更全的杂志信息网

燃烧法治理挥发性有机物毕业论文

发布时间:2024-07-09 06:16:21

燃烧法治理挥发性有机物毕业论文

通信类毕业设计参考题目 1. GPS与GSM系统整合应用设计 2. SDH光传输系统组网的设计 3. 小灵通系统建设在××××市的应用 4. ××××光纤接入网规划设计 5. ××地信令网设计方案 6. ××××电信局动力环保集中监控系统的设计方案 7. ××地双向HFC在有线电视网络设计方案 8. ××地无线市话网络系统设计与实现 9. ××市七号信令转接点(LSTP)工程设计 10. ××地现代局域网设计及宽带接入 11. ××××无线寻呼系统网络整合 12. ××××市无线市话IPAS系统设计 13. ××地光缆监控与线路资源管理在长途线路维护中心的综合应用 14. ××地无线市话(PAS)网络系统设计 15. ××地GSM系统 基站设计方案 16. ××××市至××××市SDH数字微波电路设计 17. ××地动力与环境集中监控系统的设计 18. ××××CDMA一期基站工程规划 19. ××××移动本地光纤传输网组网方案 20. ××××市通信分公司无线市话接入网工程设计 21. ××地邮政储蓄中间业务平台系统设计方案 22. ××地企业intranet网络系统建设方案 23. ××××市本地网光缆线路自动监测系统的实现 24. ××××本地电话网集中监控升级设计方案 25. ××××本地网电话的网络优化改造 26. ××××地区有线接入网的规划与建设 27. A1000 S12交换机远端模块局的设计与实施方案 28. 无线市话IPAS系统在××××的应用设计 29. ××××DCN网设计与实现 30. ××××市电信客户服务系统设计方案 31. ××××局OA网的设计与应用 32. 组建××××移动VIP大客户管理分析服务系统 33. ××××市SDH中继传输网设计方案 34. ××地宽带IP城域网的设计与实施 35. 智能小区网络通信系统技术 36. 局域网在现代企业中的应用---××××大楼办公网的组网方案 37. ××××电信二级干线监控系统设计 38. ××地PHS系统网络优化设计 39. 电话遥控电器开关电路设计 40. 电信级VOD视频点播系统解决方案 41. ××××本地网新建第二关口局的设计方案 42. 在WINDOWS平台上远程教学系统的设计与实现 43. 联机计费系统在C&C08交换机上的实现 44. ××××市电信小区宽带网的方案设计 45. 基于单片机的()循环码编译码器硬软件设计 46. 在集中监控操作系统下计费拥塞的解决方法 47. ××地呼叫中心的集中化解决方案 48. ××××移动IP宽带城域网的设计与实施 49. 多媒体业务(163/169)前台受理系统的设计 50. ××××市邮政局电子汇兑系统在综合网上应用设计 51. ××××市 C3本地网的规划与建设 52. ××××前置交换机在联通数据业务中的应用 53. ××××市EASTAR自动停复话系统的设计

燃煤二氧化硫排放污染防治技术政策 1 总则 1.1 我国目前燃煤二氧化硫排放量占二氧化硫排放总量的90% 以上,为推动能源合理利用、 经济结构调整和产业升级,控制燃煤造成的二氧化硫大量排放,遏制酸沉降污染恶化趋势,防 治城市空气污染,根据《中华人民共和国大气污染防治法》以及《国民经济和社会发展第十个五 年计划纲要》的有关要求,并结合相关法规、政策和标准,制定本技术政策。 1.2 本技术政策是为实现2005年全国二氧化硫排放量在2000年基础上削减10% ,“两控 区”二氧化硫排放量减少20%,改善城市环境空气质量的控制目标提供技术支持和导向。 1.3 本技术政策适用于煤炭开采和加工、煤炭燃烧、烟气脱硫设施建设和相关技术装备的开 发应用,并作为企业建设和政府主管部门管理的技术依据。 1.4 本技术政策控制的主要污染源是燃煤电厂锅炉、工业锅炉和窑炉以及对局地环境污染有 显著影响的其他燃煤设施。重点区域是“两控区”,及对“两控区”酸雨的产生有较大影响的周 边省、市和地区。 1.5 本技术政策的总原则是:推行节约并合理使用能源、提高煤炭质量、高效低污染燃烧以及 末端治理相结合的综合防治措施,根据技术的经济可行性,严格二氧化硫排放污染控制要求, 减少二氧化硫排放。 1.6 本技术政策的技术路线是:电厂锅炉、大型工业锅炉和窑炉使用中、高硫份燃煤的,应安 装烟气脱硫设施;中小型工业锅炉和炉窑,应优先使用优质低硫煤、洗选煤等低污染燃料或其 它清洁能源;城市民用炉灶鼓励使用电、燃气等清洁能源或固硫型煤替代原煤散烧。 2 能源合理利用 2.1 鼓励可再生能源和清洁能源的开发利用,逐步改善和优化能源结构。 2.2 通过产业和产品结构调整,逐步淘汰落后工艺和产品,关闭或改造布局不合理、污染严重 的小企业;鼓励工业企业进行节能技术改造,采用先进洁净煤技术,提高能源利用效率。 2.3 逐步提高城市用电、燃气等清洁能源比例,清洁能源应优先供应民用燃烧设施和小型工 业燃烧设施。 2.4 城镇应统筹规划,多种方式解决热源,鼓励发展地热、电热膜供暖等采暖方式;城市市区 应发展集中供热和以热定电的热电联产,替代热网区内的分散小锅炉;热网区外和未进行集中 供热的城市地区,不应新建产热量在2.8 MW 以下的燃煤锅炉。 2.5 城镇民用炊事炉灶、茶浴炉以及产热量在O.7 MW 以下采暖炉应禁止燃用原煤,提倡使 用电、燃气等清洁能源或固硫型煤等低污染燃料,并应同时配套高效炉具。 2.6 逐步提高煤炭转化为电力的比例,鼓励建设坑口电厂并配套高效脱硫设施,变输煤为 输电。 2.7 到2003年,基本关停50 MW 以下(含50 MW)的常规燃煤机组;到2010年,逐步淘汰不 能满足环保要求的100 MW 以下的燃煤发电机组(综合利用电厂除外),提高火力发电的煤炭 使用效率。 3 煤炭生产、加工和供应 3.1 各地不得新建煤层含硫份大于3%的。矿井。对现有硫份大于3%的高硫小煤矿,应予关闭。对现有硫份大于3% 的高硫大煤矿,近期实行限产,到2005年仍未采取有效降硫措施、或 无法定点供应安装有脱硫设施并达到污染物排放标准的用户的,应予关闭。 3.2 除定点供应安装有脱硫设施并达到国家污染物排放标准的用户外,对新建硫份大于1.5 %的煤矿,应配套建设煤炭洗选设施。对现有硫份大于2% 的煤矿,应补建配套煤炭洗选 设施。 3.3 现有选煤厂应充分利用其洗选煤能力,加大动力煤的人洗量。 3.4 鼓励对现有高硫煤选煤厂进行技术改造,提高选煤除硫率。 3.5 鼓励选煤厂根据洗选煤特性采用先进洗选技术和装备,提高选煤除硫率。 3.6 鼓励煤炭气化、液化,鼓励发展先进煤气化技术用于城市民用煤气和工业燃气。 3.7 煤炭供应应符合当地县级以上人民政府对煤炭含硫量的要求。鼓励通过加入固硫剂等 措施降低二氧化硫的排放。 3.8 低硫煤和洗后动力煤,应优先供应给中小型燃煤设施。 4 煤炭燃烧 4.1 国务院划定的大气污染防治重点城市人民政府按照国家环保总局《关于划分高污染燃料 的规定>,划定禁止销售、使用高污染燃料区域(简称“禁燃区”),在该区域内停止燃用高污染燃 料,改用天然气、液化石油气、电或其他清洁能源。 4.2 在城市及其附近地区电、燃气尚未普及的情况下,小型工业锅炉、民用炉灶和采暖小煤炉 应优先采用固硫型煤,禁止原煤散烧。 4.3 民用型煤推广以无烟煤为原料的下点火固硫蜂窝煤技术,在特殊地区可应用以烟煤、褐 煤为原料的上点火固硫蜂窝煤技术。 4.4 在城市和其它煤炭调入地区的工业锅炉鼓励采用集中配煤炉前成型技术或集中配煤集 中成型技术,并通过耐高温固硫剂达到固硫目的。 4.5 鼓励研究解决固硫型煤燃烧中出现的着火延迟、燃烧强度降低和高温固硫效率低的技术 问题。 4.6 城市市区的工业锅炉更新或改造时应优先采用高效层燃锅炉,产热量7 MW 的热效率 应在80%以上,产热量<7 MW 的热效率应在75%以上。 4.7 使用流化床锅炉时,应添加石灰石等固硫剂,固硫率应满足排放标准要求。 4.8 鼓励研究开发基于煤气化技术的燃气一蒸汽联合循环发电等洁净煤技术。 5 烟气脱硫 5.1 电厂锅炉 5.1.1 燃用中、高硫煤的电厂锅炉必须配套安装烟气脱硫设施进行脱硫。 5.1.2 电厂锅炉采用烟气脱硫设施的适用范围是: 1)新、扩、改建燃煤电厂,应在建厂同时配套建设烟气脱硫设施,实现达标排放,并满足 SO2排放总量控制要求,烟气脱硫设施应在主机投运同时投入使用。 2)已建的火电机组,若So2排放未达排放标准或未达到排放总量许可要求、剩余寿命(按 照设计寿命计算)大于1O年(包括l0年)的,应补建烟气脱硫设施,实现达标排放,并满足8o2 排放总量控制要求。 3)已建的火电机组,若S 排放未达排放标准或禾达到排放总量许可要求、剩余寿命(按 照设计寿命计算)低于10年的,可采取低硫煤替代或其它具有同样SO2减排效果的措施,实现 达标排放,并满足So2排放总量控制要求。否则,应提前退役停运。 4)超期服役的火电机组,若SO2排放未达排放标准或未达到排放总量许可要求,应予以淘汰。 5.1.3 电厂锅炉烟气脱硫的技术路线是: 1)燃用含硫量2%煤的机组、或大容量机组(200 MW)的电厂锅炉建设烟气脱硫设施时, 宜优先考虑采用湿式石灰石一石膏法工艺,脱硫率应保证在90%以上,投运率应保证在电厂 正常发电时间的95%以上。 2)燃用含硫量<2%煤的中小电厂锅炉(<200 MW),或是剩余寿命低于10年的老机组 建设烟气脱硫设施时,在保证达标排放,并满足SO2排放总量控制要求的前提下,宜优先采用 半干法、干法或其它费用较低的成熟技术,脱硫率应保证在75%以上,投运率应保证在电厂正 常发电时间的95%以上。 5.1.4 火电机组烟气排放应配备二氧化硫和烟尘等污染物在线连续监测装置,并与环保行政 主管部门的管理信息系统联网。 5.1.5 在引进国外先进烟气脱硫装备的基础上,应同时掌握其设计、制造和运行技术,各地应 积极扶持烟气脱硫的示范工程。 5.1.6 应培育和扶持国内有实力的脱硫工程公司和脱硫服务公司,逐步提高其工程总承包能 力,规范脱硫工程建设和脱硫设备的生产和供应。 5.2 工业锅炉和窑炉 5.2.1 中小型燃煤工业锅炉(产热量<14 MW )提倡使用工业型煤、低硫煤和洗选煤。对配 备湿法除尘的,可优先采用如下的湿式除尘脱硫一体化工艺: 1)燃中低硫煤锅炉,可采用利用锅炉自排碱性废水或企业自排碱性废液的除尘脱硫工艺; 2)燃中高硫煤锅炉,可采用双碱法工艺。 5.2.2 大中型燃煤工业锅炉(产热量14 MW)可根据具体条件采用低硫煤替代、循环流化床 锅炉改造(加固硫剂)或采用烟气脱硫技术。 5.2.3 应逐步淘汰敞开式炉窑,炉窑可采用改变燃料、低硫煤替代、洗选煤或根据具体条件采 用烟气脱硫技术。 5.2.4 大中型燃煤工业锅炉和窑炉应逐步安装二氧化硫和烟尘在线监测装置。 5.3 采用烟气脱硫设施时,技术选用应考虑以下主要原则: 5.3.1 脱硫设备的寿命在15年以上; 5.3.2 脱硫设备有主要工艺参数(pH值、液气比和SO2出口浓度)的自控装置; 5.3.3 脱硫产物应稳定化或经适当处理,没有二次释放二氧化硫的风险; 5.3.4 脱硫产物和外排液无二次污染且能安全处置; 5.3.5 投资和运行费用适中; 5.3.6 脱硫设备可保证连续运行,在北方地区的应保证冬天可正常使用。 5.4 脱硫技术研究开发 5.4.1 鼓励研究开发适合当地资源条件、并能回收硫资源的技术。 5.4.2 鼓励研究开发对烟气进行同时脱硫脱氮的技术。 5.4.3 鼓励研究开发脱硫副产品处理、处置及资源化技术和装备。 6 二次污染防治 6.1选煤厂洗煤水应采用闭路循环,煤泥水经二次浓缩,絮凝沉淀处理,循环使用。 6.2 选煤厂的洗矸和尾矸应综合利用,供锅炉集中燃烧并高效脱硫,回收硫铁矿等有用组份, 废弃时应用土覆盖,并植被保护。 6.3 型煤加工时,不得使用有毒有害的助燃或固硫添加剂。 6.4 建设烟气脱硫装置时,应同时考虑副产品的回收和综合利用,减少废弃物的产生量和排 放量。 6.5 不能回收利用的脱硫副产品禁止直接堆放,应集中进行安全填埋处置,并达到相应的填 埋污染控制标准。 6.6 烟气脱硫中的脱硫液应采用闭路循环,减少外排;脱硫副产品过滤、增稠和脱水过程中产 生的工艺水应循环使用。 6.7 烟气脱硫外排液排人海水或其它水体时,脱硫液应经无害化处理,并须达到相应污染控 制标准要求,应加强对重金属元素的监测和控制,不得对海域或水体生态环境造成有害影响。 6.8 烟气脱硫后的排烟应避免温度过低对周边环境造成不利影响。 6.9 烟气脱硫副产品用作化肥时其成份指标应达到国家、行业相应的肥料等级标准,并不得 对农田生态产生有害影响。

