更全的杂志信息网

毕业论文范文对甲基苯乙烯

发布时间:2024-07-08 09:45:00

毕业论文范文对甲基苯乙烯

侵入途径:吸入、食入、经皮吸收。健康危害:吸入、口服或经皮肤吸收对身体有害。对眼睛、皮肤、粘膜和呼吸道有刺激性。具有麻醉作用。接触后引起眼痛、流泪、咽痛、咳嗽等,继之头痛、头晕、恶心、呕吐、全身乏力,严重者可有眩晕、步态蹒跚等。 毒性:属低毒类。危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。本品易聚合,只有经过稳定化处理才允许储运。若遇高热,可发生聚合反应,放了大量热量而引起容器破裂和爆炸事故。燃烧(分解)产物:一氧化碳、二氧化碳。

参考文献是论文写作中可参考或引证的主要文献资料,可以反映论文作者的科学态度和论文具有真实、广泛的科学依据。下面是我带来的关于化学论文参考文献的内容,欢迎阅读参考! 化学论文参考文献(一) [1] 王亮. 薄层等离子体与表面等离子体激元的实验研究[D]. 中国科学技术大学 2009 [2] 汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 中国科学技术大学 2014 [3] 马新欣. 基于COSMIC掩星数据的电离层分布特征及地震响应研究[D]. 中国地震局地球物理研究所 2014 [4] 王若鹏. 地震电离层前兆短期预报研究[D]. 武汉大学 2012 [5] 何昉. 地基大功率无线电波加热电离层对空间信息链路影响研究[D]. 武汉大学 2009 [6] 汪枫. 高频电波人工调制低纬电离层所激发的ELF波的研究[D]. 武汉大学 2011 [7] 邓忠新. 电离层TEC暴及其预报方法研究[D]. 武汉大学 2012 [8] 刘宇. 实验室研究化学物质主动释放形成的电离层空洞边界层的非线性演化[D]. 中国科学技术大学 2015 [9] 宋君. 返回式电离层探测技术应用研究[D]. 武汉大学 2011 [10] 冯宇波. 电离层等离子体分析仪的设计与研制[D]. 中国科学院研究生院(空间科学与应用研究中心) 2011 [11] 李正. 电离层暴及“行星际扰动-磁暴-电离层暴”的观测研究[D]. 中国科学院研究生院(空间科学与应用研究中心) 2011 [12] 赵莹. GNSS电离层掩星反演技术及应用研究[D]. 武汉大学 2011 [13] 牛田野. 特殊等离子体环境物理信息获取与处理的研究[D]. 中国科学技术大学 2008 [14] 黄勇,时家明,袁忠才. Numerical Simulation of Ionospheric Electron Concentration Depletion by Rocket Exhaust[J]. Plasma Science and Technology. 2011(04) 化学论文参考文献(二) [1] 徐凯. 硝基甲烷及其分解产物的从头算分子动力学研究[D]. 四川大学 2014 [2] 李倩,徐送宁,宁日波. 用发射光谱法测量电弧等离子体的激发温度[J]. 沈阳理工大学学报. 2011(01) [3] 李兵,张明安,狄加伟,魏建国,李媛. 电热化学炮内弹道参数敏感性研究[J]. 电气技术. 2010(S1) [4] 赵晓梅,余斌,张玉成,严文荣. ETPE发射药等离子体点火的燃烧特性[J]. 火炸药学报. 2009(05) [5] 张祎. 小口径固体电枢电磁轨道炮发射稳定性与初始装填过程影响规律的研究[D]. 南京理工大学 2012 [6] 弯港. 基于格子Boltzmann方法的流动控制机理数值研究[D]. 南京理工大学 2013 [7] 李海元. 固体发射药燃速的等离子体增强机理及多维多相流数值模拟研究[D]. 南京理工大学 2006 [8] 王争论. 中心电弧等离子体发生器及其在电热化学炮中的应用研究[D]. 南京理工大学 2006 [9] 林鹤. HMX共晶炸药的制备与理论研究[D]. 南京理工大学 2014 [10] 王娟. 2,3-二羟甲基-2,3-二硝基-1,4-丁二醇衍生物的合成及其应用研究[D]. 南京理工大学 2014 [11] 董岩. 多氨基多硝基苯并氧化呋咱及其金属配合物的合成与性能研究[D]. 南京理工大学 2014 [12] 刘进剑. 多氨基多硝基吡啶及吡嗪氮氧化物含能配合物的合成、性能及应用[D]. 南京理工大学 2014 [13] 赵国政. 氮杂环硝胺化合物的理论设计与母体合成[D]. 南京理工大学 2014 [14] 郭长平. 一步法微气孔球扁药成孔机理、燃烧性能及应用研究[D]. 南京理工大学 2013 [15] 金涌. 电热等离子体对固体火药的辐射点火及燃烧特性研究[D]. 南京理工大学 2014 化学论文参考文献(三) [1] 王晓东. 蛋白质复合体及蛋白质相互作用研究新策略[D]. 北京协和医学院 2012 [2] 罗孟成. H5N1亚型禽流感病毒DNA疫苗及分子佐剂研究[D]. 武汉大学 2010 [3] 吴志强. 应用RNA干扰技术抑制手足口病重要病原体的基因表达与复制研究[D]. 武汉大学 2010 [4] 刘丹. 乙型肝炎病毒Pol蛋白对NF-κB信号通路抑制作用的研究[D]. 武汉大学 2014 [5] 江淼. RNA结构在其诱导细胞先天免疫反应中的作用及其相关信号通路研究[D]. 武汉大学 2011 [6] 詹蕾. 呼吸道合胞病毒的纳米免疫分析新方法研究[D]. 西南大学 2014 [7] 易昌华. 麻疹病毒血凝素蛋白H诱导HeLa细胞凋亡及其分子作用机制研究[D]. 武汉大学 2014 [8] 杨景晖. H3N2亚型流感病毒Vero细胞冷适应株减毒特性及假病毒评价中和抗体的研究[D]. 北京协和医学院 2014 [9] 刘娟. 人呼吸道腺病毒55型的基因组学与病原学特征研究[D]. 中国人民解放军军事医学科学院 2014 [10] 喻正源. 全基因组测序与病毒捕获测序技术探讨EB病毒进化及整合规律的初步研究[D]. 中南大学 2013 [11] 陈晓庆. 天然产物抗单纯疱疹病毒感染活性评价及机理研究[D]. 南京大学 2014 [12] 李康. 抗流感病毒和EV71新靶标及新药物研究[D]. 北京工业大学 2014 [13] 王君. 白细胞介素-6受体介导A型流感病毒感染诱导白细胞介素-32及白细胞介素-6表达的研究[D]. 武汉大学 2013 [14] 申彦森. 基于内含子剪切的人工miRNA结构和靶向位点与基因沉默效率的关系研究[D]. 武汉大学 2009 [15] 金旭. 冠状病毒N7甲基转移酶甲基化核苷酸GTP的特性研究[D]. 武汉大学 2013 [16] 陶佳莉. SARS冠状病毒非结构蛋白nsp14的结构功能关系研究[D]. 武汉大学 2013 [17] 高国振. 宿主因子Cyclin T1和Sam68在Ⅰ型人免疫缺陷型病毒生活周期中的功能研究[D]. 武汉大学 2012 [18] 柳叶. 阻断HIV-1辅助受体CXCR4的新方法研究[D]. 武汉大学 2012 [19] 李围. Akt1蛋白质复合体的纯化鉴定及其相互作用蛋白质的功能研究[D]. 中国人民解放军军事医学科学院 2007 [20] 鞠湘武. H5N1型禽流感病毒损伤细胞溶酶体的机制研究和南极极端环境下科考队员的应激反应研究[D]. 北京协和医学院 2012 猜你喜欢: 1. 化学论文参考范文 2. 关于科学论文参考文献 3. 药学论文参考文献 4. 药学毕业论文参考文献 5. 毕业论文参考文献国家标准

