用到的行人检测算法有哪些 【嵌牛正文】 在同样的交通路况下,无人车通过对自身运动状态及行驶环境信息进行分析,决策出最佳行驶策略和行驶方案代替驾驶员完成一系列驾驶行为,从而降低道路交通事故的发生率。而在无人驾驶中最为重要的技术便是环境感知,而在城市道路上有大量的行人出行,只有准确快速地检测出行人与对其进行跟踪,才能避免车撞人。 计算机视觉是研究赋予机器“人眼”功能的科学,通过多个传感器来获取一定范围内的色彩数据,用算法分析得到的数据从而理解周围环境,这个过程模拟了人眼以及大脑的处理过程,从而赋予机器视觉感知能力。现有的行人检测技术大多都是检测照片中的行人目标,这种照片的拍摄大多是拍摄的静止目标,图像的分辨率和像素点包含的语义信息都及其丰富,对应的算法在这样的图片上往往能取得理想的效果,但是用于无人车的“眼睛”,算法的鲁棒性就表现的非常差。这是因为在实际的道路环境中,摄像头需要搭载的车身上,在行进过程中跟随车以一定的速度移动,并且在实际道路中,行人目标往往是在运动的,由此提取出拍摄视频中的一帧就会出现背景虚化,造成像素点包含的语义信息大量减少,增加了行人检测的难度。 行人检测是计算机视觉领域的一个重要研究课题。在实际生活中,行人大多处于人口密集、背景复杂的城市环境中,并且行人的姿态各不相同,如何将行人从色彩丰富、形状相似的环境中快速准确地提取出来,是行人检测算法的难点。 行人检测算法分为两大类,一类是基于传统图像处理,另一类是基于深度学习的方法。近年来随着计算机计算速度的大幅提升,基于深度学习的方法有着越来越高的检测速度与检测精度,在行人检测领域应用越加广泛。 (一)基于传统图像处理的行人检测算法 使用传统的图像处理方法来做行人检测一般都是由两个步骤组成,第一就是需要手工设计一个合理的特征,第二就是需要设计一个合理的分类器。手工设计特征就是找到一种方法对图像内容进行数学描述,用于后续计算机能够区分该图像区域是什么物体,分类器即是通过提取的特征判断该图像区域属于行人目标还是属于背景。在传统的图像处理领域,手工特征有许多种,比如颜色特征、边缘特征(canny算子和sobel算子)以及基于特征点的描述子(方向梯度直方图)等。 学者们一致认为方向梯度直方图是最适合行人检测的人工特征,其主要原理是对图像的梯度方向直方图进行统计来表征图像。该特征是由Dalal于2005提出的,并与SVM分类器相结合,在行人检测领域取得了前所未有的成功。 传统的行人检测方法首先需要通过提取手工设计特征,再使用提取好的特征来训练分类器,得到一个鲁棒性良好的模型。在行人检测中应用最广泛的分类器就是SVM和Adaboost。SVM分类器就是要找到一个超平面用来分割正负样本,这个超平面的满足条件就是超平面两侧的样本到超平面的距离要最大,即最大化正负样本边界。下图即为线性SVM的示意图。Adaboost分类算法的主要原理不难理解,就是采用不同的方法训练得到一系列的弱分类器,通过级联所有的弱分类器来组成一个具有更高分类精度的强分类器,属于一种迭代算法。原理简单易于理解且有着良好的分类效果,唯一不足就是练多个弱分类器非常耗时。下图为面对一个二分类问题,Adaboost算法实现的细节。               (二)基于深度学习的行人检测算法     近年来,随着硬件计算能力的不断增强,基于卷积神经网络的深度学习飞速发展,在目标检测领域取得了更好的成绩。卷积神经网络不再需要去手动设计特征,只需要将图片输入进网络中,通过多个卷积层的卷积操作,提取出图像的深层语义特征。要想通过深度学习的方法得到一个性能良好的模型,需要大量的样本数据,如果样本过少,就很难学习到泛化能力好的特征,同时在训练时,由于涉及到大量的卷积操作,需要进行大量计算,要求硬件设备具有极高的算力,同时训练起来也很耗时。随着深度学习的飞速发展,越来越多基于深度学习的模型和方法不断被提出,深度学习在目标检测领域会有更加宽广的发展空间。 Ross Girshick团队提出了系列行人检测算法,其中Faster R—CNN 算法通过一个区域提议网络来生成行人候选框,在最后的特征图上滑动来确定候选框。Faster RCNN是首个实现端到端训练的网络,通过一个网络实现了特征提取、候选框生成、边界框回归和分类,这样的框架大大提高了整个网络的检测速度。 He Kaiming等人在2017年提出Mask R—CNN算法,该算法改进了Faster·R—CNN, 在原有的网络结构上增加了一个分支进行语义分割,并用ROI Align替代了ROI Pooling,取得了COCO数据集比赛的冠军。