其实都差不多吧。。。设计要画好多图但是比较自由,可以自己掌握时间。实验没那么多图,但要整天窝在实验室,一做可能就要十几个小时。各有各的优势,主要看自己吧

挥发性有机物是一种有机污染物,是造成大气污染的复合物质之一,同时对人体健康也会造成一定的危害。随着我国经济的发展,挥发性有机物排放量不断增加,引发的雾霾以及光化学烟雾等污染事件也日益严重。本文主要阐述了挥发性有机物的概念、分类以及污染来源,并对挥发性有机物的治理技术进行了详细阐述。结果表明,选用组合技术对于挥发性有机物进行治理能够实现达标排放,并且降低污染治理费用的目的,具有较好的治理效果。挥发性有机物是一种有机污染物的总称,对于人体健康有多方面的危害性,具体表现在以下几个方面:大部分的挥发性有机物均具有刺激性气味,这种气体对人体有致癌以及基因突变的作用;如果挥发性有机物浓度过高,人会出现眩晕和恶心等情况,重者会危及生命安全;有些挥发性有机物还会引起火灾。由此可见挥发性有机物对人体和整个生态环境危害巨大,必须进行科学的防治。1 挥发性有机物的来源(1)大气污染的来源。大气中挥发性有机物污染的来源主要包括室内和室外两个方面,室外的挥发性有机物主要来源于在工业当中生产(比如在化工冶炼以及表面涂装和电子产业中)、化学燃料的燃烧以及交通工具产生的尾气等;室内污染来源主要来自于煤和天然气的燃烧产物以及建筑材料的挥发性物质等等。(2)水体污染的来源。水体中的挥发性有机物目前已经达到上千种,其中对于人体有害的大概有两百多种。水体中可挥发性有机物的来源主要是企业排放的工业废水和废气,水中的藻类代谢物经过消毒之后也会产生部分挥发性有机物。2 挥发性有机物对于环境的危害挥发性有机物中的碳氢化合物与氮氧化合物在紫外线的作用下能够合成臭氧,这种臭氧可以导致光化学烟雾危害的发生,光化学烟雾严重危害人类的身体健康和动植物的生长。挥发性有机物参与大气中二次气溶胶的形成,附着在这种胶体的周围,能够较长的保存的大气之处,而且对于光的散射能力较强,在一定程度上影响了大气的能见度。在我国城市上空当中形成的雾霾以及酸雨等气体污染,很大程度上是由于挥发性有机物导致的。挥发性有机物的刺激性气味会使人体感到不适,能够刺激人体的呼吸道和眼睛,使皮肤产生过敏,具有致癌作用,特别是挥发性有机物中的苯和甲醛,对人体会造成很大的危害[3]。3 挥发性有机物的防治措施 挥发性有机物的回收技术对于浓度较高,而且具有回收价值的挥发性有机物,我们可以采用回收的技术进行循环利用,经常使用的回收技术,包括吸附、冷凝、膜分离等。(1)液体吸收技术。这种技术能够使得挥发性有机物从气象转移到液相,然后再对吸附的挥发性有机物进行回收处理。这种回收循环利用的技术可以消除气体中的污染物,得到一些能够循环利用的物质。这种技术的优点是投资费用较少,施工工艺比较简单,价格相对合理,适用的范围是挥发性有机物数量较大、浓度较高以及温度较低的情况,这种方法的缺陷是设备容易受到气体的腐蚀,存在二次污染的可能性。(2)吸附回收的技术。吸附回收技术是利用多孔吸附剂来处理挥发性有机物,使得挥发性有机物的成分浓缩于固体的表面,用以达到分离目的。这种处理技术应用极为广泛,主要适用于浓度较低,通量较高的有机废气的治理。这种技术的优点是去除率比较高,没有二次污染,气体去除比较彻底,而且能够自动控制;缺点是由于吸附剂吸附的量有限,因此不能够处理浓度较高的挥发性有机物,如果挥发性有机物中含有胶质杂质,那么吸附剂就很容易失去效果。(3)冷凝回收技术。冷凝回收技术就是通过降低挥发性有机物的温度,来使得其转化为其他形态,用于回收有机污染物。这种技术的优点是可以适用于沸点较高,浓度较高的挥发性气体回收利用,通常可以作为以上两种回收技术的辅助手段,缺点是由于需要低温导致能量消耗很大,操作费用较高。(4)膜分离技术回收。膜分离技术是利用挥发性有机物与其他物质穿透人工膜的性质各异的原理设计出来的一种方法。最早是用于汽油产品的回收,分离汽油回收气体中的甲烷乙烷等物质。这种方法适用于高浓度挥发性有机物气体的回收,并且没有二次污染,缺点是回收成本较高,膜分离技术价格较为昂贵。 挥发性有机物的销毁技术(1)利用催化器进行燃烧。这种技术是在低温之下在挥发性有机物中参入催化剂,彻底进行氧化分解,能得到纯净气体的方法。催化剂的燃烧技术适用于可燃或者高温的挥发性气体的治理。具有的优点是安全系数比较高,且能量消耗较低,工艺操作比较简单。但是缺点是不允许气体中有影响催化剂效果的杂质存在,必须要对于废气进行提前处理,如果在燃烧过程中,废气含有大量的硫化物,则不适用于催化器燃烧技术。(2)高温焚烧技术。高温焚烧技术主要是用于组成成分较为复杂的挥发性有机气体。目前有三种高温焚烧技术,一种是进行直接焚烧的焚烧炉,第二种对流转换式焚烧炉,第三种是蓄热式焚烧炉。高温焚烧技术主要用于制漆工业以及制药工业的废气处理。(3)生物氧化技术。利用生物氧化技术处理挥发性有机物,主要是利用微生物的新陈代谢过程,对于有机挥发物进行自然的分解和利用,最终变成对于环境无害的二氧化碳和水。这种技术只能够降解某些特定的挥发性有机物,一些生物菌对于周围环境条件要求较高,普遍适应性不高。(4)光催化技术。光催化技术是目前最具有前景的治理污染的新技术,其对于挥发性有机物的降解可达到九成以上。这种技术的原理是在特定的光波长照射下,催化技术将挥发性有机物的表面进行氧化还原,最终生成对环境无害的二氧化碳和水等小分子物质。光化学的催化的稳定性比较高,而且来源广泛,对于很多毒性较强的有机物均具有催化作用,整个处理过程操作也较为简单。 组合技术处理挥发性有机物挥发性有机物成分比较复杂,大多数行业中的挥发性有机物排放都采取混合物形式,因此采用单一的技术往往达不到实际的效果,在这种情况下我们可以采用组合方式处理废气,这样不但能够降低处理费用,能够取得更好的治疗效果。(1)吸附浓缩-催化燃烧技术。这种技术采用的原理是以蜂窝活性炭作为吸附剂,当蜂窝活性炭吸附饱和之后,其浓缩的有机物在送往催化剂进行催化燃烧,分解成没有污染的二氧化碳和水,达到废热利用以及污染治理的目的。这种技术的优点是净化效率较高、投资成本较低,在启动之后,无需再进行加热,产生的热废气又使得活性炭再生,达到了循环利用的目的。(2)吸附浓缩-蓄热燃烧技术。这种技术是利用陶瓷蓄热体将尾气的热量直接蓄积在其中,然后高温区的气体可以直接加热需要处理的废气,这种技术的热转换效率在70%以上。吸附浓缩-蓄热燃烧技术可以扩展催化燃烧和粉高温焚烧技术的应用范围,并且逐步取代了传统的催化燃烧技术。4 结束语目前国家将大气污染防治规划扩展到挥发性有机物,提出全面治理挥发性有机物等联合工作措施。鼓励企业多采用清洁生产技术和废气处理工艺,用以减少挥发性有机物的排放。由于现在挥发性有机物气体多数为混合排放,因此采用单一处理技术,很难达到良好的治理效果,需要采用多种技术进行综合治理,进而实现污染物达标排放的目的,起到了比较好的净化治理效果。查询更多建筑企业中标业绩、诚信信息、资质条件,即可下载建设通app,一键查询;(下载建设通APP链接:)更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

半挥发性有机物研究论文

1.曲靖烟区土壤有效中量元素的空间变异特征及影响因子研究.核农学报,2011/032.烟叶质量评价指标间的典型相关分析.中国烟草学报,2011/支持下的马龙县植烟土壤有效态微量元素评价.中国烟草学报,2011/034.曲靖植烟土壤养分空间变异及土壤肥力适宜性评价.应用生态学报,2011/015.基于主成分回归的曲靖C3F等级烤烟评吸质量估算模型.中国烟草学报,2011/016.不同焦油量烤烟化学成分差异.中国烟草学报,2011/027.烟草残体腐解液及其组分的化感潜力研究.中国烟草学报,2010/068.云南曲靖不同海拔烟区土壤和烟叶硼含量的分布状况及相关性研究.中国烟草学报,2010/069.云南大理烤烟土壤微生物动态变化研究.中国烟草学报,2010/0510.部分生态因素对烤烟挥发性和半挥发性有机酸含量影响的研究.中国烟草学报,2010/0511.云南烤烟钾含量时空变异特性研究.中国烟草学报,2010/0512.气候和土壤及其互作对湖南烤烟还原糖、烟碱和总氮含量的影响.生态学报,2010/1613.土壤和气候及其互作对湖南烤烟部分中性挥发性香气物质含量的影响.应用生态学报,2010/0814.曲靖烟区烤烟铅、铬、汞含量及其与土壤环境因子的相关性.烟草科技,2010/0715. 不同烤烟品种各部位烤烟成熟过程中非挥发有机酸含量变化的研究.中国烟草科学,2010/0416. 低钾胁迫下不同烤烟品种根系生长和根毛形态的差异.中国烟草学报,2010/0317.酶解-离子色谱法测定烟草中的果胶.化学研究,2010/0318. 复烤片烟醇化中几种化合物含量及相关酶活性变化.中国烟草科学,2010/0319.云南曲靖烟区土壤肥力状况综合评价.中国烟草学报,2010/0220. 云南烤烟不同品种和产区还原糖的差异分析.西南农业学报,2010/0421.中国主要烟区烤烟氯含量区域特征研究.中国土壤与肥料,2010/0222. 单料烤烟烟气粒相物与质量评价指标间的相关性研究.中国烟草科学,2010/0123. 不同烤烟品种对土壤微量元素响应的研究.中国烟草科学,2010/0124.土壤与气候及其互作对湖南烤烟还原糖与烟碱含量的影响.中国烟草学报,2010/0125 湖南和云南烤烟单料烟感官质量因子分析.中国烟草学报,2010/0126.云南烤烟多酚含量空间变异分析.作物学报,2010/0127. 凝胶渗透色谱-高效液相色谱-串联质谱法同时测定烟草中3种抑芽剂残留.分析实验室,2010/0128. 发展特色烟叶是重点骨干品牌和优质烟区实现共赢的合作平台.中国烟草学报,2009/0629. 湖南烟区中部烤烟总糖含量状况及与评吸质量的关系.中国烟草学报,2009/0530.湖南烤烟烟碱含量空间分布特征及与香吃味的关系.中国烟草科学,2009/0531. 烟碱致病性和药用研究.中国药物滥用防治杂志, 2009/0532. 湖南烤烟物理性状比较及聚类评价.中国烟草科学,2009/0333.湖南省烤烟生长比较优势的县域分布研究[J].中国烟草学报,2009/0334. 成熟期土壤水分状况对烤烟挥发性香气物质及主要化学成分的影响.中国烟草学报,2009/0335. 两阶段聚类分析在烤烟外观质量评价中的应用,农业机械学报,2009,40(6)36. CO生理学机理及在卷烟烟气中的研究.中国医药实践杂志,2009/04,22-2337.烟草果胶的提取分析研究进展,广州化学, 2009/ 0138. 液质联用法在烟草农药残留检测方面的研究进展,广西轻工业, 2009/ 0239. UV-B 对烟草生长发育及次生代谢的影响.中国生态农业学报, 2009/0140.烤烟不定根对主要营养元素吸收能力的研究.中国烟草学报,2008/0641. 云南不同产区主栽烤烟品种烟叶物理特性的分析.中国烟草学报,2008/0642. 影响我国卷烟消费需求的主要经济指标分析.中国烟草学报,2008/0443. 烤烟品种耐寒性及相关生理指标的研究.中国烟草科学,2008/0344. 多指标正交试验数据的优化分析及应用.中国烟草学报,2008/0245. 烟叶质量评价指标间的相关性研究.中国烟草学报,2008/0246. 不同成熟度烟叶结构显微分析.中国烟草科学,2008/0247.构建中式卷烟优质特色烟叶原料保障体系是中国烟草在新形势下的战略选择.中国烟草学报,2008/0148. 烟草早花机理及控制的研究进展.中国烟草学报,2008/0149.不定根对烤烟根系生长及相关酶活性的补偿效应.中国烟草科学,2008/0150. 不同烤烟品种花芽分化与生育进程对苗期低温的敏感性研究.中国烟草科学,2007/0651.烘丝工艺参数对烘后烟丝质量影响的研究.中国烟草学报,2007/0652. 湖南烟区烤烟糖含量的空间变异特性研究.环境科学杂志,2007/653. 缺素对烤烟叶片腺毛生长发育影响的研究.中国烟草学报,2007/0554.不同部位烟叶海绵与栅栏细胞中主要化学成分研究.中国农业科学,2007/1055.五个烤烟品种叶片栅栏组织和海绵组织化学成分研究.中国烟草学报,2007/0656.湖南烤烟硫含量的区域特征及其对烟叶评吸质量的影响.应用生态学报,2007/0557. 湖南烟区烤烟铅含量的空间变异特性研究.环境科学学报,2007/1058.不同卷烟和烟叶中主要多酚含量的差异.中国烟草学报,2007/0659.湖南烤烟外观质量量化评价体系的构建与实证分析.中国农业科学,2007./0960. 基于稳健性设计的筛分加料工序质量评价和参数优化.中国烟草学报,2006/561. 湖南不同烤烟中非挥发性有机酸含量的差异.中国烟草学报,2006/462.烤烟成熟过程中叶片解剖结构和质体的细胞学研究.作物学报,2006年.期63. 不同产地烤烟叶中绿原酸和芸香苷的含量分析.天然产物分析研究,2006/0464. 钾对病毒侵染后烟草叶片内源保护酶活性的影响.中国农业科学 . 根际酸度对烤烟生长、与养分吸收的影响.土壤 .白肋烟品种在不同氮水平下对主要养分吸收的研究.种子 2000. . 磷钙锌对烟草生长、抗逆性保护酶及渗调物的影响 土壤 .钾素对花叶病毒侵染后烤烟过氧化物酶活性的影响.烟草科技. 2000. . 不同烤烟品种对根际pH适应能力的研究.中国农业科学.1999. . 不同烤烟品种对钾素响应的研究.土壤 1998. Vol30 . 烟草品种苗期对钾素响应能力的研究.中国烟草科学. 1998. No272. K、Ca、Zn对烤烟种子萌发及幼苗生长的影响.中国烟草科学. No173. 综合栽培措施对烟草根系特征参数及叶片质量的影响.土壤肥料..干旱胁迫钾对烤烟生长及抗旱性的生理调节.中国烟草.1998. . 转复制酶基因抗病毒烟草的研究.中国烟草学报. . Effect of Fertilizer N forms on Physiological Metabolism and potassium Uptake of Flue--Cured Tobacco. PEDOSPHERE . 烟草生理与生物化学[M].中国科技大学出版社,199678. 氮肥用量、形态对烤烟生长和钾素吸收的影响.中国烟草学报. 1996. .培土、施肥对烟草根系发育及氮钾吸收效率的影响.中国烟草学报. (1)80.分次供钾对白肋烟钾素吸收分配的影响.中国烟草. . 中国烟草病虫害彩色图志.安徽科技出版社.(6)82. K+与相伴阴离子对烟草有关生理代谢的影响.中国烟草学报.1994. .烟草抗旱生理的研究.中国烟草. . 茶树种子在贮藏中的生理生化—不同状态下茶子萌发过程的分析.福建茶叶,1986,285. 不同修剪技术对茶树光合呼吸特性的影响.贵州茶叶1983(1)86. 茶叶年生长周期的研究.贵州茶叶.. 茶树同化物产生的探讨——采摘对茶树光合、呼吸作用的影响.茶叶通讯. 提高茶树生长的经济系数—今后茶叶科研中的课题.茶叶通讯.. 茶树同化产物的探讨一枝梢生长与同化产物代谢运输的关系.茶叶通讯.. 关于茶树抗寒力的探讨.茶叶.1982. .不同电场强度处理对茶叶种子萌发性的影响.中国茶叶.

半挥发性有机化合物系指可在有机溶剂中分配,同时可进行气相色谱分析的一大类化合物。按照萃取条件的不同还可将这一大类有机物区分为碱-中性可萃取有机物和酸性可萃取有机物,包括有机氯农药、多氯联苯、有机磷农药、多环芳烃类、氯苯类、硝基苯类、硝基甲苯类、邻苯二甲酸酯类、亚硝基胺类、苯胺类和氯代苯胺类、卤代烃类、卤代醚类、联苯胺类、氯代联苯胺类、呋喃类、苯酚类、氯代酚类和硝基酚类等。在工农业生产发展的同时,这类有机污染物在环境样品中广泛存在。

气相色谱-质谱法 (GC-MS)

方法提要

分别在碱性和酸性条件下,以二氯甲烷萃取水和废水中的半挥发性有机化合物,被浓缩后的有机溶液可直接进行 GC-MS 分析,或者经过进一步净化,再以 GC-MS 检测。

方法的检出限见表 (随仪器和操作条件而变) ,适用于饮用水、地表水、地下水、海水和工业废水等的监测。

表 碱-中性、酸性可萃取有机物

续表

续表

仪器和装置

气相色谱-质谱仪,EI 源,带分流 (不分流) 进样口。

自动进样器,样品瓶 。

旋转蒸发器或 KD 浓缩器。

10μL 微量注射器。

2L 分液漏斗。

300mL 具塞三角烧瓶。

300mL 具塞茄型烧瓶 (旋转蒸发器用) 。

试剂

净化水 用正己烷洗涤过的蒸馏水或纯净水。

氯化钠 优级纯,在 350℃下加热 6h,除去表面吸附的有机化合物,冷却后保存于干净的试剂瓶中。

无水硫酸钠 优级纯,在 400℃下加热 6h,除去表面吸附的有机化合物,冷却后保存于干净的试剂瓶中。

氢氧化钠 优级纯,配置成 10mol/L 水溶液。

二氯甲烷 残留农药分析纯。

正己烷 残留农药分析纯。

丙酮 残留农药分析纯。

硫酸 优级纯。

标准储备溶液 (浓度为 1000mg/L) 准确称取 的标准纯品 (纯度在 96% 以上) ,溶解在丙酮或者其他合适的有机溶剂中,之后定容至 10mL 容量瓶中 (或者购置商品标准储备溶液) 。将标准储备溶液转移至带聚四氟乙烯密封垫的螺旋盖样品瓶中,在- 10℃ 以下的温度下避光保存。

内标和替代物溶液 (1000μg/mL) 推荐的内标和回收率指标物 (表) ,称取化合物 ,溶于少量二硫化碳中,转移至 10mL 容量瓶中并用丙酮稀释至刻度,最终溶液中的二硫化碳体积浓度约为 20%。除苝-d12外,大多数化合物可溶解于少量的甲醇、丙酮或甲苯中。-10℃ 以下避光保存。使用时将该溶液用丙酮稀释至 100μg/mL,每1000mL 水样中加入 1mL 此溶液,样品中每种替代物的浓度为 100μg / L。