α-甲基苯乙烯的主要用于生产涂料、增塑剂,也用作溶剂,有机合成。

α-甲基苯乙烯的性质与稳定性:

α-甲基苯乙烯的基本纤细

中文名称:α-甲基苯乙烯

中文别名:2-苯丙烯

英文名称:Alpha-Methylstyrene

英文别名:2-Phenyl-1-propene;

Isopropenylbenzene;

alpha-Methylstyrene monomer

分子式:C9H10

分子量:

CAS号:98-83-9

EINECS号:202-705-0

楼主大大是什么学习阶段的呢?

对羟基苯甲酸毕业论文

对羟基苯甲酸是用途广泛的有机合成原料,特别是其酯类,包括对羟基苯甲酸甲酯(尼泊金甲)、乙酯(尼泊金乙)、丙酯、丁酯、异丙酯、异丁酯,可做食品添加剂,用于酱油、醋、清凉饮料(汽水除外)、果品调味剂、水果及蔬菜、腌制品等,还广泛用于食品、化妆品、医药的防腐、防霉剂和杀菌剂等方面。对羟基苯甲酸也用作染料、农药的中间体。在农药中用于合成有机磷杀虫剂GYAP、CYP;在染料工业中用于合成热敏染料的显色剂;还可用于彩色胶片及合成油溶性成色剂“538”及尼龙12中用作增塑剂的生产原料。另外,还用于液晶聚合物和塑料。作防腐剂、杀菌剂。药理实验表明,对小鼠的眼镜蛇中毒有明显的保护作用。本品可抑制霉菌的生长,与乙醇、丙醇、丁醇等醇类反应生成的各种酯类,是优良的防腐剂。本品还可用于染色、有机合成工业等领域作防腐剂、杀虫剂。一、 在防腐剂方面的应用1、尼泊金酯类目前,对羟基苯甲酸制备的酯类是其消耗最大的用途,又称尼泊金酯。尼泊金酯类种类较多,从尼泊金甲酯到庚酯,在理论上还可有更长碳链的酯类。上世纪20年代,首次报道了尼泊金酯类的抗菌活性,1923年尼泊金酯类就被建议为食品和药品的防腐剂,1923年尼泊金酯正式被批准应用于食品中。后来又应用于化妆品、医药等领域,是目前应用最广泛的防腐剂之一。我国规定食品添加剂使用卫生标准(GB2760-2007)规定,对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯及其钠盐可以应用于多种食品中,用量在用量在之间(以对羟基苯甲酸计)。我国台湾省《食品添加剂使用范围及用量标准》规定:对羟基苯甲酸乙酯、丙酯、丁酯、异丙酯、异丁酯,用量在之间(以对羟基苯甲酸计)。美国、欧洲各国主要使用尼泊金甲酯、乙酯和丙酯,庚酯在美国也能应用于饮料酒中;日本使用的主要是丁酯。大多数国家在使用对羟基苯甲酸酯类作为食品防腐剂时,一般都是将不同的酯类混合使用 ,取其协同作用,以提高防腐效果。由于对羟基苯甲酸酯类溶于氢氧化钠溶液而形成对羟基苯甲酸酯钠,水溶性增高,但储藏稳定性降低。尼泊金酯类是各国都认可的、传统的、无刺激、不致敏和安全的化妆品防腐剂,其用量在化妆品防腐剂中一直占据前列。在我国2007年版的《化妆品卫生规范》中,可以使用的尼泊金酯类防腐剂的上限为单一酯:(以酸计),混合酯:(以酸计)。规范中,没有列举具体尼泊金酯类。根据其检测方法中描述至少有尼泊金甲酯、乙酯、丙酯、异丙酯、丁酯、异丁酯等。在药品中作为防腐辅料使用的尼泊金酯类主要有尼泊金乙酯(英国、中国、欧洲、法国、德国、日本、瑞士、美国、国际药典),尼泊金丙酯(奥地利、比利时、英国、捷克、法国、德国、意大利、日本、荷兰、葡萄牙、瑞士、美国、欧洲、国际药典),尼泊金丙酯钠(意大利、西班牙、英国、意大利、美国、澳大利亚、法国、德国药典),尼泊金丁酯(英国、法国、德国、日本、瑞士、美国、欧洲药典),尼泊金丁酯钠(英国药典),尼泊金苄酯(英国、国际药典)。尼泊金酯与目前的几种化学防腐剂相比,有;用量较少、成本较低、安全性好、抑菌范围广、在较宽PH值(4-8)内有效等优点,还可以多种酯混合或和相应尼泊金酯钠盐复配,不仅可以提高溶解度,还由于它们之间存在协同作用,所以具有更好的防腐能力。尼泊金酯类的合成和一般的酯相似,由对羟基苯甲酸和相应的醇在酸性催化剂的作用下发生酯化反应。最传统、普遍的方法就是对羟基苯甲酸和相应的醇在硫酸的催化下,利用甲苯作为带水剂,酯化得到相应的尼泊金酯,收率可以达到95%以上。但是利用硫酸做催化剂的缺点也很明显:反应时间长,醇、硫酸用量大;硫酸的强氧化性易使产品颜色变深,还会引起醚化、氧化、磺化等副反应;硫酸的强酸性还严重腐蚀仪器设备;催化剂硫酸不能回收使用,排出的废酸、废水污染环境。近些年来,针对硫酸催化剂的缺点,开发了多种催化剂,使尼泊金酯的收率和品质都大有提高[2]。2、其他防腐杀菌物质除了尼泊金酯类业已成熟,并实际应用的防腐剂,科研工作者还应用对羟基苯甲酸合成了其他类似的可以防腐杀菌的物质。赵希荣和夏文水[3]在适宜的反应条件下成得到了对羟基苯甲酸壳聚糖酯,该酯溶解性略优于对羟基苯甲酸庚酯,而醇溶性显著提高;对大肠杆菌和金黄色葡萄球菌抗菌试验表明,该酯抗菌活性大于对羟基苯甲酸庚酯,更优于壳聚糖。二、 在香精工业中的应用对羟基苯甲酸和硫酸二甲酯反应可制得对甲氧基苯甲酸,又名对茴香酸、大茴香酸,主要用于制作香料,也有一定的防腐杀菌的性能。对甲氧基苯甲酸和乙醇在酸的催化下酯化得到的茴香酸乙酯,呈淡的水果和茴香香气,是天然等同香料和人造香料,用于配制茴芹、小茴香、甘草等型香精。对羟基苯甲酸也可制得对乙氧基苯甲酸,具有和对甲氧基苯甲酸相似的性能。三、在药物合成中的应用对羟基苯甲酸除了合成尼泊金酯作为防腐剂用于医药制剂中外,还可以作为多种医药产品的基础原料。1、非布索坦[4]非布索坦是新一代黄嘌呤氧化酶抑制剂,临床上用于治疗尿酸过高症(痛风),帝人公司于04年年初在首先日本上市。