有一个月没更博客了,捂脸 o( ̄= ̄)d

端午回家休息了几天,6月要加油~

回到正文,HOG是很经典的一种图像特征提取方法,尤其是在行人识别领域被应用的很多。虽然文章是2005年发表在CVPR上的,但近十年来还没有被淹没的文章真的是很值得阅读的研究成果了。

key idea: 局部物体的形状和外观可以通过局部梯度或者边缘的密度分布所表示。

主要步骤:

上图为论文中提供的图,个人觉得我在参考资料中列出的那篇 博客 中给出的图可能更好理解一些。

具体细节: 关于每一个过程的详细解释还是在 这篇博客 中已经写得很清楚了,这里就不再搬运了。

文章中数据集的图像大小均为:64*128, block大小为16x16, block stride为8x8,cell size为8x8,bins=9(直方图等级数);

获取到每张图的特征维度后,再用线性SVM训练分类器即可。

下图为作者而给出的示例图:

这两篇博客写的都很好,推荐阅读一波。

基于opencv的行人检测论文

这样的问题应该是在 项目属性——链接——附加依赖项里添加的lib库少一个或几个。features2d之类的库没有添加吧。也可能是配置环境时lib目录设置错误。

你的lib库木有配置好,要么是lib目录设置错误,要么是lib木有添加。看

整个项目的结构图:编写,代码如下:[java] viewplaincopyprint?package ;import ;import ;import ;import ;import ;import ;import ;import ;//// Detects faces in an image, draws boxes around them, and writes the results// to "".//public class DetectFaceDemo {public void run() {("\nRunning DetectFaceDemo");(getClass().getResource("").getPath());// Create a face detector from the cascade file in the resources// directory.//CascadeClassifier faceDetector = new CascadeClassifier(getClass().getResource("").getPath());//Mat image = (getClass().getResource("").getPath());//注意:源程序的路径会多打印一个‘/’,因此总是出现如下错误/** Detected 0 faces Writing libpng warning: Image* width is zero in IHDR libpng warning: Image height is zero in IHDR* libpng error: Invalid IHDR data*///因此,我们将第一个字符去掉String xmlfilePath=getClass().getResource("").getPath().substring(1);CascadeClassifier faceDetector = new CascadeClassifier(xmlfilePath);Mat image = (getClass().getResource("").getPath().substring(1));// Detect faces in the image.// MatOfRect is a special container class for faceDetections = new MatOfRect();(image, faceDetections);(("Detected %s faces", ().length));// Draw a bounding box around each (Rect rect : ()) {(image, new Point(, ), new Point( + , + ), new Scalar(0, 255, 0));}// Save the visualized filename = "";(("Writing %s", filename));(filename, image);}}package ;import ;import ;import ;import ;import ;import ;import ;import ;//// Detects faces in an image, draws boxes around them, and writes the results// to "".//public class DetectFaceDemo {public void run() {("\nRunning DetectFaceDemo");(getClass().getResource("").getPath());// Create a face detector from the cascade file in the resources// directory.//CascadeClassifier faceDetector = new CascadeClassifier(getClass().getResource("").getPath());//Mat image = (getClass().getResource("").getPath());//注意:源程序的路径会多打印一个‘/’,因此总是出现如下错误/** Detected 0 faces Writing libpng warning: Image* width is zero in IHDR libpng warning: Image height is zero in IHDR* libpng error: Invalid IHDR data*///因此,我们将第一个字符去掉String xmlfilePath=getClass().getResource("").getPath().substring(1);CascadeClassifier faceDetector = new CascadeClassifier(xmlfilePath);Mat image = (getClass().getResource("").getPath().substring(1));// Detect faces in the image.// MatOfRect is a special container class for faceDetections = new MatOfRect();(image, faceDetections);(("Detected %s faces", ().length));// Draw a bounding box around each (Rect rect : ()) {(image, new Point(, ), new Point( + , + ), new Scalar(0, 255, 0));}// Save the visualized filename = "";(("Writing %s", filename));(filename, image);}}3.编写测试类:[java] viewplaincopyprint?package ;public class TestMain {public static void main(String[] args) {("Hello, OpenCV");// Load the native ("opencv_java246");new DetectFaceDemo().run();}}//运行结果://Hello, OpenCV////Running DetectFaceDemo///E:/eclipse_Jee/workspace/JavaOpenCV246/bin/com/njupt/zhb/test/ 8 faces//Writing ;public class TestMain {public static void main(String[] args) {("Hello, OpenCV");// Load the native ("opencv_java246");new DetectFaceDemo().run();}}//运行结果://Hello, OpenCV////Running DetectFaceDemo///E:/eclipse_Jee/workspace/JavaOpenCV246/bin/com/njupt/zhb/test/ 8 faces//Writing