GC-MS 校准溶液为 50μg / mL 十氟三苯基膦 (DFTPP) 的二氯甲烷溶液。

表 推荐的内标和替代物

样品采集与保存

样品必须采集在玻璃瓶中。自采样后到萃取时,所有样品必须在 4℃冷藏,水样充满样品瓶。如果有余氯存在,每 1000mL 样品中需要加入 80mg 硫代硫酸钠。所有样品必须在7d内完成萃取,萃取液在40d内完成分析。

分析步骤

1)萃取。将1L水样加入到2L分液漏斗中,加入替代物标准溶液,混合均匀。用广泛pH试纸检查试样pH值,加入氢氧化钠溶液调节pH值大于11,样品瓶中加入60mL二氯甲烷,振摇30s冲洗瓶壁,之后转移至分液漏斗中。振动分液漏斗5min并周期性放气释放压力,静置10min,使有机相分层。如果乳化现象严重,需要采用机械手段完成两相分离,包括搅动、离心、用玻璃棉过滤等方法破乳(也可采用冷冻的方法破乳)。将二氯甲烷相收集在300mL三角烧瓶中,水相中再加入60mL二氯甲烷,重复上述液液萃取过程,将二氯甲烷相合并到300mL三角烧瓶中。以同样的方法重复第三次萃取,将合并的萃取物标明为碱-中性组分。用(1+1)H2SO4将水相pH值调至小于2,分别用60mL二氯甲烷萃取酸化的水相三次,合并二氯甲烷相,萃取物标明为酸性组分。

全部二氯甲烷相中加入少量无水硫酸钠,放置25min干燥,将二氯甲烷过滤至300mL茄形瓶中,用旋转蒸发器浓缩至2mL(也可用K-D浓缩器完成浓缩过程),转移至10mL试管中,用N2吹脱至约1mL或更少,分析前加入适当的内标溶液,使其最终浓度为1μg/mL,用二氯甲烷定容至1mL,进行GC-MS分析。

在实际样品分析过程中,根据测定目标物不同,有时需要对上述萃取溶液进行净化处理(如表所示)之后,再进行GC-MS分析。

表 目标分析物及净化方法

2)标准曲线。用标准储备液配制至少5个不同浓度的校准曲线用标准溶液,每一浓度的标准溶液中加入已知量的一种或多种内标,其中有一个标准溶液浓度接近但高于方法检出限(MDL),其余浓度应当对应实际样品中目标物的浓度。

3)GC-MS分析条件。色谱柱:DB-5或同等石英毛细管色谱柱,柱长30m,内径或,液膜厚度1μm。色谱分离条件:柱温40℃(4min)→10℃/min→270℃,保持直至苯并[ghi]苝流出。

载气(氦气)流速为30cm/s,无分流进样,进样时间2min,进样量1~2μL。

定性分析为全扫描方式,质量范围为35~500u,扫描时间1s/次。

定量分析为选择离子检测(SIM),各化合物选择离子质量数(包括定量离子和参考离子)如表所示,内标和回收率指示物的选择离子质量数如表所示。

4)GC-MS系统性能测试。每天分析运行开始时,都必须以DFTPP检查GC-MS系统是否达到性能指标要求。性能测试要求仪器参数为:电子能量70eV,质量范围35~450u,扫描时间为每个峰至少有5次扫描,但每次扫描不超过1s。得到背景校正的DFTPP质谱后,确认所有关键质量数是否都达到表的要求。

表 DFTPP关键离子和离子丰度指标

定性及定量分析

1) 定性分析。本方法中测定的各化合物的定性鉴定是根据保留时间和扣除背景后的样品质谱图与参考质谱图中的特征离子比较完成的。参考质谱图中的特征离子被定义为最大相对强度的三个离子,或者任何相对强度超过 30%的离子。

2) 定量方法。定量方法为内标法,标准曲线为至少 5 点校正,内标浓度为 1μg / mL。在 SIM 检测方式下,以标准系列中各目标化合物峰面积与内标峰面积的比对目标化合物的浓度作图,得到该目标化合物的定量校准曲线。校准曲线的线性回归系数至少为。样品溶液在与标准溶液相同的分析条件下测定,根据样品溶液中目标物与内标物的峰面积比,由定量校准曲线得到该化合物的浓度。水样中该化合物的浓度计算如下:

岩石矿物分析第四分册资源与环境调查分析技术

方法性能指标

将标准样品加入到 1L 纯水中,使得每种目标物的浓度为 100μg/L,与试样分析步骤相同,在试样预处理之后进行 GC-MS 测定。计算 4 次结果的平均回收 (单位为 μg/L)和回收结果的标准偏差 (s,单位为 μg/L) ,表 为方法的精密度和准确度,可作为实验室质量控制的指标,用来判断实际样品分析的可靠性。

表 方法的精密度和准确度

续表

续表

注: D 为检测出,检测结果 >0。

建筑装饰材料挥发性有机物及去除设备研究现状Review of researches on VOCs emission and their elimination1 挥发性有机物及其对人体健康的影响挥发性有机化合物(VOC)是指环境监测中以氢焰离子检测器测出的非甲烷烃类物质的总称,其中包括含氧烃类、含卤烃类,广义场合包括甲烷、丙烷、氯烃、氟烃及醇、醚、酯、酮、醛等含氧烃、胺等含氮烃、二硫化碳等含硫烃。通常按沸点的范围把有机化合物分为极易挥发性有机物(VVOC),挥发性有机物(VOC),半挥发性有机物 (SVOC)和与颗粒物质或颗粒有机物有关的物质(POM)等4类。有些有机化合物不能包括在以上的分类中。这是由于这些化合物(如甲醛和丙烯酸)因其反应性或对热的不稳定性不易从吸附剂上回收或用气相色谱法进行分析。挥发性有机物对人体的影响主要表现在感官效应和超敏感效应,包括感官刺激,感觉干燥,刺激眼黏膜、鼻黏膜、呼吸道和皮肤等,挥发性有机化合物很容易通过血液到大脑,从而导致中枢神经系统受到抑制,人人产生头痛、乏力、昏昏欲睡和不舒服的感觉;醇、芳得烃和醛能刺激黏膜和上呼吸道;很多挥发性有机化合物如苯、甲氯乙烯、三氯乙烷、三氯乙烯和甲醛等被证明是致癌物或可疑致癌物。Molhave依据室内VOC对人体的影响不同,对其浓度进行了划分[1],该划分原则通常作为权威引用或作为指导,并在美国ASHRAE标准62-1989R中得到应用,他的划分原则见表1。表1 VOC浓度与人体反应浓度范围/ug/m3 人体反应<200 舒适200~3000 可能抱怨3000~25000 抱怨>25000 有毒2 现有建筑中挥发性有机物的情况中国华西医科大学公共健康学院1995年冬天对刚装修的两个居民房进行了两个半月的VOC测量,发现这些房中产生不同程度的甲醇、乙醇、戊烷、已烷、苯、庚烷、环已烷、甲苯、二甲苯、乙基苯[2]。其中最主要的有机物是甲醇,苯,甲苯和二甲苯。中国预防医学科学院环境卫生监测所对一个办公室空气污染进行测量,发现办公室内主要有机物是苯、甲苯、二甲苯、乙苯和甲醛,浓度从到 mg/m3。美国环保局(EPA)通过对16个建筑的随机抽样调查发现,有4个建筑中的VOC浓度超过了 mg/m3。欧洲对9个国家的56栋建筑进行了室内VOC浓度的测量[3],发现有22栋建筑中VOC浓度超过 mg/m3。文献[4]指出日本住宅中的有机物浓度为~ mg/m3。文献[5]指出瑞典公寓中VOC浓度为 mg/m3,居民家庭中为 mg/m3。文献[6]指出英国综合建筑中VOC浓度为 mg/m3。从上述调查情况可以看出,目前室内VOC污染状况是比较严重的。3 不同建筑装饰材料挥发性有机物的散发量测量为了从污染源上控制VOC的产生,国内外很多单位都对建筑装饰材料的VOC散发情况进行了测量。文献[7]对中国生产的8种室内材料即酸漆、黑漆、地板清洁剂、地板蜡、空气清新剂、地毯背面粘接剂、墙约、墙纸粘接剂和彩色墙纸进行了测量,发现其散发的VOC有3~30种。文献[8]指出了TVOC的最大传和其衰减度随着材料的不同而不同,流态物质如油漆、清漆和地板油的衰减度最大。EPA做了实验来确认各种室内污染源的散发量,同时确认各种因素对散发量的影响[9],这些因素包括温度、相对湿度、空气变化及小室负荷。结果表明,空气换气次数对散发量尤其是湿材料的散发量有很大的影响。文献[10]对37种典型的加拿大民用住宅所使用的建筑装饰材料发散的VOC进行了测量,得出了这些材料的VOC数据库。目前世界上已有3个体积为55 m3 (5m×4m×)的实验室用于研究建筑装饰材料的VOC产生量,它们分别是IRC/NRC①,NRMRL/USEPA②和CSIRO/Austrlia③,这些实验室均用不锈钢制作,具有加热、通风、空气调节系统,能够控制室内各种参数。为了使各实验室所测得的数据有可比性及可靠性,欧洲已经建立了对室内污染物测量方法、选样方法、数据分析方法、结果整理方法等统一的协定方案[11]。4 建筑装饰材料VOC散发标准的制定和材料的分类目前我国国家质检总局已颁发了《室内装饰装修材料有害物质限量》10项强制性标准,从2002年7月1日开始的散发量作了规定[12]。北欧国家根据普通材料最大的VOC散发量为40,100和数百ug/(m2·h),将材料分为MEC-A(低挥发性材料),MEC-B(中挥发性材料)和MEC-C(高挥发性材料)3类[13]。美国EPA现在做出了污染源分类数据库,这个数据库含有材料的VOC散发量及毒性[14]。5 挥发性有机物散机理的研究挥发性有机物的散发率通常由以下两个过程决定[15]:①材料内部的扩散;②材料表面到周围空气的散发。材料内部的扩散是浓度梯度、温度梯度及密度梯度共同作用的结果。每种化合物都有自己的质扩散系数,与其相对分子质量、分子体积、温度及与被扩散的物质特性有关。表面散发由几种机理共同作用,包括蒸发和对流。对于表面散发而言,VOC的散发率会受到空气中浓度、气流速度及温度的影响[16,17]。根据材料的不同,VOC的产生率可能由上述一个或两个因素起决定作用。根据散发机理的不同,室内建筑装饰材料的散发模型,总体上可分为两类即经验模型和物理模型。6 挥发性有机物去除机理和去除设备的研究目前人们主要集中研究活性炭和光触媒设备对VOC的去除特性。吸附是由于吸附剂和吸附质分子间的作用力引起的,这些作用力分为两大类--物理作用力和化学作用力,它们分别引起物理吸附和化学吸附。物理吸附是可逆过程,只能暂阻挡污染而不能消除污染。而化学吸附是不可逆的过程,是挥发性物质的分子与吸附剂起化学反应而生成非挥发性的物质,这种机理可使得低沸点的物质如甲醛被吸附掉。活性炭是最常用的吸附剂,它对许多VOC都是很有效的,但对甲醛作用很小。已有的研究成果表明活性炭对芳香族化合物的吸附优于对非芳香族化合物的吸附,如对苯的吸附优于对环已烷的吸附;对带有支键的烃类物质的吸附优于直键烃的吸附;对相对分子质量大、沸点高的化合物的吸附总是高于相对分子质量小、沸点低化合物的吸附;空气湿度增大,则可降低吸附的负荷;吸附质浓度越高,则吸附量也越高;吸附量随温度升高而下降;吸附剂内表面积愈大,吸附量越高。浸了高锰酸钾的氧化铝(PIA)对甲醛及低浓度的醛和有机酸有很高的去除效率。所以PIA经常与活性炭联合起来使用以提高过滤器的效率。目前美国市场上有3种化学过滤器,都是用活性炭作为吸附剂的[18],第1种是V字型装有大颗粒的活性炭,第2种是折边型装有小颗粒的活性炭,第3种是折边型的活性炭编织物过滤器,效率为40%~80%,当风速为时阻力为约100Pa。光触媒设备是以N型半导体的能带理论为基础,N型半导体吸收能量大于或等于禁带宽度(禁带能量)的光子(hv)后,进入激发状态,此时价带上的受激发电子路过禁带,进入导带。同时在价带上形成光致空穴。可以用作光催化剂的N型半导体种类繁多,有TiO2,ZnO, Fe2O3,CdS和 WO3等。由于TiO2的化学稳定性高、耐光腐蚀、难溶,并且具有较深的价带能级,可使一些吸热的化学反应在被光辐射的TiO2表面得到实现和加速,加之TiO2无毒、成本低,所以被广泛用作光催化氧化反应的催化剂。TiO2的禁带宽度(Eg)为,当用波长小于387nm的光照射TiO2时,由于光子的能量大于禁带的宽度,其价带上的电子被激发,跃过禁带进入导带,同时在价带上形成相应的空穴。光致空穴h 具有很强的捕获电子的能力,而导带上的光致电子e-又具有高的活性,在半导体表面形成了氧化还原体系。利用光致空穴h 和光致电子e-与空气中的水分和氧气相互反应产生的具有高浓度活性的氢氧游离基·OH,可氧化各种有机物质并使之矿化。如下所示:有机污染物的降解机理与其分子结构有关,分子结构不同其降解机理及途径也有差异。Hashimoto等研究了脂肪族化合物的光催化降解机理,认为脂肪烃先于·OH生成醇,并进而氧化为醛和酸,终生成二氧化碳和水[19]。文献[20]指出TiO2光催化反应中,一些芳得族化合物的光催化降解过程往往伴随着多种中间产物的生成。目前,对于各类芳香族化合物的光催化降解机理研究还很不完备,初步研究认为其主要降解机理还是在·OH基的作用下,芳香环结构发生变化,并进一步开环,从而逐步被氧化,最终矿化为二氧化碳、水及小分子无机物。对室内甲醛和甲苯的研究表明,污染物光催化氧化与其浓度有关,质量数在1×10-4以下的甲醛可完全被光催化分解为二氧化碳和水,而在较高浓度时,则被氧化成为甲酸。高浓度的甲苯光催化降解时,由于生成的难分解的中间产物富集在TiO2周围,阻碍了光催化反应的进行,去除效率非常低,但低浓度时TiO2表面则没有中间产物生成。文献[21]对非均相光催化技术在室内空气品质控制方面的应用进行了研究。指出光催化氧化技术室内空气中低浓度的VOC有着良好的效果。光催化氧化设备可进行模块化设计,而且气体通过时压力降低可忽略不计,这样很容易加装到中央空调空调的系统中去。美国新泽西州的通用空气技术(UAT)公司已开发生产了落地式及管道式光催化空气交净化与消毒设备[22]。尽管许多厂家都在研制VOC去除设备,但对于室内多种有机物污染并存的情况,如何描述这些设备的性能及如何用于实际工程中,则是亟待解决的问题。7 结语7.1 国内外实测结果表明,目前许多建筑中存在VOC污染。国内这方面的研究刚起步,建议有关部门应规范现有建筑装饰材料,根据有关规范要求,尽快建立建筑装饰材料VOC数据库。7.2 为了评估建筑装饰材料对室内带来的挥发性有机物,应考虑实际房间中多污染源的问题,通过建立合理的房间污染模型来切实指导空调系统的设计运行和维护。7.3 针对目前国内外空调房间存在挥发性有机物的污染的问题,应该改变空调系统设计方法即从设计阶段就应该考虑这些污染的去除问题,并开发出用于去除各种污染包括牢固挥发性有机物的高效设备。参考文献1 Molhave L. Volatile organic compounds, indoor air quality, and health. Proceedings of the 5th International Conference on Indoor Air Quality and Climate Indoor Air'90, V5:15-342 Li Y, Hu J, Liu G, et al. Determination of volatile organic compounds in residential buildings. The proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: Bluyssen P M, Oliveria Fernandes E De, Fanger P O, et al. Final report, European audit project to optimize indoor air quality and energy consumption in office buildings, (Contract JOU2-CT92-0022), TNO Building Construction Research, Delft, The Netherlands, Park J S, Fujii S, Yuasa K, et al. Characteristics of volatile organic compounds in residence. Proceedings of the 7th International Conference on Indoor Air Quality and Climate-Indoor Air'96, V3, 1997:579-5845 Englund F, Hardrup L E. Indoor air voc levels during the first year of a new three-story building with wooden frame. The proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: 47-516 Yu C, Crump D, Squire R. The indoor air concentration and the emission of VOCs and formaldehyde from materials installed in BRE low energy test houses. Indoor and Built Environment, 1997(6): Han K, Jing H. Chamber testing of VOCs from indoor materials. The proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997:107-1118 Tahtinen M, Saarela K, Tirkkonen T et al. Time dependence of tvoc emission for selected materials. Proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: EPA Report No. EPA-600/R-94-141. Characterization of emissions from carpet samples using a 10 gallon aquarium as the source chamber. Prepared by Acurex Environmental Corporation for the U S Environmental Protection Agency Office of Research and Development, Figley D, Makohon J, Dumont R, et al. Development of a voc emission database for building materials. The Proceedings of the 7thd International Conference on Indoor Air Quality and Climate- Indoor Air' 96, V3, 1997: Saarela K, Clausen G, Pejtersen J, et al. European database on indoor air pollution sources in buildings, principles of the protocol for testing of building materials. The Proceedings of the 7th International Conference on Indoor Air Quality and Climate- Indoor Air'96, V3, 1997: Schriever R, Marutzky R. VOC emissions of coated parquet floors. Indoor Air'90. Proceedings of the 5th International Conference on Indoor Air Quality and Climate. Toronto, 1990, 3: Saarela K, Sandell E. Comparative emission studies of flooring materials with reference to nordic guidenlines. ASHRAE IAQ 94 Healthy Buildings Conference Proccedings, Washington, DC: Johnston P K, Cinalli C A, Girman J R ,et al. Priority ranking and characterisation of indoor air sources. Characterising Sources of Indoor Air Pollution and Related Sink Effects. ASTM STP 1287, Bruce A Tichenor editor, American Society for Testing and Materials, USA, 1996:392~400。15 Knudsen H N, Kjaer U D, Nielsen P A. Characterization of emissions from building products: long-term sensory evaluation, the impact of concentration and air velocity. The Proceedings of the 7th International Conference on Indoor Air Quality and Climate-Indoor Air'96, V3, 1997: Tichnor B A, Guo Z, Sparks L E. Fundamental mass transfer model for indoor air emissions form surface coatings. Indoor Air, 1993, 3 (4): Clausen P A. Emission of volatile and semi-volatile organic compounds from water borne paints- the effect of film thickness. Indoor Air: International Journal of Indoor Air quality and Climate, 1993, 3 (4): Michael A J. Chemical filtration of indoor air : An application primer. ASHRAE J, 1996 (2).19 Hashimoto Kazuhito, et al. J Phys. Chem, 1984, 88: 藤屿昭,机能材料,1998,18(9):2921 Jacoby W A, et al. Heterogeneous photocatalysis for control of volatile organic compunds in indoor air. J Air & Waste Manage Assoc, 1996, 46:

我建议你去万方数据库或者知网上面下载几篇,然后融合下,哈哈,现在都是这么干的

有机化学燃烧机理研究论文

这里有一篇,希望对楼主有帮助—— 苯及其衍生物的性质、应用和危害与预防发现过程凯库勒的摆动双键苯最早是在18世纪初研究将煤气作为照明用气时合成出来的。1803年-1819年G. T. Accum采用同样方法制出了许多产品,其中一些样品用现代的分析方法检测出有少量的苯。然而,一般认为苯是在1825年由麦可·法拉第发现的。他从鱼油等类似物质的热裂解产品中分离出了较高纯度的苯,称之为“氢的重碳化物”(Bicarburet of hydrogen)。并且测定了苯的一些物理性质和它的化学组成,阐述了苯分子的碳氢比。1833年,Milscherlich确定了苯分子中6个碳和6个氢原子的经验式(C6H6)。弗里德里希·凯库勒于1865年提出了苯环单、双键交替排列、无限共轭的结构,即现在所谓“凯库勒式”。又对这一结构作出解释说环中双键位置不是固定的,可以迅速移动,所以造成6个碳等价。他通过对苯的一氯代物、二氯代物种类的研究,发现苯是环形结构,每个碳连接一个氢。也有人提出了其他的设想:詹姆斯·杜瓦则归纳出不同结构;以其命名的杜瓦苯现已被证实是与苯不同的另外一种物质,可由苯经光照得到。1845年德国化学家霍夫曼从煤焦油的轻馏分中发现了苯,他的学生C. Mansfield随后进行了加工提纯。后来他又发明了结晶法精制苯。他还进行工业应用的研究,开创了苯的加工利用途径。大约从1865年起开始了苯的工业生产。最初是从煤焦油中回收。随着它的用途的扩大,产量不断上升,到1930年已经成为世界十大吨位产品之一。二十世纪六十年代,中国科学家使用合成技术,生产出合成苯. 于1966年在上海建成第一座合成苯车间。上海有关研究人员,经过反复试验、用自己创造的工艺路线,成功地用合成法生产出苯,并建成了中国第一座合成苯车间。后因生产成本高,而放弃此法.制备来源工业上由焦煤气(煤气)和煤焦油的轻油部分提取和分馏而得。也可由环己烷脱氢或甲苯歧化或与二甲苯加氢脱甲基和蒸气脱甲基制取。物理性质苯的沸点为℃,熔点为℃,在常温下是一种无色、有芳香气味的透明液体,易挥发。苯比水密度低,密度为,但其分子质量比水重,。苯难溶于水,1升水中最多溶解苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。苯能与水生成恒沸物,沸点为℃,含苯%。因此,在有水生成的反应中常加苯蒸馏,以将水带出。化学性质最简单的芳香烃。分子式C6H6。为有机化学工业的基本原料之一。无色、易燃、有特殊气味的液体。熔点℃,沸点℃,相对密度(20/4℃)。在水中的溶解度很小,能与乙醇、乙醚、二硫化碳等有机溶剂混溶。能与水生成恒沸混合物,沸点为℃,含苯 %。因此,在有水生成的反应中常加苯蒸馏,以将水带出。苯在燃烧时产生浓烟。苯能够起取代反应、加成反应和氧化反应。苯用硝酸和硫酸的混合物硝化,生成硝基苯,硝基苯还原生成重要的染料中间体苯胺;苯用硫酸磺化,生成苯磺酸,可用来合成苯酚;苯在三氯化铁存在下与氯作用,生成氯苯,它是重要的中间体;苯在无水三氯化铝等催化剂存在下与乙烯、丙烯或长链烯烃作用生成乙苯、异丙苯或烷基苯,乙苯是合成苯乙烯的原料,异丙苯是合成苯酚和丙酮的原料,烷基苯是合成去污剂的原料。苯催化加氢生成环己烷,它是合成耐纶的原料;苯在光照下加三分子氯,可得杀虫剂 666,由于对人畜有毒,已禁止生产使用。苯难于氧化,但在 450℃和氧化钒存在下可氧化成顺丁烯二酸酐,后者是合成不饱和聚酯树脂的原料。苯是橡胶、脂肪和许多树脂的良好溶剂,但由于毒性大,已逐渐被其他溶剂所取代。苯可加在汽油中以提高其抗爆性能。苯在工业上由炼制石油所产生的石脑油馏分经催化重整制得,或从炼焦所得焦炉气中回收。苯蒸气有毒,急性中毒在严重情况下能引起抽筋,甚至失去知觉;慢性中毒能损害造血功能。1865年,.凯库勒提出了苯的环状结构式,目前仍在采用。根据量子化学的描述,苯分子中的6个π电子作为一个整体,分布在环平面的上方和下方,因此,近年来也用图1b式表示苯的结构。苯是一种无色、具有特殊芳香气味的液体,能与醇、醚、丙酮和四氯化碳互溶,微溶于水。苯具有易挥发、易燃的特点,其蒸气有爆炸性。经常接触苯,皮肤可因脱脂而变干燥,脱屑,有的出现过敏性湿疹。长期吸入苯能导致再生障碍性贫血。苯分子具有平面的正六边形结构。各个键角都是 120°,六角环上碳碳之间的键长都是×10 -10 米。它既不同于一般的单键 (C—C键键长是×10 -10 米 ),也不同于一般的双键(C=C键键长是×10 -10 米 )。从苯跟高锰酸钾溶液和溴水都不起反应这一事实和测定的碳碳间键长的实验数据来看,充分说明苯环上碳碳间的键应是一种介于单键和双键之间的独特的键。可发生的化学反应苯参加的化学反应大致有3种:一种是其他基团和苯环上的氢原子之间发生的取代反应;一种是发生在C-C双键上的加成反应;一种是苯环的断裂。用途是染料、塑料、合成橡胶、合成树脂、合成纤维、合成药物和农药等的重要原料,也是涂料、橡胶、胶水等的溶剂,也可以作为燃料。物化危害健康危害: 高浓度苯对中枢神经系统有麻醉作用,引起急性中毒;长期接触苯对造血系统有损害,引起慢性中毒。急性中毒:轻者有头痛、头晕、恶心、呕吐、轻度兴奋、步态蹒跚等酒醉状态;严重者发生昏迷、抽搐、血压下降,以致呼吸和循环衰竭。慢性中毒:主要表现有神经衰弱综合征;造血系统改变:白细胞、血小板减少,重者出现再生障碍性贫血;少数病例在慢性中毒后可发生白血病( 以急性粒细胞性为多见 )。皮肤损害有脱脂、干燥、皲裂、皮炎。可致月经量增多与经期延长。环境危害: 对环境有危害,对水体可造成污染。燃爆危险: 本品易燃,为致癌物。危险特性: 易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热极易燃烧爆炸。与氧化剂能发生强烈反应。易产生和聚集静电,有燃烧爆炸危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。 如果满意的话,希望给打个被采纳,打个5星什么的,我很乐意解答你的问题。

有机化学发展介绍及前景一.发展介绍1806年首次由瑞典的贝采里乌斯(—1848)提出,当时是作为无机化学的对立物而命名的。19世纪初,许多化学家都相信,由于在生物体内存在着所谓的“生命力”,因此,只有在生物体内才能存在有机物,而有机物是不可能在实验室内用无机物来合成的。1824年,德国化学家维勒(�hler,1800—1882)用氰经水解制得了草酸;1828年,他在无意中用加热的方法又使氰酸铵转化成了尿素。氰和氰酸铵都是无机物,而草酸和尿素都是有机物。维勒的实验给予“生命力”学说以第一次冲击。在此以后,乙酸等有机物的相继合成,使得“生命力”学说逐渐被化学家们所否定。 有机化学的历史大致可以分为三个时期。 一是萌芽时期,由19世纪初到提出价键概念之前。 在这一时期,已经分离出了许多的有机物,也制备出了一些衍生物,并对它们作了某些定性的描述。当时的主要问题是如何表示有机物分子中各原子间的关系,以及建立有机化学的体系。法国化学家拉瓦锡(—1794)发现,有机物燃烧后生成二氧化碳和水。他的工作为有机物的定量分析奠定了基础。在1830年,德国化学家李比希( Liebig,1803—1873)发展了碳氢分析法;1883年,法国化学家杜马(—1884)建立了氮分析法。这些有机物定量分析方法的建立,使化学家们能够得出一种有机化合物的实验式。 二是经典有机化学时期,由1858年价键学说的建立到1916年价键的电子理论的引入。 1858年,德国化学家凯库勒(—1896)等提出了碳是四价的概念,并第一次用一条短线“—”表示“键”。凯库勒还提出了在一个分子中碳原子可以相互结合,且碳原子之间不仅可以单键结合,还可以双键或三键结合。此外,凯库勒还提出了苯的结构。 早在1848年法国科学家巴斯德(—1895)发现了酒石酸的旋光异构现象。1874年荷兰化学家范霍夫('t Hoff, 1852—1911)和法国化学家列别尔( Bel,1847—1930)分别独立地提出了碳价四面体学说,即碳原子占据四面体的中心,它的4个价键指向四面体的4个顶点。这一学说揭示了有机物旋光异构现象的原因,也奠定了有机立体化学的基础,推动了有机化学的发展。 在这个时期,有机物结构的测定,以及在反应和分类方面都取得了很大的进展。但价键还只是化学家在实践中得出的一种概念,有关价键的本质问题还没有得到解决。 三是现代有机化学时期。 1916年路易斯(—1946)等人在物理学家发现电子、并阐明了原子结构的基础上,提出了价键的电子理论。他们认为,各原子外层电子的相互作用是使原子结合在一起的原因。相互作用的外层电子如果从一个原子转移到另一个原子中,则形成离子键;两个原子如共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用原子的外层电子都获得稀有气体的电子构型。这样,价键图像中用于表示价键的“—”,实际上就是两个原子共用的一对电子。价键的电子理论的运用,赋予经典的价键图像表示法以明确的物理意义。 1927年以后,海特勒(—)等人用量子力学的方法处理分子结构的问题,建立了价键理论,为化学键提出了一个数学模型。后来,米利肯(—1986)用分子轨道理论处理分子结构,其结果与价键的电子理论所得的结果大体上是一致的,由于计算比较简便,解决了许多此前不能解决的问题。对于复杂的有机物分子,要得到波函数的精确解是很困难的,休克尔(ückel,1896—)创立了一种近似解法,为有机化学家们广泛采用。在20世纪60年代,在大量有机合成反应经验的基础上,伍德沃德(—1979)和霍夫曼(—)认识到化学反应与分子轨道的关系,他们研究了电环化反应、σ键迁移重排和环加成反应等一系列反应,提出了分子轨道对称守恒原理。日本科学家福井谦一(1918—1998)也提出了前线轨道理论。 在这个时期的主要成就还有取代基效应、线性自由能关系、构象分析,等等。二.21世纪有机化学的发展在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机学、有机合成学、天然产物学、金属有机学、化学生物学、有机分析和计算学、农药化学、药物化学、有机材料化学等各个方面得到发展。 物理有机化学 物理有机化学是用物理化学的方法研究有机化学的科学。主要的研究发展方向有: 1.运用现代光谱、波谱和显微技术表征分子结构,探索其与性能(物理、化学、生理、材料……)的关系;新分子和新材料的设计和理论研究。 2. 反应机理(协同、离子、自由基、卡宾、激发态、电子转移……) 和活泼中间体。 3. 主—客体化学;分子间弱相互作用和超分子化学;分子组装和识别;功能大分子和小分子相互作用及信息传递。 4. 新的计算化学方法、分子力学和动力学、分子设计软件包的开发;与实验的互补与指导。有机合成化学研究从较简单的前体小分子到目标分子的过程和结果的科学。有机合成化学是有机化学的主要内容。70年代以来,有机合成步入了一个新的高涨发展时期。 有机合成的基础是各种各样的基元合成反应,发现新的反应或用新的试剂或技术改善提高已有的反应的效率和选择性是发展有机合成的主要途径。 合成反应方法学上的一个重大进展是大量的合成新试剂的出现,特别是元素有机和金属有机试剂。利用光、电、声等物理因素的有机合成反应也要给以适当的重视。 高选择性试剂和反应是有机合成化学中最主要的研究课题之一,其中包括化学和区域选择控制,立体选择性控制和不对称合成等。后者是近年来发展得较快的领域,包括了反应底物中手性诱导的不对称反应,化学计量手性试剂的不对称反应,手性催化剂不对称反应,利用生物的不对称合成反应和新的拆分方法等。反映过渡态反应部位的构象是反应选择性的关键因素 复杂有机分子的全合成一直是最受关注的领域,体现合成化学的水平,与生物科学相结合,重视分子的功能则是合成化学家的新热点。有机合成化学的发展方向有: Z n& V& a+ 1.合成方法学 新概念、试剂、方法、反应的运用,实用的在温和条件下经过较简单的步骤高选择性高产率地转化为目标分子。 2. 具独特性能(生理、材料、理论兴趣)的分子的(全)合成。 3. 资源可持续利用的无害原料、原子经济和环境友好的反应介质、过程和工艺路线、绿色安全的产品。 4. 学科新生长点、交叉点的扩展和手性、仿生等新技术的运用。化学生物学在分子水平上研究生物机体的代谢产物及其变化规律性;利用有机化学的方法研究调控生命体系过程的科学。化学生物学是顺应20世纪后半叶生物学日新月异的发展,在化学学科的原有的几个分支——生物有机学、生物无机化学,生物分析化学、生物结构化学以及天然产物化学的基础上提出的新兴学科。化学生物学研究目前大致包括以下几个部分:1.从天然化合物和化学合成的分子中发现对生物体的生理过程具有调控作用的物质,并以这些生物活性小分子作为探针和工具,研究它们与生物靶分子的相互识别和信息传递的机理。2.发现自然界中生物合成的基本规律,从而为合成更多样性的分子提供新的理论和技术。3.作用于新的生物靶点的新一代的治疗药物的前期基础研究。4.发展提供结构多样性分子的组合化学。5.对于复杂生物体系进行静态和动态分析的新技术等。金属有机化学研究金属有机化合物[各种不同类型的C—M(杂原子)]的结构、合成、反应及其应用的科学。主要的研究发展方向有:1. 金属有机化学基元反应及其机理;各种不同类型的C—H(C、杂原子)的选择性形成、切断。2. 导向合成化学和聚合反应的金属有机化学;金属有机化合物的新型高效催化作用及其应用。药物化学和农药化学药物化学是有机化学的一个重要分支,与生命科学密切相关。它是研究与人类疾病和健康、植物保护等生命现象有关的创新药物研制的科学。药物化学的发展领域:1. 高通量生物活性筛选;药物作用靶点和基于构效关系指导下的分子设计和组合化学学库设计。2. 生化信息学的应用和创新、仿生及先导药物的发现、开发。3. 非传统机制的药物合成、分析和功能测试。有机新材料化学有机材料化学是研究以有机化合物为基础的新型分子材料的开发的科学。现代科学技术突飞猛进的发展,尤其是信息技术的发展,对材料科学提出了更高的要求,迫切需要研究新材料。相对于其他功能材料,以有机化学为基础的分子材料具有以下的特点:1.化学结构种类繁多,给人们提供了很多发现新材料的机遇;2.运用现代合成化学的理论和方法,能够有目的的改变分子的结构,进行功能组合和集成;3.运用组装和质组装的原理,能够在分子层次上组装功能分子,调控材料的性能。有机材料化学的发展方向有以下:1. 有机固体、半导体、超导体、光导体、非线性光学、铁磁体、聚合物材料。2. 具有特殊和潜在光、电、磁功能分子的合成和器件有序组装。3. 功能分子的结构、排列、组合和物化性能、机制的关系,新分子材料的设计和应用。有机分离分析化学研究有机物的分离、定性定量分析和结构解析的科学。研究方向:1. 基于近代光谱、波谱、色谱技术的进步对微(痕)量有机物的高效分析鉴定。2. 复杂的生物活性大分子和混合物中的有效组份及环境样品的分离分析方法的建立。绿色化学面对环境保护的重大压力,绿色化学提出来一些新的观念,起基本点是,通过研究和改进化学化工反应以及相关的工艺,从根本上减少以至消除副产物的生成,从源头上解决环境污染的问题。以此为目的的研究所带来的新的高效化工工艺也会大大提高经济效益。可以看出,绿色化学是对世纪化学化工研究的重要发展方向,是实现可持续发展的重要保障。本领域的发展和研究:1.发展高效、高选择性的“原子经济性”反应其中,催化的不对称合成反应仍是获得单一性分子的方法之一,应加强有关的新反应、新技术、新配体及催化剂的研究,加强开发和改进与绿色有关的生物催化的有机反应的研究。2.开发符合绿色化学要求的新反应以及相关的工艺降低或者避免使用对环境有害的原料,减少副产物的排放,直至实现零排放。3. 环境友好的反应介质的开发和利用其中可包括水、超临界流体、近临界流体、离子液体等,以替代传统反应介质的研究。4.可重复使用材料、可降解材料和生物质的利用以及生活中废弃物的再利用。在我们的生活中,有机化学的身影无处不在。能否好好的利用和发展有机化学也将在一定程度上影响着我们生活水平的高低。相信随着科学理论的发展,更多的基础学科相互交融,将在更多的领域发挥更大的作用。