非布索坦的合成:以对羟基苯甲酸甲酯为原料,经过溴化、醚化得到关键中间体3-溴-4-(2-甲基丙氧基)苯甲酸甲酯,再与氰化亚铜反应引入氰基,然后合成噻唑环,最后经水解得到非布索坦,或先合成噻唑环,然后引入氰基,水解后得到非布索坦。2、菲诺贝特[5]菲诺贝特为第二代苯氧芳酸类药物,可显著降低甘油三酯(TG)、适度降低总胆固醇和低密度脂蛋白胆固醇并能升高高密度脂蛋白胆固醇,有良好的调脂作 用,因而在临床上得到了广泛应用,1998年由雅培公司在美国上市。菲诺贝特的合成:对羟基苯甲酸用氯化亚砜酰氯化,再与氯苯进行弗克反应,制得4-羟基-4’-氯二苯甲酮,然后再和2-溴-2-甲基异丙酯在碱存在下反应得菲诺贝特。3、甲磺酸加贝酯[6]甲磺酸加贝酯是一种非肽类蛋白酶的抑制剂,可抑制胰蛋白酶,激肽释放酶,纤维蛋白溶酶,凝血酶等蛋白酶的活性,从而制止这些酶所造成的病理,用于急性轻型(水肿型)胰腺炎的治疗,也可用于急性出血坏死型胰腺炎的辅助治疗。1978年由小野制药公司在日本上市。甲磺酸加贝酯的合成:6-氨基己酸与S-甲基异硫脲硫酸盐反应,盐酸化得6-胍基己酸盐酸盐 ,与由对羟基苯甲酸乙酯经氯化亚砜缩合得到的4,4’-(亚硫酰二氧基)二苯甲酸二乙酯反应,得加贝酯盐酸盐,再和甲磺酸反应得甲磺酸加贝酯。4、硝碘酚腈硝碘酚腈是一种兽药,是一种新型杀肝片吸虫药,能阻断虫体的氧化碳酸化作用,降低ATP浓度,减少细胞分裂所需能量而导致虫体死亡。硝碘酚腈的合成:以对羟基苯甲酸为原料,和尿素、氨基磺酸和对甲酚均匀混合后,升温反应,过滤、洗涤、滤液减压蒸馏,得对羟基苯甲腈[7]。对羟基苯甲腈在冰醋酸中与浓硝酸反应合成出3-硝基-4-羟基苯甲腈,再与碘及过氧化氢在酸性乙醇溶液中反应合成出硝碘酚腈[8]。5、硝呋齐特[9]硝呋齐特是一种广谱抗菌药,防治大肠杆菌、沙门氏菌、巴氏杆菌(包括里氏杆菌)、产气杆菌、变形 杆菌、坏死杆菌及葡萄球菌等引起的肠道或泌尿系统疾病,可用于疗水产动物的细菌、弧菌及真菌引起的肠道及全身性疾病,防治鸡的球虫病,白细胞原虫引起的白冠病以及盲肠肝炎等病症。硝呋齐特的合成:对羟基苯甲酸酯化生成对羟基苯甲酸甲酯,和肼反应生成对羟基苯甲酰肼,然后在5-硝基糠醛反应得硝呋齐特。6、茴拉西坦[10]茴拉西坦为脑功能改善药,本品对于脑溢血、脑梗死、短暂性脑缺血、脑炎以及脑震荡、脑挫伤后的头痛、头晕、肢体麻木、乏力、睡眠困难等脑功能障碍均有改善作用。可用对甲氧基苯甲酸制得对甲氧基苯甲酸酰氯,再和吡咯烷酮缩合而成。7、胺碘酮[11]胺碘酮又名乙胺碘呋酮,是属Ⅲ类抗心律失常药,用于用于利多卡因无效的室性心动过速和急诊控制房颤、房扑的心室率。可由对甲氧基苯甲酸酰氯和2-丁基苯并呋喃缩合,再脱甲基、碘化、和二乙胺基氯乙烷缩合而得。8、对羟基苯甲酸葡萄糖苷酰胺[12]聂耀,杨巧荷等人合成天麻素的类似物对羟基苯甲酸葡萄糖苷酰胺类化合物,希望能在镇静催眠药方面能够获得一些新的信息四、在农药合成中的合成应用1、除草剂、溴苯腈(3,5-二溴代-4-羟基苯甲腈)及其辛酸酯、钠盐、钾盐[13]溴苯腈及其辛酸酯、钠盐、钾盐是具有一定内吸活性的触杀型除草剂,主要用于小麦、大麦、燕麦、黑麦等谷物,亚麻和非耕作区除草,该药无残留活性。溴苯腈的制备:对羟基苯甲酸、尿素、氨基磺酸和对甲酚均匀混合后,反应得对羟基苯甲腈。将对羟基苯甲腈、乙醇、水、浓盐酸混合溶解后,升温,和溴反应得溴苯腈。将辛酰氯和溴苯腈反应制得溴苯腈辛酸酯[14]。溴苯腈和相应的碱制得钠盐、钾盐的水剂。、碘苯腈(3,5-二碘代-4-羟基苯甲腈)[13]碘苯腈为触杀型除草剂,主要用于麦类、玉米、高粱等除阔叶杂草。碘苯腈的制备:先用对羟基苯甲酸制得对羟基苯甲腈,然后对羟基苯甲腈在氯气催化下和碘反应制得。将辛酰氯和碘苯腈反应制得碘苯腈辛酸酯[15],也有类似的作用。2、杀虫剂、杀螟腈[16]杀螟腈是一种广谱杀虫剂,特别对水稻螟虫、稻苞虫、稻飞虱、稻纵卷叶虫、叶蝉、粘虫等防治效果显著。杀螟腈的制备:先用对羟基苯甲酸制得对羟基苯甲腈,再和O,O-二甲基硫代磷酰氯反应得到杀螟腈。、苯腈磷[17]苯腈磷是一种杀虫剂,对稻螟虫、棉铃虫及鳞翅目幼虫等害虫有效。苯腈磷的制备:先用对羟基苯甲酸制得对羟基苯甲腈,再和O-乙基苯基硫代磷酰氯反应得到。五、在染料中的应用1、紫外线吸收剂紫外线吸收剂能强烈吸收紫外光,同时也广泛应用的助剂,于日用化工、医药、农药、塑料、涂料等领域,特别实在当前臭氧层破坏严重,太阳紫外线辐射也愈加严重,紫外线吸收剂的应用也越来越受重视。二苯甲酮类衍生物是常用的紫外线吸收剂如2,3,4,4’-四羟基二苯甲酮,4,4’-二羟基二苯甲酮等。2,3,4,4'-四羟基二苯甲酮的合成[18]:以焦性没食子酸和对羟基苯甲酸为原料合成 2,3,4,4’-四羟基二苯甲酮。4,4’-二羟基二苯甲酮的合成[19]:以对羟基苯甲酸和苯酚为原料,在氯化锌、三氯氧磷催化下,通过傅克反应合成了4,4'-二羟基二苯甲酮。2、热敏染料显色剂[20]1954年美国的NCR(National Cash Register Co Ltd.,现名Apleton Papers Ine)公司首先推出了商品化的压敏、热敏记录,其优异性能,立即引起了广关注,目前已广泛应用于各种领域。而热敏成色剂的的研法生产,也取得了巨大的发展。一般,热敏染料单独存在并不显色,它与显色剂作用下才能形成可逆变色的的热变色混合物,而对羟基苯甲酸苄酯就是常用的热敏染料显色剂。