行人检测跟踪论文

参考资料: 行人检测算法 行人检测是使用计算机视觉技术来判断图像或视频中是否存在行人。可以通过跟行人跟踪,行人重识别技术,来应用于人工智能系统,车辆辅助驾驶系统、智能交通等领域① 处理数据 ② 训练模型 ③ 输出目标位置① 外观差异大。包括视觉、姿态、服饰和附着物、光照、成像距离等。行人不同的运动姿态、角度,都会显示出不同的外观,而且成像距离远近不一,也会造成外观大小不同 ② 遮挡问题,在行人密集的地方,会发生行人被遮挡的问题,或者是被周围的建筑物遮挡住 ③ 背景复杂,有些物体的外观、造型、颜色、纹理等都比较接近人体,例如雕塑或人像广告牌、假人等。之前就有个新闻说红绿灯行人越线检测时,把公共汽车上的代言人广告中的代言人也检测了出来 ④ 检测速度,行人检测一般使用了比较复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化Faster R-CNN 文献[16]分析了Faster R-CNN在行人检测问题上的表现,结果表明,直接使用这种算法进行行人检测效果并不满意。作者发现,Faster R-CNN中的RPN网络对提取行人候选区域是相当有效的,而下游的检测网络表现的不好。作者指出了其中的两个原因:对于小目标,卷积层给出的特征图像太小了,无法有效的描述目标;另外,也缺乏难分的负样本挖掘机制。作者在这里采用了一种混合的策略,用RPN提取出候选区域,然后用随机森林对候选区域进行分类。这一结构如下图所示: DeepParts 文献[21]提出了一种基于部件的检测方案,称为DeepParts,致力于解决遮挡问题。这种方案将人体划分成多个部位,分别进行检测,然后将结果组合起来。部位划分方案如下图所示: 整个系统的结构如下图所示: RepLoss RepLoss[14]由face++提出,主要目标是解决遮挡问题。行人检测中,密集人群的人体检测一直是一个难题。物体遮挡问题可以分为类内遮挡和类间遮挡两类。类内遮挡指同类物体间相互遮挡,在行人检测中,这种遮挡在所占比例更大,严重影响着行人检测器的性能。 针对这个问题,作者设计也一种称为RepLoss的损失函数,这是一种具有排斥力的损失函数,下图为RepLoss示意图: RepLoss 的组成包括 3 部分,表示为: 其中L_Attr 是吸引项,需要预测框靠近其指定目标;L_RepGT 和 L_RepBox 是排斥项,分别需要当前预测框远离周围其它的真实物体和该目标其它的预测框。系数充当权重以平衡辅助损失。 HyperLearner 文献[25]提出了一种称为HyperLearner的行人检测算法,改进自Faster R-CNN。在文中,作者分析了行人检测的困难之处:行人与背景的区分度低,在拥挤的场景中,准确的定义一个行人非常困难。 作者使用了一些额外的特征来解决这些问题。这些特征包括: apparent-to-semantic channels temporal channels depth channels 为了将这些额外的特征也送入卷积网络进行处理,作者在VGG网络的基础上增加了一个分支网络,与主体网络的特征一起送入RPN进行处理: 其他的基本上遵循了Faster R-CNN框架的处理流程,只是将anchor参数做了改动。在实验中,这种算法相比Faster R-CNN有了精度上的提升。 从上面的回顾也可以看出,与人脸检测相比,行人检测难度要大很多,目前还远称不上已经解决,遮挡、复杂背景下的检测问题还没有解决,要因此还需要学术界和工业界的持续努力。