发动机先进燃烧技术论文

目前,内燃机对于实现低碳排放目标仍起着重要作用。混合动力汽车及电动汽车已取得了一定技术进步,而内燃机热效率的持续提升又有利于电驱装置充分发挥技术功效。采用大流量废气再循环(EGR),提高压缩比并实现稀薄燃烧是内燃机用于提高效率的核心技术。针对燃烧过程的优化及新型燃烧技术的开发对车用发动机的技术发展起着重要作用。概述目前车用发动机的技术发展趋势,描述基于汽车电驱动化进程而开发的发动机技术,着重论述了影响未来发动机燃烧技术的关键问题,同时介绍了发动机的全新燃烧理念与燃烧方式等研究成果及发展前景。

0 前言

为解决汽车工业快速发展过程中的各类问题,研究人员通过采用先进技术有效改善了内燃机排气净化及运作过程。最近,随着日本国内政策的不断引导与支持,日本政府在逐步推广纯电动汽车(EV),并将其投入实际应用。同时,为满足日本国内的低碳需求,研究人员仍须进一步提高发动机热效率。

本文首先阐述了日本社会与经济的发展趋势及汽车普及情况,概述了车用发动机技术的进展,随后对可用于汽车电驱动系统的发动机进行了展望,并对影响未来发动机燃烧过程的关键技术进行了研究。

1 社会需求与发动机技术的新进展

如图1所示,随着二战后社会经济的逐步复苏,日本国内的汽车产业得以飞速发展,由此引发了多种社会问题,特别是由于汽车排放而导致的环境气候的恶化现象,以及对人体健康带来的危害。研究人员通过在日本各地对汽车废气排放进行调查研究,对排放标准提出了进一步要求。为满足社会需求,日本政府制定了全新的排放法规,并逐步收紧排放法规限值。近年来,为抑制地球温室效应,研究人员须进一步降低汽车CO2排放,同时实现发动机的高效率化,并进一步改善汽车燃油经济性。

如图2所示,研究人员通过测量由汽车所排放的碳氢化合物(HC)、氮氧化物(NOx)及排放颗粒物(PM),计算出了上述排放物总量的变化过程及各车型产生排放物所占的比例。在由柴油车产生的排放物中,NOx及PM 约占85%。在由汽油车产生的排放物中,HC约占60%。随着法规的逐步强化,源于汽车的污染物排放量开始逐步降低。就目前而言,除了光化学氧化剂及之外,其他排放物基本已可满足相应的环保标准要求。

为满足上述排放法规要求,研究人员开始以提高发动机性能并改善燃油经济性为目标而进一步开展研发过程。包括发动机零部件技术在内的许多重大突破主要得益于先进的数值计算方法与分析技术。

研究人员在汽油机的如下技术领域中均取得了一系列进展:(1)针对燃油供给系统中的精确空燃比控制、减速时的停缸技术;(2)针对火花塞的技术改良及高能点火技术;(3)针对气门驱动系统中凸轮驱动方式的改良及基于相位与可变升程的控制技术;(4)针对爆燃过程进行优化并降低泵气损失;(5)采用包括废气再循环(EGR)、增压系统在内的进、排气系统改良技术;(6)为降低机械损失而采用了润滑、冷却等技术。

此外,在柴油机技术领域,4气门系统、缸内直接喷射技术、EGR装置、中间冷却系统、可变截面涡轮增压系统及共轨式喷油系统等领域均取得了一系列进展。研究人员通过采用氧化催化剂及柴油机排气颗粒过滤器(DPF),并降低NOx催化剂的排气后处理系统,逐步实现了降低排放与提高整机热效率的技术目标。

2 汽车电驱动化时代的发动机技术

从2017年起,汽车电驱动系统得以飞速发展,其发展过程主要与以下因素存在密切联系:(1)主要国家地区(如西欧、中国、美国加利福尼亚州等地)的政府及相关部门出台支持政策,并提供经济补助;(2)各大汽车生产商(OEM)的经营方针。

在欧洲,以大众柴油机排放门为契机,研究人员重新制定了针对传统内燃机汽车的排放法规,并提出了应对环境问题的解决措施,同时将逐步引进EV与插电式混合动力汽车(PHEV)。在中国地区,政府部门除了采用相关环保政策之外,同时也在大力推进新能源汽车(EV、燃料电池汽车(FCV)、PHEV)的制造与销售进程。如图3所示,在最近十几年中,中国的乘用车保有量得以飞速增长,OEM 也在通过各种方式对中国汽车市场的发展趋势进行深入了解,并探索相应的战略方针。

与上述发展趋势相呼应,,汽车工业的产业结构也发生了一系列变化,不同行业的从业人员也逐步加入到汽车领域中来。随着世界范围内新能源汽车的逐渐普及,各大车企有针对性地扩大经营规模,以实现标准化发展。同时,各大车企也加强了与电气设备OEM的合作,并确保电池供应体系的构建与完善,从而逐步搭建起基于该领域的技术平台。

为了适应当前汽车电驱动时代的需求,发动机技术也逐渐呈现出多样化趋势,各种混合动力系统也得到了充分发展。混合动力汽车(HEV)仍需要随车携带传统化石燃料,因此不断提高发动机燃油经济性依然是重中之重。随着对阿特金森循环等技术的有效应用,HEV预计可将整车燃油耗降低约20%~50%。

目前,研究人员已将燃烧控制技术、降低冷却损失及抑制爆燃的相关技术列为亟待解决的重要课题。就PHEV而言,其技术优势与HEV相似。

PHEV 可有效延伸整车续航里程,并充分降低了燃油耗。但在电池容量增大的同时,由于整车质量增加,会相应引发燃油经济性恶化及成本上升等问题。对此,研究人员建议可将纯电驱动作为基本行驶模式,而用最大功率约为20 kW 的小型发动机作为增程器。同时,研究人员也在力求改善发动机摩擦现象,同时使动力装置实现轻量化,并视情况采用阿特金森循环。

3 发动机燃烧技术的发展

 新型燃烧方式

为实现车用发动机的高效率化,研究人员须利用先进的零部件技术。在充分考虑了冷却损失的前提下,研究人员对热释放系数进行了研究。在燃烧持续期内,由于在热释放开始阶段下指示热效率逐渐提高,因此研究人员有必要对燃烧持续期进行着火定时控制。如果最高压力被限制在较低的水平,在燃烧持续期较短的情况下,研究人员须相应推迟热释放开始时刻。在燃用稀薄混合气的条件下,为缩短发动机燃烧持续期,部分研究人员提出了有效利用预混合燃烧的方案。

目前,研究人员对均质充量压缩着火(HCCI)技术的关注度与日俱增。HCCI技术在汽油机低负荷工况下可充分发挥作用,但在变工况条件下,适当地控制混合气的自着火过程有着较高难度。而通过火花点火方式能可靠地使部分混合气进行燃烧。目前使稀薄混合气实现压缩着火并对快速燃烧进行控制的方法已进行了实用化。除了利用可变气门驱动系统以实现压缩比的可变过程,并利用机械增压以实现进气量控制之外,研究人员还通过采用高压汽油的直接喷射方式形成合适的混合气,同时利用大流量EGR降低燃烧温度,由此减少NOx排放量。与此同时,研究人员利用各气缸中设置的燃烧压力传感器,并根据采集的负荷、转速、机外温度、气压等参数,可实现对燃烧过程的精确控制。

研究人员对预混合压缩着火(PCCI)技术也开展过许多研究。在该燃烧方式中,虽力求同时降低NOx与炭烟排放,但如果增加喷射量,会使混合气浓度提高,并使燃烧过程过于粗暴,所以该燃烧技术通常仅在部分负荷工况下得以应用。目前也有相关研究表明,除了采用大流量EGR之外,可通过米勒循环降低有效压缩比,即使在高负荷工况下也能实现平稳的燃烧过程,并大幅降低NOx与PM。同时,研究人员通过调节膨胀比,能使热效率保持不变。未来,研究人员可通过对喷射、燃烧控制等相关技术的有效应用,扩大发动机高效运转区域。

近年来,研究人员对反应可控压缩着火(RCCI)技术进行了研究。在该燃烧过程中,以预混合气的快速燃烧作为增加等容度的主要方式,并能实现较高的指示热效率。在多种负荷条件下进行的稳定着火控制,抑制剧烈的热释放过程并确保燃烧效率是目前亟待解决的重要课题。为了进一步提高热效率,研究人员认为上文所述的PCCI燃烧技术有着较好的应用前景,同时为扩大发动机的高效运转区,须相应采用进排气控制、燃料喷射控制等先进技术。

 燃料-空气混合与燃烧

燃料-空气混合气的形成对发动机燃烧过程有着重要影响。图4表示采用计算流体动力学(CFD)得出的多种燃烧方式条件下的热释放率与50%燃烧过程中当量比φ-温度T的分布示意图。燃烧反应过程主要受以下因素影响,主要包括燃料供给方式、定时的燃料-空气混合气的形成过程及燃烧气体的φ-T 分布。

在普通的柴油燃烧过程中,即便在混合气着火后,缸内仍在继续进行燃油喷射。在经分层后的混合气稀薄化处理过程中,喷雾及燃烧过程还在继续进行。虽然着火及燃烧过程的可操纵性较好,但同时降低NOx与炭烟仍是亟待解决的课题。就PCCI燃烧方式而言,通常在压缩行程中会采用多种喷射策略,使混合气实现分层,并且NOx的排放量较高,而炭烟排放量则相对较低。在该工况条件下,研究人员通过延迟喷射即可延长燃烧持续期,进而降低压力升高率。在HCCI燃烧过程中,通常会在进气行程中供应燃油,使稀薄混合气实现压缩点火。虽然NOx与炭烟的排放较少,但受化学反应速度的影响,对着火及燃烧过程进行控制有着较高难度。在压力上升率较高与负荷较低的条件下,燃烧效率会相应降低。在RCCI燃烧过程中,由于研究人员对2种燃料比及燃料喷射定时进行了调节,因此可有效抑制NOx与炭烟排放,并可实现稳定的着火及燃烧控制过程。目前,在低负荷工况下改善燃烧效率并在高负荷工况下降低燃烧噪声等课题仍亟待解决。

随着近年来计算机科学的快速发展,针对发动机燃烧过程的CFD技术得到了长足发展,预测精度也大幅提高,并成为了当前研究开发过程中不可缺少的工具。目前,研究人员仍需要进一步提高预测精度,并对燃料-空气的微观混合形态进行观测。

如图5所示,在由研究人员所提出的随机过程理论模型中,最初分离着的燃料(燃料质量百分数Y=1)与空气(Y=0)实现湍流混合,并按照随机过程理论而逐步形成均匀混合过程。该混合过程应用了相关研究人员所提出的二体碰撞及再分散模型,该模型利用由湍流特性所决定的频度ω,在1个较大流体块经历了碰撞及融合过程后,将其分解为2个相等的较小流体块。

研究人员通过对ω的时间积分定义无量纲时刻η(该数值与1个流体块的平均碰撞次数一致),并可用于表示混合度。换言之,到η=2时,是按分散浓度进行分布的状态,但在逐渐达到η=6的状态后,浓度会接近于正态分布。η=12时,浓度会更接近于平均浓度Yo,表明了其可形成均匀的混合气。在图5中,不同颜色图案表示燃料在空间均匀破碎时的浓度分布状况。因此,作为湍流混合过程的评价指标起着重要作用。此外,ω 与湍流强度u'与积分比例L 存在数值关系,可通过ω='/L 的公式来进行计算。

研究人员利用该模型对柴油无因次燃烧过程进行了预测研究。计算中,得出了随时间变化的热释放量及压力过程。研究人员可相应计算出燃油喷射量、喷油定时、涡流比、EGR条件下的缸内压力及热释放率,从而合理地预测NO生成量的变化。

通过该模型,研究人员可得出燃料-空气的不均匀度与浓度、燃烧后的温度与NO生成速度的概率分布。研究人员通过应用基于随机分析系统(RANS)的CFD仿真,能有效记录各个计算单元内的微观混合情况。研究人员通过引入反应动力学计算方法,也能将其应用于柴油机的PCCI燃烧过程中。此外,除了能通过无因次计算以预测喷雾着火过程之外,研究人员可根据实测的压力、放热率而得出基于混合时间的变化函数,由此可对多次喷射时的排气进行预测。通常,研究人员认为在强湍流场中对于点火不确定性与循环变动的预测结果,以及对由壁面碰撞而产生的流动过程的观测过程也起着重要作用。

 燃烧室壁面附近现象的说明

通过采用最新的燃烧系统设计方案,研究人员能对各种各样的发动机技术规格及运转条件实施最佳的燃烧控制,但如要进一步改善燃烧过程并提高热效率,仍有许多后续工作需要开展。

研究人员就燃烧室壁面非稳定热传导问题,运用了如图6所示的等容燃烧装置及高响应性热流束传感器(Vatell,HFM-7),通过气体射流火焰及均匀混合气的传播火焰对壁面热流束变化进行了计测。图7是在采用预燃方式的条件下(温度为950 K,压力为2 MPa,氧气浓度为21%),从喷孔直径为 mm 的喷嘴中以喷射压力为8 MPa,喷射持续期为9 ms的参数喷射了氢燃料并使其自行着火燃烧后的结果。图7示出了缸内燃烧压力p,放热率dq/dt,平均温度Tave及在燃烧室壁面的2点P1、P2处测算出的热流束qhf的时间与喷射后的时刻t 的关系。图7(a)中的号码对应于图7(b)中逆光摄影图像的时刻,喷雾在与容器壁面相碰撞后(图像①),在喷射后的 ms内在P2附近着火,dq/dt数值随之急剧增大(图像③)。火焰在到达P2(图像②),并进行快速传播(图像④),随即进行扩散燃烧,在图像⑤时到达P1工况点。在喷射过程结束后(图像⑦),dq/dt数值随之减小,同时火焰亮度有所降低(图像⑧、图像⑨)。qhf对应于以上燃烧区域的变化过程,P2在图像④,P1在图像⑥的时刻急剧增加。P2在扩散燃烧持续期(图像④~图像⑦),持续保持相对恒定的值,随着火焰亮度的降低(图像⑧、图像⑨),qhf也得以缓慢减小。P1在图像⑦出现极大值之后,qhf数值同样有所减少。此外,P2相比于P1之所以qhf数值较高,是由于在P2附近,着火燃烧的气体由于存在绝热压缩现象而具有较高的温度。根据上述情况进行分析,对燃烧室壁面附近的着火过程得出了2项结论:(1)在该燃烧过程中存在较大的热损失;(2)在可燃混合气自行着火燃烧的过程中,使qhf的数值相对较高。