落地生根学名:Kalanchoe pinnata图片验证:

花蝴蝶,叶爆芽,天灯笼,倒吊莲,土三七,叶生根,番鬼牡丹

【拼音名】LuòDìShēnɡGēn【别名】打不死、脚目草【来源】景天科落地生根属植物落地生根Kalanchoepinnatum(L.)Pers.[Bryophyllumpinnatum(.)Oken],以全草入药。全年可采,多鲜用。【性味】淡、微酸、涩,凉。【功能主治】解毒消肿,活血止痛,拔毒生肌。外用治痈疮肿毒,乳腺炎,丹毒,瘭疽,外伤出血,跌打损伤,骨折,烧烫伤,中耳炎。【用法用量】鲜叶适量,捣烂敷患处,或绞汁滴耳。化学成份:落地生根的叶子含顺式乌头酸(cisaconiticacid),抗坏血酸(ascorbicacid),对香豆酸(p-coumaricacid),阿魏酸(ferulicacid),丁香酸(syringicacid),咖啡酸(coffeicacid),对羟基苯甲酸(p-hydroxybenzonicacid)和其他有机酸,还含槲皮素(quercetin),山柰酚(kaempferol),槲皮素-3-二那阿拉伯糖甙(quercetin-3-diarabinoside),山柰酚-3-葡萄糖甙(kaempferol-3-glucoside),18a-齐墩果烷(18a-oleanane),Ψ-蒲公英甾醇(Ψ-taraxasterol),β-香树脂醇乙酸酯(β-amyrinacetate),24-乙基-25-羟基胆甾醇(24-ethyl-25-hy-droxycholesterol),a、β-香树脂醇(a、β-amyrin),癸烯基菲(de-cenylphenanthrene),十一碳烯基菲(undecenylphenanthrene),落地生根甾醇(bryophyllol),落地生根酮(bryophyllone),落地生根烯酮(bryophyllenone),落地生根醇(bryophynol);全草还含有β-谷甾醇(β-sitosterol),槲皮素-3-鼠李糖-阿拉伯糖甙(quercetin-3-O-a-rhamnopyranosyl-a-L-arabinopyranoside,布沙迪甙元-3-乙酸酯(bersaldegenin-3-acetate),落地生根毒素(bryophyllin)A及B。

甲基丙烯酸甲酯的毕业论文

The text is coming together to the lotion of theories and new craft, new technique, especially at domestic and international the organic Huo change sex C Xi sour ester lotion of research make progress carry on overall the foundation of the overview up, with A Ji C Xi sour AN ester(MMA), C the Xi sour D ester(BA), four A Ji four vinyl wreath four Huo oxygen alkane(ViD4) for raw material, make use of four A Ji four vinyl wreath four Huo oxygen alkane to C Xi the sour ester chemistry change sex of principle adoption half continuous prepare to emulsify a method usage that check hull lotion's come together over the ammonium sulfate(APS) conduct and actions cause system C Xi sour ester-organic Huo synthesize to emulsify the best dosage of and come together reaction in the craft to the lotion accommodation temperature choice really settle, it emulsify the best dosage of for:4%, come together reaction temperature for:75-80 ℃ .Also in the meantime study surface tension, emulsify, reaction temperature to the series function of the lotion influence, and carried on polymer of red outside spectrum experiment detection emulsify a dosage and reaction temperature of dissimilarity to lotion of each item stability, surface tension and glue a degree to have obvious of influence.