姓名:王梦妮 学号:20021210873 学院:电子工程学院 【嵌牛导读】本文主要介绍了无人驾驶中所需的行人跟踪算法 【嵌牛鼻子】无人驾驶 环境感知 计算机视觉 卡尔曼滤波 粒子滤波 均值漂移 【嵌牛提问】无人驾驶中所用到的行人跟踪算法有哪些 【嵌牛正文】行人跟踪一直是视觉领域的一个难点,实际应用环境复杂、遮挡以及行人姿态变化等外界因素都影响着行人跟踪算法的研究。行人跟踪算法模型主要分为生成模型和判别模型。(一)生成式模型 生成式模型是一种通过在线学习行人目标特征,建立行人跟踪模型,然后使用模型来搜索误差最小的目标区域,从而完成对行人的跟踪。这种算法在构建模型只考虑了行人本身的特征,忽略了背景信息,没有做到有效利用图像中的全部信息。其中比较经典的算法主要有卡尔曼滤波,粒子滤波,mean-shift等。 (1)卡尔曼滤波算法 卡尔曼滤波算法是一种通过对行人构建状态方程和观测方程为基础,计算最小均方误差来实现跟踪的最优线性递归滤波算法,通过递归行人的运动状态来预测行人轨迹的变化。 首先设定初始参数,读取视频序列。然后进行背景估计,产生初始化背景图像。然后依次读取视频序列,利用Kahnan滤波算法,根据上一帧估计的背景和当前帧数据得到当前帧的前景目标。然后对前景目标进行连通计算,检测出运动目标的轨迹。经典的卡尔曼滤波算法.只能对线性运动的行人实现跟踪,之后学者改进了卡尔曼滤波算法,能够实现对非线性运动的行人进行跟踪,计算量小,能实现实时跟踪,但是跟踪效果不理想。 (2)粒子滤波     粒子滤波的核心就是贝叶斯推理和重要性采样。粒子滤波可用于非线性非高斯模型,这是由于贝叶斯推理采用蒙特卡洛法,以某个时间点事件出现的频率表示其概率。通过一组粒子对整个模型的后验概率分布进行近似的表示,通过这个表示来估计整个非线性非高斯系统的状态。重要性采用就是通过粒子的置信度来赋予不同的权重,置信度高的粒子,赋予较大的权重,通过权重的分布形式表示相似程度。 (3)均值漂移(mean-shift)     Mean-shift算法属于核密度估计法。不必知道先验概率,密度函数值由采样点的特征空间计算。通过计算当前帧目标区域的像素特征值概率来描述目标模型,并对候选区域进行统一描述,使用相似的函数表示目标模型与候选模板之间的相似度,然后选择在具有相似函数值最大的候选模型中,您将获得关于目标模型的均值漂移向量,该向量表示目标从当前位置移动到下一个位置的向量。通过连续迭代地计算均值偏移矢量,行人跟踪算法将最终收敛到行人的实际位置,从而实现行人跟踪。 (二) 判别式模型 判别模型与生成模型不同,行人跟踪被视为二分类问题。提取图像中的行人和背景信息,并用于训练分类器。通过分类将行人从图像背景中分离出来,以获取行人的当前位置。以行人区域为正样本,背景区域为负样本,通过机器学习算法对正样本和负样本进行训练,训练后的分类器用于在下一帧中找到相似度最高的区域,以完成行人轨迹更新。判别式模型不像生成式模型仅仅利用了行人的信息,还利用了背景信息,因此判别式模型的跟踪效果普遍优于生成式模型。 (1)基于相关滤波的跟踪算法       核相关滤波(KCF)算法是基于相关滤波的经典跟踪算法,具有优良的跟踪效果和跟踪速度。这是由于其采用了循环移位的方式来进行样本生产,用生成的样本来训练分类器,通过高斯核函数来计算当前帧行人与下一帧中所有候选目标之间的相似概率图,找到相似概率图最大的那个候选目标,就得到了行人的新位置。KCF算法为了提高跟踪精度,使用HOG特征对行人进行描述,同时结合了离散傅里叶变换来降低计算量。 (2)基于深度学习的跟踪算法     近年来,深度学习在图像和语音方面取得了较大的成果,因此有许多科研人员将深度学习与行人跟踪相结合,取得了比传统跟踪算法更好的性能。DLT就是一个基于深度学习的行人跟踪算法,利用深度模型自动编码器通过离线训练的方式,在大规模行人数据集上得到一个行人模型,然后在线对行人进行跟踪来微调模型。首先通过粒子滤波获取候选行人目标,然后利用自动编码器进行预测,最终得到行人的预测位置即最大输出值的候选行人目标位置。2015年提出的MDNet算法采用了分域训练的方式。对于每个类别,一个单独的全连接层用于分类,并且全连接层前面的所有层都是共享,用于特征提取。2017年提出的HCFT算法使用深度学习对大量标定数据进行训练,得到强有力的特征表达模型,结合基于相关滤波的跟踪算法,用于解决在线进行跟踪过程中行人样本少、网络训练不充分的问题。此外,通过深度学习提取特征,利用数据关联的方法来实现跟踪的算法,其中最为著名的就JPDAF与MHT这两种方法。