而且,为了对燃烧过程中热传导的状况进行直接观测,研究人员采用了具有5根微细热电偶的传感器,并测算了壁面附近的温度分布。该5根微细热电偶分别为A、B、C、D、E,其中A、B、C线材直径为25 μm,D、E线材直径为75 μm,伸长距离为δ。图8(a)表示了从点火后到燃烧结束时的燃烧室内压力p,放热率dq/dt,各热电偶的温度T,局部热流束qhf的持续时间与点火后的时刻t 的关系。图8(b)除了表示qhf与T的关系之外,根据由压力变化而计算出的未燃气体温度Tu及在温度传感器附近进行放大拍摄的逆光摄影图像(图8(c))截取2个时刻的图像作为实例(分别为 ms与 ms),并在火焰锋面接近壁面约5 mm并持续14 ms后,示出了火焰锋面与壁面的距离x。图8中相应示出了各热电偶的δ 值,在缸内温度急剧升高的时期,同时在相同的线材直径条件及δ 值较大的情况下,温度增长速度较快。在δ 相同的条件下,线材直径越细小,时间常数会相应提前。T及qhf会随着未燃气体的压缩加热而缓慢地增加,由于火焰锋面的接近,dq/dt 数值得以明显增大。相比于qhf在火焰锋面到达壁面后成为极大值,T 极大值的出现存在滞后现象。尽管研究人员充分考虑到了热电偶信号的时间常数,并对此进行补偿,T的极大值也比火焰温度更低。由于T 的极大值会随着δ 的减少而降低,研究人员认为T的数值大小能在某种程度上影响到边界层内的温度分布。根据在各种条件下进行同样测算的结果,可得出如下趋势。在燃烧温度较高的条件下,由于压缩加热导致温度与热流束的形成速度快速增加,同时由于温度梯度较大,qhf也会相应变大。

近年来,研究人员正在开展针对壁面附近现象的测算研究与模型试验。以发动机燃烧室壁面的热流束为例,研究人员历来通过热电偶对其进行测试,并按照非稳定传热分析而进行计算。在柴油机领域,由于燃烧室壁面碰撞而使热流束增加的现象会限制热效率的提高,因此研究人员目前正运用多个传感器以对热流束进行测算并对燃烧现象进行研究。同时,研究人员利用激光电子式传感器(LES)进行燃烧室壁面碰撞喷雾动态与局部热流束分布的数值分析,并研究了火焰接近壁面附近时的放大摄影图像,根据对温度边界层厚度的推定结果,从而对传热系数与热流束进行验算。

近年来,利用壁温回转式隔热膜以改善热效率的效果引起了研究人员的关注。研究人员采用基于激光诱导荧光法(LIF)的壁面温度测算方法,并充分利用粒子图像测速法(μPIV),对壁面附近的气体进行流动测算。相关燃烧机理说明上述方法正有效地应用于发动机的燃烧室设计过程中。此外,基于薄膜测温电阻器式的微电子机械(MEM)技术的相邻多点热流束测试传感器已得以成功开发,可期待其将在今后的发动机测试领域中得以应用。

4 结论

上文概述了可有效满足社会需求的车用发动机技术的进展,并对汽车电驱动时代的相关发展条件进行了展望。

随着环境及物质需求的变化,社会各界对汽车性能的要求也在逐步提升。目前,按照节能降耗的技术观念,研究人员仍须持续提高发动机热效率。燃料-空气混合气的形成过程、燃烧室壁面附近燃烧现象及其控制技术将是未来数年间的重点研究领域。

本文发表于《汽车与新动力》杂志2020年第5期

作者:[日]塩路昌宏

整理:彭惠民

编辑:伍赛特

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

汽油发动机的工作原理基本理论汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。有两点需注意:1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。2.同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽车不用蒸汽机。相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。二.燃烧是关键汽车的发动机一般都采用4冲程。(马自达的转子发动机在此不讨论,汽车画报曾做过介绍)4冲程分别是:进气、压缩、燃烧、排气。完成这4个过程,发动机运转两周。理解4冲程过程如下1.活塞在顶部开始,进气阀打开,活塞往下运动,吸入油气混合气2.活塞往顶部运动来压缩油气混合气,使得爆炸更有威力。3.当活塞到达顶部时,火花塞放出火花来点燃油气混合气,爆炸使得活塞再次向下运动。4.活塞到达底部,排气阀打开,活塞往上运动,尾气从汽缸由排气管排出。注意:内燃机最终产生的运动是转动的,活塞的直线往复运动最终由曲轴转化为转动,这样才能驱动汽车轮胎。三.汽缸数发动机的核心部件是汽缸,活塞在汽缸内进行往复运动,上面所描述的是单汽缸的运动过程,而实际应用中的发动机都是有多个汽缸的(4缸、6缸、8缸比较常见)。我们通常通过汽缸的排列方式对发动机分类:直列、V或水平对置(当然现在还有大众集团的W型,实际上是两个V组成)。不同的排列方式使得发动机在顺滑性、制造费用和外型上有着各自的优点和缺点,配备在相应的汽车上。四.排量混合气的压缩和燃烧在燃烧室里进行,活塞往复运动,你可以看到燃烧室容积的变化,最大值和最小值的差值就是排量,用升(L)或毫升(CC)来度量。汽车的排量一般在之间。每缸排量,4缸的排量为,如果V型排列的6汽缸,那就是V6 升。一般来说,排量表示发动机动力的大小。所以增加汽缸数量或增加每个汽缸燃烧室的容积可以获得更多的动力。五.发动机的其他部分凸轮轴 控制进气阀和排气阀的开闭火花塞 火花塞放出火花点燃油气混合气,使得爆炸发生。火花必须在适当的时候放出。阀门 进气、出气阀分别在适当的时候打开来吸入油气混合气和排出尾气。在压缩和燃烧时,这两个阀都是关闭的,来保证燃烧室的密封。活塞环 在气缸壁和活塞中提供密封:1.防止在压缩和燃烧时油气混合气和尾气泄漏进润滑油箱。2.防止润滑油进入汽缸内燃烧。大多“烧机油”的汽车就是因为发动机太旧:活塞环不再密封引起的(尾气管冒青烟)活塞杆 连接活塞环和曲轴,使得活塞和曲轴维持各自的运动。润滑油槽 包围着曲轴,里面有相当数量的油汽油的分类90号、93号、97号是三种标号的无铅汽油(现在的汽油早已告别了有铅的时代),此外还有95号,100号等。不同的标号指的是此标号汽油辛烷值的大小,如:93号汽油,指汽油的辛烷值是93,而辛烷值又表示此标号汽油的抗爆性,汽油的标号越高,也就是辛脘值含量越高,越不容易发生爆燃,也就是说燃烧时发动机的抗爆性越好。应根据发动机的压缩比选用汽油,压缩比高的车辆应该选用高标号汽油,从而保证在发动机不发生爆燃的情况下动力输出最佳、成本最低。压缩比是指发动机气缸的总容积(即工作容积+燃烧室容积)与燃烧室容积之比(压缩比=气缸的总容积/燃烧室容积)。压缩比是发动机的一个非常重要的结构参数,它表示活塞在下止点压缩开始时的气体体积与活塞在上止点压缩终了时的气体体积之比。从动力性和经济性方面来说,压缩比应该越大越好。压缩比高,动力性好、热效率高,车辆加速性、最高车速等会相应提高。但是受汽缸材料性能以及汽油燃烧爆震的制约,汽油发动机的压缩比又不能太大。通常,压缩比在~应选用90号车用汽油;压缩比在~应选用90号~93号车用汽油;压缩比在~应选用93号~95号车用汽油;压缩比在~10应选用95号~97号车用汽油。一般可以在汽车说明书中查到压缩比,除说明书以外,有的车辆生产厂也会在油箱盖内侧标注推荐使用的燃油标号。车主应严格按发动机不同的压缩比,选用相应标号的车用汽油,才能使发动机发挥出最佳的效能。如使用比规定要求低号数的无铅汽油,发动机将出现爆震现象。一般在急加速及爬坡时出现爆震现象,如果由于汽油标号低,使发动机长期出现爆震,将会损坏发动机,甚至打坏活塞、缸体等。但是选择汽油也不是标号越高越好,汽油标号选择的主要依据是发动机的压缩比。压缩比、点火提前角等参数已经在发动机电脑中设置,车主只要严格按照使用说明的要求选择汽油就没有问题。盲目使用高标号汽油,其高抗爆性的优势无法发挥出来,也会造成金钱的浪费。如果查不到自己车辆的压缩比,请尽量使用高标号汽油,以免对你的爱车造成伤害汽油发动机柴油发动机有何不同两篇论文请参考

随着汽车工业的发展,汽车发动机技术应用越来越普遍,我为大家整理的汽车发动机技术论文,希望你们喜欢。 汽车发动机技术论文篇一 汽车发动机节能技术浅析 摘 要:本文通过对发动机的节能原理进行分析,提出了一些节约发动机燃油消耗的措施,对中国汽车节能提出了发展方向。 关键词:节能;原理;措施;发展 中图分类号:U464 文献标识码:A 一、发动机节能的原理 1 提高充气效率 (1)减小进气系统的流动损失。①减小进气门处的流动损失。可通过增大进气门的直径,选择合适的排气门直径;增加气门的数目,采用小气门;改善进气门处流体动力学性能,减小气门处流动损失;采用S(活塞形成)/D(缸径)值较小的发动机等措施可以减小进气门处的流动损失。②减小整个进气管道的流动阻力。进气道应该有足够的流通截面积、表面光滑、拐弯小、多段通道连接要对中;进气管应该有足够的流通截面积、表面光洁,避免急转弯和流通截面的突然变化;空气滤清器的阻力应随结构和使用时间的延长而不同。(2)减少对新鲜充气量的加热。凡是能降低活塞、气门等热区零件的温度和减小接触面积的措施都是有利于减小对新鲜充气量的加热。(3)减小排气系统的阻力。减少排气系统中排气门座、排气道、排气管、排气消声器的阻力,对降低排气压力、减小排气损失均有利。(4)合理选择配气相位。配气相位是否合理主要根据以下几个方面来判断。①充气效率高,保证发动机的动力性能,主要由进气门迟闭角决定。②必要的燃烧室扫气,以保证降低高温零件的热负荷,使发动机运行可靠,主要由进气门迟闭角决定。③合理的排气温度,主要由排气提前角决定。④较小的换气损失、以保证发动机的经济性,主要由进排气门重叠角决定。 2 减小机械损失可从几个方面着手 (1)降低活塞、活塞环、连杆等往复运动机件的摩擦和质量。(2)降低滑动部件的滑动速度。(3)减少润滑油的搅拌阻力。(4)改良润滑油,使其低粘度化。(5)合理选择摩擦零件的材料。 二、发动机节能的措施 1 发动机稀燃技术 也叫发动机稀薄燃烧技术,指采用发动机的实际空燃比远大于理论空燃比的情况下进行的具有良好动力性、经济性和排放行的燃烧技术。 实现的技术途径:(1)实现稀燃混合气。实现稀燃混合气的措施有:使汽油充分雾化;采用结构紧凑的燃烧室;加快燃烧速度;提高点火能量;采用分层燃烧技术。(2)采用分层燃烧系统。主要有气道喷射稀燃系统和直接喷射稀燃系统。 2 发动机的增压技术 对进入气缸的空气提前进行压缩,使单位时间进入燃烧室的新鲜空气量增多,增加发动机的充气效率,提高发动机的功率。 3 燃油掺水节油技术 发动机采用掺水形成的乳化燃油,可以减少排气中的氮氧化合物等有毒成分、降低烟度减少污染,还能有效降低油耗,节约能源。 4 发动机可变气缸排量技术 发动机在中低负荷情况下,使部分气缸停止工作,增加工作气缸的负荷率,使其工作点落入低燃油消耗率和低排放工作区域内,从而改善车辆的经济性和排放性能;当发动机需要大功率时,则让全部气缸工作,体现发动机的动力性。 5 发动机可变配气正时技术 根据发动机转速和负荷的变化,适时调整配气相位和气门升程。 6 可变进气歧管技术 ECU根据发动机转速和负荷的变化而改变进气道的长度,在高转速时使进气通道变短,减少进气流动损失,提高发动机的高速功率。在低转速和低负荷及起动情况使进气通道变长,管内空气流动的动能增加,导致进气流速加快,充气效率提高,在同样的燃烧条件下会获得更大的输出功率,增加转矩。 可变进气歧管技术主要包括可变进气歧管长度和可变进气共振技术.。 7 可变压缩比技术 采用可变压缩比技术对于自然吸气发动机,在部分负荷情况下压缩比可以设计高一些;对于增压发动机在增压压力比较低的低负荷情况下,适当降低压缩比,使压缩比随发动机负荷的变化连续调节,这样可以避免爆燃,又提高了在高压缩比情况下中低负荷的工作效率,增加了动力性能,提高了济性,保证了发动机工作效率的最大化。 改变发动机压缩比的方法有改变燃烧室的容积和改变活塞行程。 8 汽油机燃油喷射与点火系统的电子控制技术 在汽油机电控燃油喷射系统中,电控单元主要根据进气量确定基本的喷油量,再根据其他传感器信号对喷油量进行修正,使发动机在各种工况下均能获得最佳浓度的混合气,从而提高发动机的动力性、经济性和排放性;汽油机电控点火系统(ESA)根据相关传感器信号,判断发动机的运行工况和运行条件,选择最佳的点火提前角点燃可燃混合气,从而改变发动机的燃烧过程,实现发动机动力性、经济性和排放性的提高。 9 柴油机燃油喷射系统的电子控制技术 在柴油机电控燃油喷射系统中,ECU主要根据发动机转速和负荷信号来确定基本供油量和供油正时,再根据其他传感器信号进行修正。 10 电子节气门技术 汽车电子节气门技术(ETC)淘汰了传统加速踏板采用拉索或杠杆机构,与发动机节气门之间进行直接的机械连接,通过增加相应的传感器和电控单元,实现精确控制节气门的开度。该技术可以实现发动机转矩和空燃比的精确控制,有助于提高汽车行驶的动力性、平稳性、经济性以及降低排放污染。 11 陶瓷发动机 为了减小发动机能量损失中占绝大部分的冷却损失和排气损失,一般采用取消或部分取消冷却系统的方法,并使用陶瓷等耐高温、耐磨损、耐腐蚀、重量轻和强度高等特点的隔热材料或其他方法减少燃烧室内热量的散失,使发动机在更高的工质温度下工作;利用排气能量。 12 EccoBoost 发动机技术 一种兼具涡轮增压技术和燃油直喷两种技术于一体的发动机技术,发动机能获得更高的动力性和经济性。 结语 根据中国的能源政策和汽车工业发展情况来看,国家首先应该大力发展柴油机技术,主要是研究电控柴油机;其次大力发展电动汽车,优先发展混合动力汽车,加大电池续航能力的研究;再次大力研发推广代用燃料车。发动机油耗的高低直接反应了我国发动机设计与制造水平,汽车发动机节能技术的推广应用,将大力推动我国汽车工业的发展。 参考文献 [1]许文靖.现代汽车节能技术探析[J],科技创新导报,2009(24). 汽车发动机技术论文篇二 汽车发动机修理技术分析 摘要:随着汽车工业的发展,电子控制系统在汽车上的应用越来越普遍,电控系统在提高汽车性能的同时,也使汽车的故障诊断变得复杂起来。汽车发动机修理大多数的诊断都采用的经验诊断和技术诊断,对于目前汽车发动机维修采用“事后维修”和定期强制保养的方式已经不能满足现代化汽车发动机的发展了。更高的技术诊断要求应用于现代的汽车修理维护种,我们在对电控汽车进行维修时应综合分析判断的同时,还要利用传统诊断结合汽车故障的现象来寻找故障部位。并且及时对汽车发动机进行相应的维修及保养。 关键词:汽车发动机;故障;排除;维修 一、汽车发动机维修 随着现代汽车工业随着科学技术的飞速发展,新技术广泛运用,现代汽车的发动机故障诊断不再是眼看、耳听、手摸就能够解决的简单维修了,日益呈现出汽车发动机维修的高科技,随着中国贸易市场的开放,一批批先进的进口汽车检测设备和仪器被引入中国的市场。如四轮定位仪、解码器、汽车专用示波器、汽车专用电表、发动机分析仪、尾气测试仪及电脑动平衡机等,成为现代维修企业的必备工具。在这些高科技检测产品的推动下,使我国的汽车产业得到了较快的发展,尤其是汽车发动机的维修不在是以前的茫然状态。形成了一套正规、准确、科学维修管理。 二,汽车维修的维修是汽车发展的必要形式 而汽车的发动机维修是必要中德重要部分,一般发动机面临如下几方面的问题: 1、发动机不能发动,由于蓄电池存电不足、电极桩柱夹松动或电极桩柱氧化严重,电路总保险丝断,点火开关故障,起动机故障,起动线路断路或线路连接器接触不良等原因,经常导致打开点火开关,另外点火线圈工作不良,存在点火的问题,燃油泵不工作或泵油压力过低,燃油压力调节器工作不良;怠速控制阀或其控制线路故障,怠速控制发阀空气管破裂或接头漏气,空气流量计故障。导致起火开关拨到起动位置,发动机发动不着。 2、发动机失速故障,对于发动机进气系统,经常进气系统存在漏气的现象,空气流量计工作不正常,油箱中燃油过少,燃油管内的压力不稳,燃油喷射系统供油压力不稳,冷起动喷油器和温度正时开关工作不良。导致发动机正常工作的转速不能保持一个平稳的状态,转速忽高忽低,发动机不能正常工作。 3、发动机机器零件的老化,或线路故障。发电机经常在高温下工作,发生的高温电火花会电子元件被过电压击穿,或在高温、大电流击穿,会形成短路或断路的现象,会使点火控制器工作异常,造成点火线圈次级绕组无法产生高压电,高压火线不跳火或火花弱,发动机无法启动或工作异常。由于发动机工作的时间较长,或出厂较早,元件老化或性能退化,另外电子元件长期在高温、电压、电流变化频繁、灰尘等恶劣条件下工作等,也会产生元件的老化或性能退化。发动机的某一固定位置安放着传感器和执行器,在正常工作的条件下,导线与电控单元ECu连接是完好状态,若导线接头插接不良或导线短路等,发动机的工作就会发生故障,传感器无法将检测的信号传给电控单元,电控单元不能控制执行器工作,从而造成发动机工作异常,不能正常的启动。 三、发动机故障诊断方法多种多样性 在我们的日常生活始终中,我们可以运用单一诊断方法,也可以多种诊断方法结合使用,依据不通的实际情况,充分发挥个人的智慧创造实用的诊断方法对发动机进行故障诊断。科学与实际相结合,无论哪一种方法都必须是科学的诊断方法、科学的思维方式、科学的分析能力,下面是汽车发动机修理技术的方 1、汽车发动机的保养技术,使用适当质量等级的润滑油,依据发动机的不同类型采用适合该型号的润滑油,选用标准要不低于生产厂家规定要求为准。定期更换机油及滤芯,避免滤清器堵塞。保持曲轴箱通风良好,避免污染气体逆向流,堵塞曲轴箱,造成曲轴箱的污染,在滤芯污染,燃料的消耗大幅度增加,有时燃烧又不充分,不断产生混合的气体,形成油泥。发动机无法正常工作,所以要定期清洗曲轴箱,保发曲和耗持发动机内部的清洁。同时还要定期清洗燃油系统,保养水箱,减少胶质和积碳,在油道、化油器、喷油嘴和燃烧室中沉使燃油雾化不良,对水箱的清洁能够减少水箱破损、渗漏,使发动机保持最佳状态,而且延长水箱和发动机的整体寿命。 2、利用专门诊断仪器诊断,目前在对电控发动机进行故障诊断中,出现了很多诊断方法,但更多应用的是故障解码器,如电眼睛等专用车系诊断仪等。大大提高了电子控制系统的诊断效率。能够及时有效的排除和解决故障,故障解码器的操作十分的简便,检查发动机的故障时将故障解码器的插头和汽车上的故障诊断插座相连接,打开点火开关,进行操作后,可以很方便地从诊断仪的显示屏上读出所有储存在电脑中的故障码。通过数据流程所显示的数据可以具体反映出传感器和执行器现时工作状态。如节气门位置传感器的电压变化;水温传感器的电阻变化;喷油器的喷油时间变化等等。通过对它们工作状态时的变化的观察,我们可以判断哪些传感器和执行器工作是否正常,减少了解决故障的所用时间。 3、培训相关的高科技维修人才,在我国传统的汽车维修企业中,维修人员的文化水平、受教育程度、理论基础、外语水平都较低,汽车维修企业的现代化和先进化发展比较缓慢,受传统思想影响比较严重,大都采用师傅带徒弟的模式,很难达到机电一体化、懂电脑、会外语的现代维修技术人员的水平。随着经济全球化的、知识一体化、汽车高科技的发展的要求,从事汽车维修服务的技术人员,不仅要具备高科技的素质,坚实的汽车专业理论、熟练掌握各种汽车检测设备与仪器的基本技能,还要有一定的外语基础,能熟练使用电脑查询汽车维修资料,对出现的各种疑难杂症进行分析,以最少的时间完成最快的检测,准确判断、熟练排除,做到科学准确的对汽车发动机进行有效的维修。 4、故障症状模拟诊断,对电控发动机故障诊断中,往往会出现理论与实际不相符的情况,我们经常会碰到发动机有故障但没有明显故障症状的现象,不知道故障到底出现在哪里,正常的维修工作无法进行,这就要求我们采用故障故障症状模拟诊断,排除可能出现的故障,缩小故障范围。模拟出现故障时相同或相似的条件和环境,找出故障原因,提出实际的解决方案,有针对性的维修排除故障。 四、结语: 汽车的发动机不仅仅要靠科技和维修。还需要驾驶员平时在开车中还要始终使发动机保持正常的工作温度,并能避免发动机超负荷运转。及时做好汽车发动机的清洁和维护工作,全面深刻了解发动机的原理,掌握有关功能作用,运用科学的分析方法和维修技巧,尽可能的排除可能发生的故障,使我国汽车发动机维修行业在汽车维修企业发展要素中,起主导作用,促进我国汽车行业的健康稳定发展。 看了“汽车发动机技术论文”的人还看: 1. 本田发动机技术论文 2. 汽车电子技术论文 3. 关于汽车的科技论文3000字 4. 浅谈汽车技术管理论文 5. 关于汽车网络技术的论文