绿色化学在石油化工中的研究进展和应用 2003 年5 月国际工程学会在美国Sandestin 主办了“绿色工程: 定义原则”( Green Engineering :Defining the Principle) 的会议,目的是确定一套绿色工程的原则以指导工程师在设计产品和工艺时,使其符合企业、政府和社会的需要,这包括了成本、安全、使用性能和对环境的影响. 最后发表了“工程师工作框架的Sandestin 原则”,提出了在工程项目中为全面实现绿色工程,工程师要遵循的9 条原则. 这9 条原则是: (1) 整体考虑工艺过程和产品,使用系统分析与集成的方法来评估对环境的影响; (2) 保障并改善自然生态系统,同时也要保护人类健康和生活安宁; (3) 在工程活动中考虑整个生态循环; (4) 尽可能保障所有的物质和能量安全并良性地输入和输出; (5) 尽可能减少对自然资源的消耗; (6) 努力减少废物产生; (7) 在对当地地理和人文认知的基础上,开发和实施工程解决方案; (8) 革新、创造和发明技术以实现可持续发展,在传统和主流工艺之上,创造性地提出工程解决方案; (9) 让股东和社会共同积极参与工程解决方案的开发[2 ] .20 世纪的化学工业是建立在煤、石油和天然气等矿物质资源基础上的, 尤其是到了60 年代前后, 石油化学工业获得了飞速发展, 与此同时, 也产生了日益严重的资源、环境等社会问题。1990年以来, 绿色化学的理念迅速崛起, 并成为包括石化工业在内的化学工业可持续发展的方向, 越来越受到各国政府、企业和学术界的普遍重视。在石油化工领域, 一批绿色化工技术不断被开发和应用,甚至逐渐成为一些新兴产业。本文作者介绍可持续发展的石油化工技术的一些新进展。1 以过氧化氢作氧化剂的烃类“原子经济”氧化反应反应的“原子经济”性是衡量在化学反应中究竟有多少原料的原子进入到产品之中, 这一标准既要求尽可能地节约原料资源, 又要求最大限度地减少废物排放。在石化工业中烃类的氧化反应是一类非常重要的反应过程, 由于具有含氧官能团的产物分子比原料烃类要活泼得多, 此类反应的选择性通常较低, 还有一些反应需要经多步骤才能完成, 过程往往产生很多废物。过氧化氢作为一种温和的氧化剂, 在某些材料的催化作用下, 可进行选择性很高的定向氧化反应, 而且其本身无毒并在反应后转化为无害的水, 使反应的“原子经济”性大大提高, 因而被看作是绿色的氧化剂[1 ] 。 钛硅分子筛催化环己酮氨肟化制备环己酮肟实现工业应用环己酮肟的制备作为目前化纤单体ε- 己内酰胺主流生产技术的核心工艺, 需经环己酮与羟胺的盐进行反应而得, 而羟胺盐制备过程的“原子经济”性较差, 腐蚀和污染严重。20 世纪80 年代后期意大利EniChem 公司提出了一种全新的环己酮氨肟化工艺, 即在钛硅分子筛的催化作用下, 环己酮与氨、过氧化氢一步“原子经济”反应直接合成环己酮肟。中国石化石油化工科学研究院也开发成功具有自主知识产权的环己酮氨肟化新工艺, 并与中国石化巴陵分公司合作, 于2003 年8 月率先完成了70 kt/ a 的工业试验, 环己酮转化率和环己酮肟选择性均超过 % , 氨的利用率达97 %以上。而传统的磷酸羟铵肟化法工艺(HPO) 氨的利用率不足60 %; 同时, 新工艺避免了NOx 、SOx(HPO) 等的生成和使用, 使环己酮肟的制备成为清洁生产过程。传统的以苯为原料的己内酰胺生产过程流程长、工艺复杂、投资大、成本高, 国外Du Pont 、BASF 和DSM 等公司已分别研究开发了以丁二烯为原料的己内酰胺生产新技术[2 , 3 ] , 可简化工艺流程和降低生产成本, 但由于新建装置巨大的投资和技术风险等原因, 至今尚未工业化。环己酮氨肟化新工艺适宜对现有装置的技术改造, 将使由苯生产己内酰胺的工艺路线更具竞争性。 丙烯环氧化制备环氧丙烷新技术取得新进展自从钛硅分子筛( TS - 1) 诞生以来, 低温下利用过氧化氢作氧化剂的液相氧化反应工艺一直在不断地研究开发, 另一类取得突出进展的是烯烃与过氧化氢进行环氧化反应制取环氧化物, 其中最重要的过程是丙烯环氧化制备环氧丙烷。以TS - 1 为催化剂, 用过氧化氢环氧化丙烯制备环氧丙烷, 产物环氧丙烷的收率达97 %以上(以丙烯计) ,以过氧化氢计其收率为87 %[4 ] , 副产物主要为水和氧气。该过程原子的有效利用率达76 %。而传统的二步氯醇法生产工艺原子的有效利用率仅为31 % , 需要消耗大量的氯气和石灰, 并且设备腐蚀和环境污染严重。针对TS - 1 分子筛价格较高、与产物分离难度较大, 丙烯环氧化的其他催化剂体系也在不断研究之中, 以过氧化氢为氧化剂的新型氧化催化材料正在研究的有负载锡的β- 沸石[5 ] 、有机氮络合Fe2 系催化剂[6 , 7 ] 和含钨的金属簇相转移催化剂[8 ]等。最近, BASF 和Dow 化学公司合作, 在丙烯的过氧化氢环氧化反应工艺(HPPO) 的开发中取得了重大进展, 已完成各自的详细评估。据称, HPPO工艺由于不联产其他产品, 流程短, 投资低, 占地少, 尤其对较小规模生产装置投资回报率大幅度提高。双方计划近期完成中试放大, 开始建设第一套300 kt/ a 规模生产装置, 预计2007 年初建成投产[9 ] 。