从哪些方面验证需求的正确性 需求分析阶段的工作结果是开发系统的重要基础,大量统计数字表明,系统中 15% 的错误起源于错误的需求。为了提高质量,确保开发成功,降低开发成本,一旦对目标系统提出一组要求之后,必须严格验证这些需求的正确性。一般说来,应该从下述 4 个方面进行验证: (1) 一致性 所有需求必须是一致的,任何一条需求不能和其他需求互相矛盾。 (2) 完整性 需求必须是完整的,规格说明书应该包括用户需要的每一个功能或性能。 (3) 现实性 指定的需求应该是用现有的硬件技术和技术基本上可以实现的。对硬件技术的进步可以做些预测,对技术的进步则很难做出预测,只能从现有技术水平出发判断需求的现实性。 (4) 有效性 必须证明需求是正确有效的,确实能解决用户面对的问题。 验证需求的方法 1. 验证需求的一致性 当需求分析的结果是用自然语言书写的时候,除了靠人工技术审查验证系统规格说明书的正确性之外,目前还 没有其他更好的 “ 测试 ” 方法。但是,这种非形式化的规格说明书是难于验证的,特别在目标系统规模庞大、规格说 明书篇幅很长的时候,人工审查的效果是没有保证的,冗余、遗漏和不一致等问题可能没被发现而继续保留下来,以致开发工作不能在正确的基础上顺利进行。 为了克服上述困难,人们提出了形式化的描述需求的方法。当需求规格说明书是用形式化的需求 陈述语言书写的时候,可以用工具验证需求的一致性,从而能有效地保证需求的一致性。 2. 验证需求的现实性 为了验证需求的现实性,分析员应该参照以往开发类似系统的经验,分析用现有的软、硬件技术实现目标 系统的可能性。必要的时候应该采用仿真或性能模拟技术,辅助分析需求规格说明书的现实性。 3. 验证需求的完整性和有效性 只有目标系统的用户才真正知道需求规格说明书是否完整、准确地描述了他们的需求。因此,检验需 求的完整性,特别是证明系统确实满足用户的实际需要 (即,需求的有效性 ) ,只有在用户的密切合作下才能 完成。然而许多用户并不能清楚地认识到他们的需要 ( 特别在要开发的系统是全新的,以前没有使用类似系统的经验时,情况更是如此 ) ,不能有效地比较陈述需 求的语句和实际需要的功能。只有当他们有某种工作着的系统可以实际使用和评价时,才能完整确切 地提出他们的需要。 理想的做法是先根据需求分析的结果开发出一个系统,请用户试用一段时间以便能认识到他们的实际需要是什么,在此基础上再写出正式的 “ 正确的 ” 规格说明书。但是,这种做法将使成本增加一倍,因此实际上几乎不可 能采用这种方法。使用原型系统是一个比较现实的替代方法,开发原型系统所需要的成本和时间可以大大少于开发 实际系统所需要的。用户通过试用原型系统,也能获得许多宝贵的经验,从而可以提出更符合实际的要求。