燃烧炉控制毕业论文

锅炉运行方面技术论文篇二 锅炉经济运行技术浅谈 【摘要】锅炉机组运行的优劣在很大程度上决定了整个电厂运行的经济性。衡量燃煤发电厂经济性的主要指标是供电煤耗。供电煤耗的大小取决于发电煤耗和厂用电率,影响发电煤耗的主要因素是锅炉效率。因此,研究电厂锅炉的经济运行方式,对提高电厂的经济性具有重要意义。 【关键词】锅炉,经济,燃煤 1、概述。锅炉是国民经济中重要的热能供应设备。电力、纺织、造纸、食品、机械、冶金、化工等行业, 以及工业和民用采暖都需要锅炉供给大量的热能。锅炉是将燃料的化学能转变为热能的燃烧设备,它尽可能的提供良好的燃烧条件,以求能把燃料的化学能最大限度地释放出来并使其转化为热能,并利用热能加热锅内的水。 2、锅炉的分类。锅炉按照不同的方式分为以下几类:按锅炉的用途分为:生活锅炉、工业锅炉、电站锅炉和热水锅炉。按锅炉燃用的燃料分类可分为:燃煤炉、燃油炉和燃气炉。按燃烧方式分类可分为:层燃炉、室燃炉和介于二者之间的沸腾(流化床)炉。按有无汽包可分为:汽包锅炉和直流锅炉。按蒸汽压力分类可分为:低压锅炉、中压锅炉、次高压锅炉、高压锅炉、超高压锅炉、亚临界压力锅炉和超临界压力锅炉。按锅炉水循环方式分类可分为:自然循环锅炉、强制循环锅炉和复合循环锅炉。 3、锅炉的应用。利用锅炉产生的热水或蒸汽可直接为生产和生活提供所需要的热能,也可通过蒸汽动力装置转换为机械能,或再通过发电机将机械能转换为电能。提供热水的锅炉称为热水锅炉,主要用于生活,工业生产中也有少量应用。产生蒸汽的锅炉称为蒸汽锅炉,是蒸汽动力装置的重要组成部分,多用于火电站、船舶、机车和工矿企业。 4、锅炉的结构。锅炉是热能生成设备的主要构成,锅炉中的炉膛、锅筒、燃烧器、水冷壁过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。是由“锅”和“炉”两部分组成的。“锅”是汽水系统,它主要任务是吸引收燃料放出的热量,使水加热、蒸发并最后变成具有一定热能的热水或过热蒸汽。它由省煤器、汽包、下降管、联箱、水冷壁、过热器和再热器等设备及其连接管道和阀门组成。炉膛又称燃烧室,是供燃料燃烧的空间。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,避免含有高浓度盐分和杂质的锅水随蒸汽进入过热器中。 5.锅炉的工作原理。锅炉主要有以下系统来完成燃料的化学能到蒸汽具备足够的动能(以煤粉炉为例):汽水系统、风烟系统、燃料(煤粉和助燃油)系统、制粉系统、灰渣系统等。制粉系统用于磨制合格的煤粉储存于粉仓内,通过给粉机,由一次风送入炉膛进行燃烧。煤粉在炉膛内和高温烟气充分混合燃烧加热水冷壁内给水,同时产生大量的高温烟气,经各级低温、高温过热器通过辐射、半辐射半对流、对流充分换热冷却后的烟气由风烟系统中的引风机在经过电除尘、布袋除尘器等使烟气粉尘达标后由烟囱排向大气,炉内给水通过各级吸热后,形成高温高压蒸汽输送出去。煤粉燃烧产生的炉渣通过灰渣系统输送出去。 6.锅炉的维护保养。在锅炉的日常运行过程中,各系统辅机运转正常,要注意维持各项参数在许可范围之内,严格控制压力、温度等超标,定期排污维持合格汽水品质,延长设备使用寿命。锅炉停运后仍要进行保养,锅炉保养的方法都是通过尽量减少锅炉水中的溶解氧和外界空气漏入来减轻锅炉的腐蚀。最常见的保养方法一般有湿式保养法、充氮置换法、烘干防腐保养法等几种。 7.锅炉的经济运行。锅炉机组运行的优劣在很大程度上决定了整个电厂运行的经济性。衡量燃煤发电厂经济性的主要指标是供电煤耗。供电煤耗的大小取决于发电煤耗和厂用电率,影响发电煤耗的主要因素是锅炉效率。因此,研究电厂锅炉的经济运行方式,对提高电厂的经济性具有重要意义。 由于炉膛内燃料的燃烧工况、温度水平、各级受热面的沽污与热交换状态以及辅助动力消耗的不同,其运行经济性也各不相同。必须进行精细的燃烧调整试验,以求得各种负荷下的最佳运行工况,作为日常运行调整的依据,以保证锅炉机组的经济运行状况良好。运行中应根据煤种变化掌握燃烧器特性、风量配比、一次风煤粉浓度及风量调整的规律,重视燃烧工况的科学调整,使炉内燃烧处于最佳状态。为了使燃料在炉膛内与氧气充分混合燃烧,实际送入炉内的空气量总要大于理论空气量。虽然多送入空气可以减少不完全燃烧热损失,但排烟热损失会增大,还会加剧硫氧化物腐蚀和氮氧化物生成。因此除通过合理的风粉配比、调节火焰的充满度和合适的火焰燃烧中心外还应依据锅炉的性能试验,设法改进燃烧技术,争取以尽量小的过量空气系数使炉膛内燃烧完全。 煤粉炉通常采取以下措施来提高锅炉的经济性能: 合理配煤以保证燃煤质量。将各煤种精心混配,减少燃煤的大幅度变化,维持运行参数基本稳定。 合理调整煤粉细度。煤粉细度是影响飞灰可燃物含量的主要因素。经济煤粉细度要根据热力试验进行选取。 控制适量的过量空气系数。煤粉燃烧需要足够的氧气,但过多的冷空气会降低炉内温度水平,且使排烟容积增大。合理的过量空气系数应根据燃烧调整试验及煤种确定。 重视燃烧调整。炉内燃烧状况的好坏、温度水平及煤粉着火的难易程度直接影响灰渣可燃物的含量。 为了考核性能和改进设计,锅炉常要经过热平衡试验。直接从有效利用能量来计算锅炉热效率的方法叫正平衡,从各种热损失来反算效率的方法叫反平衡。考虑锅炉的实际效益时,不仅要看锅炉热效率,还要计及锅炉辅机所消耗的能量。 单位质量或单位容积的燃料完全燃烧时,按化学反应计算出的空气需求量称为理论空气量。为了使燃料在炉膛内有更多的机会与氧气接触而燃烧,实际送入炉内的空气量总要大于理论空气量。虽然多送入空气可以减少不完全燃烧热损失,但排烟热损失会增大,还会加剧硫氧化物腐蚀和氮氧化物生成。因此应设法改进燃烧技术,争取以尽量小的过量空气系数使炉膛内燃烧完全。 8.排放锅炉烟气中所含粉尘(包括飞灰和未燃尽的煤粉)、硫和氮的氧化物都是污染大气的物质,未经净化时其排放指标可达到环境保护法规限定指标的几倍到数十倍。控制这些物质排放的措施有燃烧前处理、改进燃烧技术、除尘、脱硫和脱硝等。借助烟囱只能降低烟囱附近地区大气中污染物的浓度,不能彻底根除污染物。烟气除尘所使用的作用力有重力、离心力、惯性力、附着力以及声波、静电等。对粗颗粒一般采用重力沉降和惯性力的分离,在较高容量下常采用离心力分离除尘静电除尘器和布袋过滤器具有较高的除尘效率。湿式和文氏—水膜除尘器中水滴水膜能粘附飞灰,除尘效率很高还能吸收气态污染物。为了达到较高的除尘效率,一般燃煤机组通常采用多级除尘,电除尘、布袋除尘等并通过脱硫脱销,使烟气的各项指标达到国标要求。 9.锅炉的发展。锅炉未来将向着进一步提高锅炉和电站热效率的方向发展;将进一步降低锅炉和电站的单位功率的设备成本;将极大的提高锅炉机组的运行灵活性和自动化水平;将会发展更多锅炉品种以适应不同的燃料;将会继续提高锅炉机组及其辅助设备的运行可靠性;将会下大力气采取措施减少对环境的污染。 参考文献: [1]张爱存.发电厂燃煤锅炉运行调整与经济性分析[D].华北电力大学 毕业 论文,2003.