此外, Degussa 和Uhde 也拟在南非Sasol 建设60 kt/ a 环氧丙烷装置, 将采用HPPO 工艺。据报道[10 ]其开发了一种专用分子筛催化剂, 副产物生成量可降低到最低限度。丙烯环氧化新工艺虽然使用了价格较高的过氧化氢作氧化剂, 但只要采用适合的催化剂, 可使产物收率大幅提高, 同时由于工艺简化, 该工艺仍具有较好的技术经济性, 加之该技术的环保优势, 有望对环氧丙烷行业产生重要的影响。 其他有机含氧化合物的制备技术以过氧化氢为氧化剂, 烯烃、醇和羰基化合物可高选择性地氧化生产环氧化物、醇和羧酸, 并可避免使用金属催化剂、含氯氧化剂和有机溶剂。文献[11 ]介绍Kazuhiko Sato 等开发了由烯烃氧化生成二醇类化合物的新工艺。采用普通的树脂负载的磺酸催化剂, 用不同的链烯烃和环烯烃与过量的30 %双氧水反应, 可高选择性和高收率地得到反-1 , 2 - 二醇, 带有端基羟基的链烯烃也可一步反应生成三羟基化合物。杜泽学等[12 ]以钛硅分子筛为催化剂, 开发了氯丙烯与过氧化氢环氧化制备环氧氯丙烷的悬浮催化蒸馏新工艺, 反应选择性达98 %以上, 有望取代现有的氯醇法生产工艺。2 取代有毒有害原材料的绿色化工技术光气、氢氰酸等是剧毒物质, 因它们的化学性质极为活泼, 至今仍作为化工原料广泛使用, 但这些化学品在制造和使用中一旦不慎泄漏, 就将造成难以估量的人身伤亡和环境灾难, 因此, 用无毒、无害的原料代替剧毒光气、氢氰酸等绿色化工技术的开发受到重视[13 ] 。取代光气, 生产异氰酸酯、聚碳酸酯新工艺 目前替代光气制造异氰酸酯的工艺有: 由伯胺和二氧化碳或碳酸二甲酯制造异氰酸酯, 由伯胺和一氧化碳进行氧化羰化制异氰酸酯, 由硝基苯和一氧化碳羰基化制异氰酸酯。这些技术有的正在小试, 有的已进入中试阶段, 但是生产成本比原有的光气法高10 %左右, 不经济, 所以还需改进。代替光气生产聚碳酸酯, 已经开发成功以碳酸二甲酯为原料的工艺。首先由碳酸二甲酯与苯酚反应生成碳酸二苯酯, 再和双酚A 进行酯交换、缩聚生成高分子聚碳酸酯, 现正在建厂, 而且生产碳酸二甲酯采用甲醇氧化羰基化法, 取代了传统光气为原料的路线。韩国L G化学公司称独自开发了一种非光气的聚碳酸酯生产新工艺, 由于工艺简化,可减少投资70 % , 装置操作费用和生产成本明显降低。可见, 代替剧毒原料也可找到经济合理的绿色工艺路线。 甲基丙烯酸甲酯生产新工艺继异丁烯氧化法、乙烯氢甲酰化法生产甲基丙烯酸甲酯(MMA) 技术工业化后, 人们仍在积极开发新工艺以取代传统氢氰酸为原料的丙酮氰醇法。异丁烷直接氧化法因资源更丰富、廉价而受到重视。这种方法包括异丁烷氧化制取甲基丙烯醛、甲基丙烯醛再氧化制取MMA 两步反应。由于异丁烷反应活性低于异丁烯, 通常选用具有强氧化性的杂多酸类催化剂。近年来研究发现, P - Mo 系杂多酸中引入V、Cu、Cs 等元素, 可促进甲基丙烯醛的氧化反应, 提高反应收率; 进一步将P - Mo - V- Cu - Cs 五元催化剂和Mo - V 的复合氧化物作为助剂, 添加到“MMA 高选择性催化剂”浆态杂多酸催化剂中, 可使MMA 的收率提高2 倍, 达到10 %以上, 表现出一定的工业应用前景。英国Lucite 国际公司开发成功其专有的α-MMA 技术, 并计划建设第一套100 kt/ a MMA 生产装置, 预计2007 年末建成投产。α- MMA 是两步法工艺。第一步由乙烯与甲醇、一氧化碳进行羰基化反应生成丙酸甲酯。据称, 所用的钯基催化剂活性很高, 选择性达9919 % , 且具有良好的稳定性, 反应温度和压力条件温和, 对装置的腐蚀性小; 第二步中丙酸甲酯与甲醛反应生成MMA 和水, 采用专有的多相催化剂, MMA 的选择性较高[14 ] 。该工艺大大改进了产品的经济性, 是三十年来开发的最重要的MMA 生产工艺。MMA 在中国是一个发展前景良好的有机化工原料, 随着国民经济的持续高速增长, 其需求还将不断增长, 中国应该慎选一条符合国情的绿色路线进行开发, 注意克服其不足之处。3 使用环境友好催化剂的化学反应石油化工生产技术的核心是催化剂, 催化剂的消耗虽不大, 但同样可能对环境产生很大的危害。硫酸、氢氟酸、三氯化铝等液态酸是广泛应用的酸性催化剂, 使用过程易腐蚀设备、危害人身健康和社区安全, 同时还产生废液、废渣污染环境。目前应大力开发环境友好的固体酸催化剂代替液体酸,已有一批工业化成果。在苯与烯烃烷基化过程中采用ZSM - 5 分子筛代替三氯化铝的气相法合成乙苯, 采用USY 或β- 沸石或MCM - 22 沸石代替三氯化铝的液相法合成异丙苯等; 此外, 还有采用固体酸替代氢氟酸的长链烷基苯合成的新工艺。采用上述分子筛固体酸取代三氯化铝、氢氟酸等催化剂, 虽然推出了新一代的烯烃烷基化绿色技术, 但是由于分子筛催化剂的酸强度不如氢氟酸、三氯化铝高, 分布也不够均匀, 而且酸中心数量较少, 于是采用这类固体酸催化剂时反应温度升高, 压力增加, 同时少量的副产物和杂质有所增高, 所以又出现了开发新固体酸催化剂的热点。负载型杂多酸催化剂可望克服上述缺点, 成为新一代的催化剂; 正在研究的还有一些新型催化材料, 如包裹型液体酸、纳米分子筛复合材料、离子液体等。这方面的研究, 中国已有一定基础, 应组织人力, 加速开发, 力争取得领先地位。