行人检测论文阅读

作为计算机视觉三大任务(图像分类、目标检测、图像分割)之一,目标检测任务在于从图像中定位并分类感兴趣的物体。传统视觉方案涉及霍夫变换、滑窗、特征提取、边界检测、模板匹配、哈尔特征、DPM、BoW、传统机器学习(如随机森林、AdaBoost)等技巧或方法。在卷积神经网络的加持下,目标检测任务在近些年里有了长足的发展。其应用十分广泛,比如在自动驾驶领域,目标检测用于无人车检测其他车辆、行人或者交通标志牌等物体。

目标检测的常用框架可以分为两类,一类是 two-stage/two-shot 的方法,其特点是将兴趣区域检测和分类分开进行,比较有代表性的是R-CNN,Fast R-CNN,Faster R-CNN;另一类是 one-stage/one-shot 的方法,用一个网络同时进行兴趣区域检测和分类,以YOLO(v1,v2,v3)和SSD为代表。

Two-stage的方式面世比较早,由于需要将兴趣区域检测和分类分开进行,虽然精度比较高,但实时性比较差,不适合自动驾驶无人车辆感知等应用场景。因而此次我们主要介绍一下SSD和YOLO系列框架。

SSD与2016年由W. Liu et al.在 SSD: Single Shot MultiBox Detector 一文中提出。虽然比同年提出的YOLO(v1)稍晚,但是运行速度更快,同时更加精确。

SSD的框架在一个基础CNN网络(作者使用VGG-16,但是也可以换成其他网络)之上,添加了一些额外的结构,从而使网络具有以下特性:

用多尺度特征图进行检测 作者在VGG-16后面添加了一些特征层,这些层的尺寸逐渐减小,允许我们在不同的尺度下进行预测。越是深层小的特征图,用来预测越大的物体。

用卷积网络进行预测 不同于YOLO的全连接层,对每个用于预测的 通道特征图,SSD的分类器全都使用了 卷积进行预测,其中 是每个单元放置的先验框的数量, 是预测的类别数。

设置先验框 对于每一个特征图上的单元格,我们都放置一系列先验框。随后对每一个特征图上的单元格对应的每一个先验框,我们预测先验框的 维偏移量和每一类的置信度。例如,对于一个 的特征图,若每一个特征图对应 个先验框,同时需要预测的类别有 类,那输出的大小为 。(具体体现在训练过程中) 其中,若用 表示先验框的中心位置和宽高, 表示预测框的中心位置和宽高,则实际预测的 维偏移量 是 分别是:

下图是SSD的一个框架,首先是一个VGG-16卷积前5层,随后级联了一系列卷积层,其中有6层分别通过了 卷积(或者最后一层的平均池化)用于预测,得到了一个 的输出,随后通过极大值抑制(NMS)获得最终的结果。

图中网络用于检测的特征图有 个,大小依次为 , , , , , ;这些特征图每个单元所对应的预置先验框分别有 , , , , , 个,所以网络共预测了 个边界框,(进行极大值抑制前)输出的维度为 。

未完待续

参考: chenxp2311的CSDN博客:论文阅读:SSD: Single Shot MultiBox Detector 小小将的知乎专栏:目标检测|SSD原理与实现 littleYii的CSDN博客:目标检测论文阅读:YOLOv1-YOLOv3(一)

作者的其他相关文章: 图像分割:全卷积神经网络(FCN)详解 PointNet:基于深度学习的3D点云分类和分割模型 详解 基于视觉的机器人室内定位

论文查重是一个大概念。每所学校对专业和学位的要求都会有所不同。例如,研究生和本科毕业论文的查重率指标要求不同。然而,查重率是毕业论文的一个硬指标。只有符合这一指标,我们才能顺利地进行答辩,然后顺利毕业。那么怎么通过硕士论文查重?paperfree小编给大家讲解。 通过对硕士论文的检测,只有论文的查重率低于20%。目前,我国大部分高校对硕士论文的查重率标准要求低于20%。一些学院和大学将要求硕士论文的查重率低于15%,只要他们的论文低于学院的硕士论文标准。 如今,研究生的论文查重率越来越高。许多学校要求不超过15%。更常见的要求是重复检查率在15%到20%之间。在课题研究报告中,与课题相关的基本讨论是不可避免的,因此不可避免地会重复。此外,研究生还将涉及省级实验内容,这使得避免重复内容更加困难,因此需要更多的关注。 当然,具体工作要求应参照中国学校和专业的要求,以满足我们学校的统一管理标准。教育局还需要根据学校的具体要求进行审查,因此降低重复率非常重要。

硕士学位论文查重是如何进行的?papertime论文查重小编给大家讲解。知网即中国知识基础工程网络平台。知网论文查重是一项信息化建设项目,旨在实现全社会知识资源的传播共享和增值利用。现在对于硕博研究生来说,它的主要作用是查询和阅读文献,了解行业前沿的研究成果,检测毕业论文的重复率等等。另外,知网硕士查重目前还没有对个人开放,学生只能通过自己学校的图书馆或者一些专业自助查重机构来检测论文初稿的重复率,这样可以防止论文结果外泄,同时也保证了查重的准确性。知网学位论文上传采用整篇上传的方式(包括题目、摘要、目录、参考文献等),上传论文后可能会出现格式影响检测结果的情况,知网查重系统可以对论文的章节信息进行自动检测,如果目录信息是自动生成,则会按照目录章节分段检测论文;若不具备,则根据系统自动进行分段检测。此外,目录和参考只需确保格式正确即可,知网系统会自动从检测内容中剔除,该部分不会进入重复率测算。硕士论文查重的步骤?数据库包括:学术期刊网络出版数据库、博士学位论文全文数据库/优秀硕士学位论文全文数据库、重要会议论文全文数据库、重要报纸全文数据库、专利全文数据库、个人比较数据库、其他比较数据库。当然,还存在部分书籍未收录入知网检测库,是检测不到的。部分段落引用或抄袭了其他文献的段落或句子,但并未反映到查重结果中。这是由于系统的检测算法造成的,知网设置了检测系统灵敏度为5%的阀值,以段落为单位进行检测,5%以下的抄袭或引用是无法检测到的,这种情况在大段中常见于小句或小概念。比如进行检测段落有1万字,那么对于单个研究文献500字以下的引用,是不会被检测结果出来的。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2