Based on the theory and the polymerization of new technology, new technologies, especially at home and abroad silicone modified acrylic emulsion of a comprehensive summary of progress on the basis of a methyl methacrylate (MMA) , Butyl acrylate (BA), 4-4 4 vinyl Central siloxane (ViD4) as raw materials, use of vinyl 4-4 4 siloxane Central acrylate chemical modification of the Semi-continuous use of the principle of pre-core-shell emulsion polymerization method used ammonium sulfate (APS) as the initiator system had acrylic - silicone emulsion. Emulsion on the Synthesis of emulsifier in the best dosage and the polymerization of determining the appropriate choice of temperature, the amount of emulsifier the best: 4%, polymerization temperature :75-80 ℃. Also explore the surface tension, emulsifier, the reaction temperature on the emulsion performance of the series, and the infrared spectra of the polymer. It was found that the amount of emulsifier and the different temperature of the emulsion stability, viscosity and surface tension there is a clear impact.

乙烯基甲醚制备工艺研究现状论文

碘代烷。乙烯基甲醚和稀酸混合会发生断碳氧键裂,这种断裂是酸与醚形成的,随烷基性质的不同,而发生SNl或SN2反应,生成碘代烷。乙烯基甲醚可与马来酸酐共聚,得到水溶性树脂聚乙烯基甲醚,常温下外观为白色粉末,可以用作高分子材料、粘结剂。

中文名称:甲基乙烯基醚 英文名称:Methyl vinyl ether英文别名:methoxyethene; Vinyl Methyl Ether;CAS NO. :107-25-5 EINECS:203-475-4分子式:C3H6O分子量:物理化学性质:沸点 6oC 密度(20/20℃),密度比水小,其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。熔点℃。微溶于水,溶于乙醇和乙醚。容易聚合,因此在成品中 常加入阻聚剂。

乙烯丙烯毕业论文

乙烯可以制橡胶和塑料,加工制酒精等。乙烯的生产量是衡量一个国家的化工水平的高低。乙烯以及丙烯、丁烯、丁二烯、苯、甲苯、二甲苯等是石油化工最基本的原料,是生产各种重要的有机化工产品的基础。乙烯的生产规模、产量和技术标志着一个国家石油化学工业的发展水平。可以说乙烯装置是石油化学工业的龙头,而乙烯裂解炉就是乙烯装置的龙头单元。在制造方面目前国内仅有少数几家大型工程公司有全套乙烯装置的设计能力。我知道有一家叫“惠生工程”的企业在大型乙烯成套装置总承包及乙烯裂解炉总承包方面具有丰富经验。乙烯主要是用炼油过程中产生的轻质组分C4_C5,进行高温热裂解而得.乙烯是重要的化工基础原料,如塑料聚乙烯,聚氯乙烯,还可与很多物质加成,如乙醇,乙醛,乙酸就是醋酸了等等太多了。

UHMWPE辐照交联,添加助剂改性

石油化工的范畴以石油及天然气生产的化学品品种极多、范围极广。石油化工原料主要为来自石油炼制过程产生的各种石油馏分和炼厂气,以及油田气、天然气等。石油馏分(主要是轻质油)通过烃类裂解、裂解气分离可制取乙烯、丙烯、丁二烯等烯烃和苯、甲苯、二甲苯等芳烃,芳烃亦可来自石油轻馏分的催化重整。石油轻馏分和天然气经蒸汽转化、重油经部分氧化可制取合成气,进而生产合成氨、合成甲醇等。从烯烃出发,可生产各种醇、酮、醛、酸类及环氧化合物等。随着科学技术的发展,上述烯烃、芳烃经加工可生产包括合成树脂、合成橡胶、合成纤维等高分子产品及一系列制品,如表面活性剂等精细化学品,因此石油化工的范畴已扩大到高分子化工和精细化工的大部分领域。石油化工生产,一般与石油炼制或天然气加工结合,相互提供原料、副产品或半成品,以提高经济效益(见石油化工联合企业)。编辑本段石油化工的作用1.石油化工是能源的主要供应者石油化工,主要指石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应 石油者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的,应不断降低能源消费量。2.石油化工是材料工业的支柱之一金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。3.石油化工促进了农业的发展农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。4.各工业部门离不开石化产品现代交通工业的发展与燃料供应息息相关,可以毫不夸张地说,没有燃料, 就没有现代交通工业。金属加工、各类机械毫无例外需要各类润滑材料及其它配套材料,消耗了大量石化产品。全世界润滑油脂产量约2千万吨,我国约180万吨。建材工业是石化产品的新领域,如塑料关材、门窗、铺地材料、涂料被称为化学建材。轻工、纺织工业是石化产品的传统用户,新材料、新工艺、新产品的开发与推广,无不有石化产品的身影。当前,高速发展的电子工业以及诸多的高新技术产业,对石化产品, 尤其是以石化产品为原料生产的精细化工产品提出了新要求,这对发展石化工业是个巨大的促进。5.石化工业的建设和发展离不开各行的支持石油化工国内外的石化企业都是集中建设一批生产装置,形成大型石化工业区。在区内,炼油装置为“龙头”,为石化装置提供裂解原料,如轻油、柴油,并生产石化产品;裂解装置生产乙烯、丙烯、苯、二甲苯等石化基本原料;根据需求建设以上述原料为主生产合成材料和有机原料的系列生产装置,其产品、原料有一定比例关系。如要求年产30万吨乙烯,粗略计算,约需裂解原料120万吨, 对应炼油厂加工能力约250万吨,可配套生产合成材料和基本有机原料80 ~ 90万吨。由此可见, 建设石化工业区要投入大量资金,厂区选址适当,不但要保证原料和产品的运输,而且要有充分的电力、水供应及其他配套的基础工程设施。各生产装置需要大量标准、定性的机械、设备、仪表、管道和非定型专用设备。 制造机械设备涉及材料品种多,要求各异,有些重点设备高速超过50米,单件重几百吨;有的要求耐热1000°C,有的要求耐冷 - 150°C。有些关键设备需在国际市场采购。所有这些都需要冶金、电力、机械、仪表、建筑、环保各行业支持。 石化行业是个技术密集型产业。生产方法和生产工艺的确定,关键设备的选型、选用、制造等一系列技术,都要求由专有或独特的技术标准所规定, 如从国外引进,要支付专利或技术诀窍使用费。因此,只有加强基础学科,尤其是有机化学、高分子化学、催化、化学工程、电子计算机、自动化等方面的研究工作,加强相关专业技术人员的培养,使之掌握和采用先进科研成果,再配合相关的工程技术,石化工业才有可能不断发展,登上新台阶。编辑本段石油化工的发展石油化工的发展与石油炼制工业、以煤为基本原料生产化工产品和三大合成材料的发展有关。石油炼制起 石油炼制源于19 世纪20年代。20世纪20年代汽车工业飞速发展,带动了汽油生产。为扩大汽油产量,以生产汽油为目的热裂化工艺开发成功,随后,40年代催化裂化工艺开发成功,加上其他加工工艺的开发,形成了现代石油炼制工艺。为了利用石油炼制副产品的气体,1920年开始以丙烯生产异丙醇,这被认为是第一个石油化工产品。20世纪50年代,在裂化技术基础上开发了以制取乙烯为主要目的的烃类水蒸汽高温裂解 简称裂解)技术,裂解工艺的发展为发展石油化工提供了大量原料。同时,一些原来以煤为基本原料(通过电石、煤焦油)生产的产品陆续改由石油为基本原料,如氯乙烯等。在20世纪30年代,高分子合成材料大量问世。按工业生产时间排序为:1931年为氯丁橡胶和聚氯乙烯,1933年为高压法聚乙烯,1935年为丁腈橡胶和聚苯乙烯,1937年为丁苯橡胶,1939年为尼龙66。第二次世界大战后石油化工技术继续快速发展,1950年开发了腈纶, 1953年开发了涤纶,1957年开发了聚丙烯。编辑本段石油化工高速发展的原因是有大量廉价的原料供应(50 ~ 60年代,原油每吨约15美元);有可靠的、有发展潜力的生产技术;产品应用广泛,开拓了新的应用领域。原料、技术、应用三个因素的综合,实现了由煤化工向石油化工的转换,完成了化学工业发展史上的一次飞跃。 20世纪70年代以后,原油价格上涨(1996年每吨约170美元),石油化工发展速度下降,新工艺开发趋缓, 并向着采用新技术,节能,优化生产操作,综合利用原料,向下游产品延伸等方向发展。一些发展中国家大力建立石化工业,使发达国家所占比重下降。1996年,全世界原油加工能力为38亿吨,生产化工产品用油约占总量的10%。编辑本段石油化工在国民经济中的地位石油化工是近代发达国家的重要基干工业由石油和天然气出发,生产出一系列中间体、塑料、合成纤维、合成橡胶、合成洗涤剂、溶剂、涂料、农药、染料、医药等与国计民生密切相关的重要产品。80年代,在工业发达国家中,化学工业的产值,一般占国民生产总值 6%~7%,占工业总产值7%~10%;而石油化工产品销售额约占全部化工产品的45%,其比例是很大的。 石油化工2石油化工是能源的主要供应者石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的,应不断降低能源消费量。石油化工是材料工业的支柱之一金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。石油化工促进了农业的发展农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。 石油化工可创造较高经济效益。以美国为例,以50亿美元的石油、天然气原料,可生产100亿美元的烯烃、苯等基础石油化学品,进一步加工得240亿美元的有机中间产品(包括聚合物),最后转化为400亿美元的最终产品。当然,原料加工深度越深,产品越精细,一般来说成本也相应增加。编辑本段世界石油化工1970年,美国石油化学工业产品,已有约3000种。资本主义国家所建生产厂已约1000个。国际上常用乙烯和几种重要产品的产量来衡量石油化工发展水平。乙烯的生产,大多采用烃类高温裂解方法。一套典型乙烯装置,年产乙烯一般为300~450kt,并联产丙烯、丁二烯、苯、甲苯、二甲苯等。乙烯及联产品收率因裂解原料而异。目前,这类装置已是石油化工联合企业的核心。 70年代以前,世界石油化工的生产基地主要分布在美国、日本及欧洲等国。1973年后世界原油价格不断上涨,1983年以来又趋下跌,价格大起大落,使石油化工企业者对原料稳定、持久供应产生忧虑。发达国家改革生产结构,调整设备开工率,以适应新的经济形势。发展中国家尤其是产油国近年则在大力发展石油化工。80年代,世界乙烯生产能力的分布已发生变化,亚非拉等发展中国家所占比例有所提高。如将东欧国家的乙烯生产能力计算在内,则这些新兴石油化工生产地区的乙烯生产能力,约占世界乙烯总生产能力的四分之一。 1958年,世界乙烯生产能力达到49Mt(不包括社会主义国家),其中新增乙烯生产能力约,约1/3建在非洲和中东地区,1/3建在拉美和东欧;传统石油化工生产地区,只新增生产能力800kt,且今后五年内,计划也很少新建乙烯装置,主要是进行现有装置的技术改造。编辑本段中国石油化工起始于50年代,70年代以后发展较快,建立了一系列大型石油化工厂及一批大型氮肥厂等,乙烯及三大合成材料有了较大增长。 中国石油化工行业占工业经济总量的20%,因而对国民经济非常重要。石油化工行业包括石油石化和化工两个大部分,这两大部分在2006年都保持了较快地增长。如果把这两个部分作为一个整体来看,2006年石油化工累计实现的利润达到了4345亿,增长达到了,增量达到了658亿元,在整个规模以上工业新增利润中占到17%左右。 石油化工32007年前三季度全行业实现现价工业总产值38211亿元,同比增长。重点跟踪的65种大宗石油和化工产品中,产量较2006年同期增长的有62种,占,其中增幅在10%以上的有47种,占,天然气、电石、纯苯、甲醇、轮胎外胎等产品产量呈较快增长态势。 原油及加工制品平稳增长。2007年前三季度,全国原油生产较为平缓,天然气产量则增长较快。2007年1~9月累计生产原油万吨,同比增长;天然气累计产量为亿立方米,同比增长。原油加工量万吨,同比增长。汽、煤、柴油产量继续保持稳定增长,累计生产汽油万吨,同比增长;生产煤油867万吨,同比增长;生产柴油万吨,同比增长。 农化产品生产供应正常。由于农业生产的季节性特征,农用化学品生产也呈现比较强的季节性。化肥(折纯)2007年1~9月累计产量为万吨,同比增长,其中氮肥万吨,同比增长。2007年前三季度,农药原药累计产量为万吨,同比增长,杀虫剂、除草剂产量增幅分别为和,农药产品结构进一步改善,杀虫剂占农药的比例已下降到。 展望 以石油和天然气原料为基础的石油化学工业,虽然在70年代经历两次价格上涨的冲击,但由于石油化工已建立起整套技术体系,产品应用已深入国防、国民经济和人民生活各领域,市场需要尤其在发展中国家,正在迅速扩大,所以今后石油化工仍将得到继续发展。80年代,世界石油化工所耗石油量仅为世界原油总产量的%,所耗天然气为天然气总产量10%,更由于从石油和天然气生产化工品可取得很大的经济效益,故石油化工的发展有着良好的前景。为了适应近年原料价格波动,石油化工企业正在采取多种措施。例如,生产乙烯的原料多样化,使烃类裂解装置具有适应多种原料的灵活性;石油化工和炼油的整体化结合更为密切,以便于利用各种原料;工艺技术的改进和新催化剂的采用,提高产品收率,降低生产过程的能耗及原料消耗;调整产品结构,发展精细化工,开发具有特殊性能、技术密集型新产品、新材料,以提高经济效益,并对石油化工生产环境污染进行防治等。编辑本段石油化工专业石油化工专业是伴随着中国的石油化工的发展同时产生的化工学习专业课程,目的是培养石油化工人才,石油化工专业技术专业人才,一般各大理工科院校都设有此专业,该专业主要课程涉及:计算机应用、英语、有机化学、物理化学、化工分析、 化工原理、石油加工工程系、化工节能、化工设备、化工安全与环保、精细化工,质量管理。 就业方向:石油、化工、医药、食品等企业生产操作与管理。 ☆工业分析与检验专业: 主要课程:计算机应用、英语、有机化学、无机化学、化工分析、电化学分析、光学分析 、常规仪器分析、化工安全与环保。 就业方向:石油加工、石油化工、精细化工、医药、食品企业和环保部门从事化验分析操作与管理。编辑本段现代以石油化工为基础的三大合成材料塑料、合成橡胶、合成纤维

毕业论文还是自己写吧。。。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2