下面是我找的,不知道对你有没有帮助 ,如果有的话请您给个红旗吧一、前言 众所周知,能源消费是造成当今环境恶化的一个主要原因,尤其是煤炭在直接作为能源燃烧过程中,存在着效率低、污染严重的问题。统计表明,我国每年排入大气的污染物中有80%的烟尘,87%的SO2,67%的NOx来源于煤的燃烧。我国的大气污染主要是锅炉、窑炉燃煤产生烟气形成的煤烟型污染。目前我国能源仍然以煤炭为主,改变能源结构,使用油气电等清洁能源,与我国的国情又不太相适应,未来相当长一段时间内,煤炭在我国一次能源结构中的主体地位不会改变,这已成为不争的现实。因此大力发展和应用洁净煤燃烧技术与装置,是解决和控制大气污染的一条重要措施。 近年来,人们已在洁净煤燃烧技术方面进行了大量的研究与实践,但综合效果还都有待于提高。多年来在总结、借鉴、完善、发展国内外相关技术的基础上,我们对原煤气化和分相燃烧技术进行了大量研究,通过几年来的大量实验和工作实践,解决了十多项技术难题,掌握了一种锅炉清洁燃烧技术——煤气化分相燃烧技术, 并利用该技术研制出一种煤转化成煤气燃烧的一体化锅炉,我们称之为煤气化分相燃烧锅炉。其突出特点是无需炉外除尘系统,经过炉内全新的燃烧、气固分离及换热机理,实现“炉内消烟、除尘”,使其排烟无色——俗称无烟。烟尘、SO2、NOX排放浓度符合国家环保标准的要求,而且热效率高达80~85%。这种锅炉根据气固分相燃烧理论,把互补控制技术、气固分相燃烧技术集于一炉,将煤炭气化、燃烧集于一体,组成煤气化分相燃烧锅炉,从而实现了原煤的连续燃烧与洁净燃烧。 二、煤气化分相燃烧技术 烟尘的主要污染物是碳黑,它是不完全燃烧的产物。形成黑烟的原因主要是煤在燃烧过程中,形成易燃的轻碳氢化合物和难燃的重碳氢化合物及游离碳粒。这些难燃的重碳氢化合物、游离碳粒随烟气排出,便可见到浓浓的黑烟。 一般情况下,煤的燃烧属于多相混合燃烧,煤在燃烧过程中析出挥发物,而挥发物的燃烧对煤焦的燃烧起到制约作用,使固体碳的燃烧过程繁杂化、困难化。固体燃料氧化反应过程中的次级反应,即一氧化碳和二氧化碳的产生以及一氧化碳的氧化反应和二氧化碳的还原反应,都不利于固体碳和天然矿物煤的燃烧,而气固分相燃烧就可以有效地解决上述问题。 气固分相燃烧就是使固体燃料在同一个装置内分解成气相态的燃料和固相态的燃料,并使其按照各自的燃烧特点和与此相适应的燃烧方式,在同一个装置内有联系地、互相依托地、相互促进地燃烧,从而达到完全燃烧或接近完全燃烧的目的。 煤气化分相燃烧技术是根据气固分相燃烧理论,将煤炭气化、气固分相燃烧集于一体,以煤炭为原料,采用空气和水蒸气为气化剂,先通过低温热解的温和气化,把煤易产生黑烟的可燃性挥发份中的碳氢化合物先转化为煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。这样在同一个燃烧室内气态燃料与固态燃料有联系地、互相依托地、相互促进地按照各自的燃烧规律和特点分别燃烧,消除了黑烟,提高了燃烧效率,并且在整个燃烧过程中,有利于降低氮氧化物和二氧化硫的生成,进而达到洁净燃烧和提高锅炉热效率的双重功效。 煤气化分相燃烧技术在锅炉上的应用,使固体燃料的干燥、干馏、气化以及由此产生的气相态的煤气和固相态的煤焦在同一炉内同时燃烧。并使锅炉在结构上实现了两个一体化,即煤气发生炉和层燃锅炉一体化,层燃锅炉与除尘器一体化,因此无需另设煤气发生炉便实现了煤的气化燃烧;也无需炉外除尘器,就可实现炉内消烟除尘,锅炉排烟无色。其燃烧机理如图一所示,双点划线框内表示固相煤和煤焦的燃烧过程,单点划线框内表示气相煤气的燃烧过程,实线框内表示煤的干馏过程,虚线框内表示煤焦的气化过程。 原煤首先在气化室缺氧条件下燃烧和气化热解,煤料自上部加入,煤层从下部引燃,自下而上形成氧化层、还原层、干馏层和干燥层的分层结构。其中氧化层和还原层组成气化层,气化过程的主要反应在这里进行。以空气为主的气化剂从气化室底部进入,使底部煤层氧化燃烧,生成的吹风气中含有一定量的一氧化碳,此高温鼓风气流经干馏层,对煤料进行干燥、预热和干馏。煤料从气化室上部加入,随着煤料的下降和吸热,低温干馏过程缓慢进行,逐渐析出挥发份,形成干馏煤气。其成份主要是水份、轻油和煤中挥发物。 原煤经干馏后形成热煤焦进入到还原层,靠下层部分煤焦的氧化反应热进行气化反应。同时可注入适量的水蒸汽发生水煤气反应,这样以空气和水蒸汽的混合物为气化剂,在气化室内与灼热的碳作用生成气化煤气。其成份主要是一氧化碳和二氧化碳以及由固体燃料中的碳与水蒸碳与产物、产物与产物之间反应生成的氢气、甲烷,还有50%以上的氮气。这样干馏层生成的干馏煤气和进入干馏层的气化煤气混合,由煤气出口排出。气化室内各层的作用及主要化学反应见表一。 表一:气化室内各层的作用及主要化学反应 层区名 作用及工作过程 主要化学反应 灰层 分配气化剂,借灰渣显热预热气化剂 氧化层 碳与气化剂中氧进行氧化反应,放出热量,供还原层吸热反应所需 C+O2=CO2 放热 2C+O2=2CO 放热 还原层 CO2 还原成CO,水蒸汽与碳分解为氢气, CO2+C=2CO 放热 H2O+C=CO+H2 放热 CO+H2O=CO2+H2 吸热 干馏层 煤料与热煤气换热进行热分解,析出干馏煤气:水份、轻油和煤中挥发物。 干燥层 使煤料进行干燥 在锅炉的气化室中,煤料自上而下加入,在气化过程中逐步下移,气化剂则由下部进入,通过炉栅自下而上,生成的煤气由燃料层上方引出。这一过程属逆流过程,它能充分利用煤气的显热预热气化剂,从而提高了锅炉的热效率,并且由于干馏煤气不经过高温区裂解,使气化煤气的热值有所提高。 原煤经温和气化低温热解产生的煤气,在经过上部干馏层后,通过气化室的煤气出口进入燃烧室,与充足的二次风充分混合,在燃烧室的高温条件下自行点燃,并与进入燃烧室炉排上煤焦向上的火焰相交,这样在燃烧室内煤气与煤焦分别按照气相和固相的燃烧特点和燃烧方式分别燃烧,又相互联系、相互促进,使一氧化碳和烟黑燃烬,达到或接近完全燃烧。 三、煤气化分相燃烧锅炉的结构特点及应用 锅炉在发展的过程中一直重视提高锅炉热效率和烟尘排放达标两大问题。传统的锅炉解决这两大问题的基本上是靠强化燃烧和传热提高锅炉热效率和设置炉外除尘器。强化燃烧往往会导致锅炉烟尘初始排放浓度的加大,增大除尘器的负担,在发达国家可使用除尘效率在99%以上的电除尘器或布袋除尘器,使烟尘排放浓度控制在50mg/Nm3以下,而在我国由于经济条件的原因,只能使用价格相对低廉的机械式或湿式除尘器,除尘效率一般低于95%,使烟尘排放浓度大于100-200 mg/Nm3,达不到国家的环保要求。这种依靠炉外除尘器解决除尘的办法,不仅增加锅炉房的占地面积和基建投资,而且增大引风机电耗,还造成二次污染。由于煤气化分相燃烧锅炉彻底改变了传统锅炉的燃烧原理,利用气固分相燃烧理论,使煤在燃烧过程中易产生黑烟的可燃性挥发份中的碳氢化合物先转化为可燃煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。由于燃烧室温度高达1000℃以上,烟雾得以充分分解,解决了煤直接燃烧产生黑烟的难题。这种锅炉不仅使原煤尽可能地完全燃烧和高效利用,有较高的热效率,而且还尽可能地减少烟尘和有害气体SO2、NOX等的排放,达到消烟除尘的作用,使锅炉各项环保及节能指标大大优于国家标准。 煤气化分相燃烧技术在锅炉上的应用,打破了传统锅炉加除尘器的模式,创建了无需炉外除尘器的一体化模式。而这种一体化并不是机械式地将除尘器加入锅炉。煤气化分相燃烧锅炉与普通煤气锅炉和层燃锅炉相比,具有自己独特的结构,它将后两者有机结合,主要由前部的煤气化室,中部的燃烧室和尾部的对流受热面三大部分组成。(见图二:锅炉结构与燃烧示意图) 气化室是锅炉的技术核心部分,它看上去象是一个开放式的煤气发生炉,其主要功能,一是将煤中的可燃挥发份和煤的气化反应生成气,以煤气的形式排入到燃烧室进行燃烧;二是将释放出挥发份的半焦煤输送到燃烧室继续进行燃烧;三是控制气化室内的反应温度和煤焦层厚度。实现上述功能的关键:一是要保证一定的原煤层;二是要合理配置送风和气化剂,提高煤炭气化率和气化室的气化强度;三是要在煤气化室和燃烧室的连接部位,合理配置煤气出口和煤焦出口。气化室产要由炉体、进煤装置、炉栅、气化剂进口、煤气出口和煤焦出口等部分组成。 在气化室内以煤炭为原料,采用空气和水蒸汽为气化剂,在常压下进行煤的温和气化反应,将煤在低温热分解产生的挥发性物质从煤中赶出。当气化室内温度达到设定条件时,将气化室内脱挥发份的高温煤焦输送到燃烧室的炉排上进行强化燃烧。 燃烧室的主要功能:一是使煤气和煤焦燃烧完全,提高燃烧效率;二是降低烟尘初始排放量和烟气黑度。气化室内产生的煤气经煤气出口,喷入到燃烧室,在可控二次风的扰动下旋向下方,与由气化室进入到燃烧室的煤焦向上的火焰相交而混合燃烧。煤气与固定碳(煤焦)燃烧相结合,强化了燃烧,达到了充分燃烬,洁净燃烧的目的,提高了燃烧效率。并且因为在炉排上的燃烧是半焦化的煤焦,因此产生的飞灰量小,烟尘浓度、烟气黑度都比较低。同时,在燃烧室上方设置了防爆门,确保锅炉的安全运行。 对流受热面的主要功能就是完成与烟气的热量交换,达到锅炉额定出力,提高锅炉换热效率。其结构形式可有多种,与普通锅炉没有太大的区别,因此对大多数锅炉来说,都可以改造成煤气化分相燃烧锅炉。并且锅炉无需除尘器,大大节省锅炉房总投资和占地面积。 设计煤气化分相燃烧锅炉时,应注意的几点: 1、合理布置煤气出口和煤焦出口的位置和大小; 2、煤焦的温度控制; 3、气化剂进口和进煤口; 4、合理设置二次风和防爆门; 5、气化室与燃烧室的水循环要合理。 由上述可知,煤气化分相燃烧锅炉的结构并不复杂,只需在传统锅炉的基础上,在其前部加一个气化室,在原炉膛上设置二次风和防爆门,再结合一些控制技术。利用该原理可以设计出多种规格型号的锅炉,类型主要为~10t/h各参数的锅炉。现仅在东北地区已有几十台此类型的锅炉在运行,广泛用于洗浴、采暖、医药卫生等领域,并已经利用该技术,改造了很多工业锅炉,效果都非常好。 下面以一台DZL2t/h锅炉为例,改造前后对比见表二。 表二:DZL2t/h锅炉改造前后对比 改造前 改造后 比较 热效率 73% 78% 提高5% 耗煤量(AII) 380kg/h 356kg/h 节煤 适应煤种 AII AIII 褐煤 石煤AI AII AIII 无烟煤 煤种适应性广 锅炉外形体积 ×2× ×2× 长度约增加一米 环保性能 冒黑烟,环保不达标 排烟无色,满足环保要求 该新型锅炉综合地应用当代高新技术和高效率传热技术,将煤气发生炉与层燃锅炉有机结合为一体,做到清洁燃烧,炉内自行消烟除尘,锅炉运行期间,在无需炉外除尘器的情况下,排烟无色,烟尘浓度≤100mg/Nm3,比传统锅炉减少30-50%,SO2浓度≤1200mg/Nm3,NOx<400mg/ Nm3,符合国家环保标准GB13271-2001中一类地区的要求,同时,热效率在82%以上。而成本仅比传统锅炉增加不到一万元,但却省了一台除尘器。每小时加煤次数少,仅2~3次,并可实现机械上煤和除渣,因而大大减轻了司炉工的劳动强度。 四、煤气化分相燃烧锅炉的特点 传统的煤炭燃烧方式在煤的燃烧过程中会产生大量的污染物,造成严重的环境污染。主要原因是: (1)煤炭不易与氧气充分接触而形成不完全燃烧,燃烧效率低,相对增加了污染排放; (2)燃烧过程不易控制,例如挥发份大量析出时往往供氧不足,造成烟尘析出与冒黑烟; (3)固体燃料燃烧时温度难以均匀,形成局部高温区,促使大量NOx形成; (4)原煤中的硫大多在燃烧过程中氧化成SO2; (5)未经处理的固态煤炭直接燃烧时,大量粉尘将随烟气一同排出,造成大量粉尘污染。 煤气化分相燃烧锅炉将煤炭气化、气固分相燃烧集于一体,有效地解决环境污染问题,与传统的燃煤锅炉相比,它有以下优点: 1、烟尘浓度、烟气黑度低,环保性能好。 在气化层生成的气化煤气和在干馏层生成的干馏煤气最终混合在一起,在燃烧室内与二次风充分混合,因是气态燃料,供氧充分,容易达到完全燃烧,使一氧化碳和烟黑燃烬。而从气化室进入到燃烧室的炽热煤焦,因大部分挥发份已被析出,避免了挥发物对固定碳燃烧的不良影响,剩余的挥发份在煤焦内部进一步得到氧化,生成的一氧化碳和烟黑等可燃物在通过煤焦层表面时被燃烬。另外煤焦在燃烧时产生的飞灰量小,同时在锅炉内采用除尘技术,因此从根本上消除了“炭黑”,高效率地清除了烟尘中的飞灰。 2、节约能源、热效率高。 煤料在气化室充分气化热解之后再燃烧,不仅避免了挥发物、一氧化碳、二氧化碳等对煤焦燃烧的不良影响,而且从气化室进入燃烧室的热煤气更容易燃烧,并对煤焦的燃烧有一定的促进作用。进入燃烧室的炽热煤焦已脱去大部分挥发份,不仅有较高的温度,而且具有内部孔隙,能增强内部和外部扩散氧化反应,起到强化煤焦燃烧的作用,从而在降低过量空气系数下,使一氧化碳和炭黑燃烬,燃烧更加充分,因而降低了化学和机械不完全燃烧热损失,提高了煤的燃烧热效率,与直接烧煤相比可节煤5-10%。 3、氮氧化物的排放低 在气化室内煤层从下部引燃,并在下部燃烧,总体上气化室内温度比较低,属低温燃烧。而且在气化室内过量空气系数很小,大约在之间,属低氧燃烧。这为降低氮氧化物的排放提供了有利条件。煤中有机氮化学剂量小,并处在还原气氛中,只转变成不参与燃烧的无毒氮分子。煤中含有的氮氧化物,一部分在煤层半焦催化作用下反应生成氮气、水蒸汽和一氧化碳,还有一部分在穿过上部还原层时被还原成氮气。而气化室内脱去绝大部分挥发份的高温煤焦在进入燃烧室后,进行充足供氧强化燃烧,其中剩余的少量挥发份在半焦内部进一步热解氧化,氮氧化物在煤焦内部被进一步还原,生成的烟黑可燃物在经过焦层表面时被燃烬,从而控制和减少了氮氧化物的生成与排放。 4、有一定的脱硫作用 煤中的硫主要以无机硫(FeS2和硫酸盐)和有机硫的形式存在,而硫酸盐几乎全部存留在灰渣中,不会造成燃煤污染。在煤气化分相燃烧锅炉中,煤中的FeS2和有机硫在气化室内发生热分解反应,以及与煤气中的氢气发生还原反应,使煤中的硫以硫化氢气体的形式脱除释放出来。而且在气化室下部,温度一般在800℃左右,恰好是脱硫剂发挥作用的最佳反应温度。如燃用含硫量较高的煤,只需在碎煤粒中添加适量的石灰石或白云石,即可得到较好的脱硫效果,从而大大降低烟气中二氧化硫的含量。 5、操作和控制简单易行 煤气的发生和燃烧在同一设备的两个装置中进行,不用设置单独的煤气点火装置,煤气在燃烧室内由高温明火自行点燃,易于操作和控制,简化了运行管理,操作方便,减轻司炉工劳动强度,改善锅炉房卫生条件,实现文明生产。 6、燃烧稳定,煤种适应性强 煤在锅炉气化室的下部引燃,因而燃烧稳定。可燃劣质煤矿和燃点高的煤,其煤种适应性较强,在难熔区或中等结渣范围以内的煤种均适合。其中褐煤、长焰煤、不粘结或弱粘结烟煤、小球形型煤是比较理想的燃料。 五、结束语 实践证明,新的燃烧理论及多种专利组成的集成技术,保证了煤气化分相燃烧锅炉高效环保的稳定性及先进性,克服了旧技术无法解决的浪费及污染的难题,获得了明显的经济效益和环境效益,受到用户青睐。中国的煤炭资源十分丰富,随着能源政策和环境的要求越来越高,煤气化分相燃烧锅炉在我国市场前景十分广阔。

燃煤二氧化硫排放污染防治技术政策 1 总则 1.1 我国目前燃煤二氧化硫排放量占二氧化硫排放总量的90% 以上,为推动能源合理利用、 经济结构调整和产业升级,控制燃煤造成的二氧化硫大量排放,遏制酸沉降污染恶化趋势,防 治城市空气污染,根据《中华人民共和国大气污染防治法》以及《国民经济和社会发展第十个五 年计划纲要》的有关要求,并结合相关法规、政策和标准,制定本技术政策。 1.2 本技术政策是为实现2005年全国二氧化硫排放量在2000年基础上削减10% ,“两控 区”二氧化硫排放量减少20%,改善城市环境空气质量的控制目标提供技术支持和导向。 1.3 本技术政策适用于煤炭开采和加工、煤炭燃烧、烟气脱硫设施建设和相关技术装备的开 发应用,并作为企业建设和政府主管部门管理的技术依据。 1.4 本技术政策控制的主要污染源是燃煤电厂锅炉、工业锅炉和窑炉以及对局地环境污染有 显著影响的其他燃煤设施。重点区域是“两控区”,及对“两控区”酸雨的产生有较大影响的周 边省、市和地区。 1.5 本技术政策的总原则是:推行节约并合理使用能源、提高煤炭质量、高效低污染燃烧以及 末端治理相结合的综合防治措施,根据技术的经济可行性,严格二氧化硫排放污染控制要求, 减少二氧化硫排放。 1.6 本技术政策的技术路线是:电厂锅炉、大型工业锅炉和窑炉使用中、高硫份燃煤的,应安 装烟气脱硫设施;中小型工业锅炉和炉窑,应优先使用优质低硫煤、洗选煤等低污染燃料或其 它清洁能源;城市民用炉灶鼓励使用电、燃气等清洁能源或固硫型煤替代原煤散烧。 2 能源合理利用 2.1 鼓励可再生能源和清洁能源的开发利用,逐步改善和优化能源结构。 2.2 通过产业和产品结构调整,逐步淘汰落后工艺和产品,关闭或改造布局不合理、污染严重 的小企业;鼓励工业企业进行节能技术改造,采用先进洁净煤技术,提高能源利用效率。 2.3 逐步提高城市用电、燃气等清洁能源比例,清洁能源应优先供应民用燃烧设施和小型工 业燃烧设施。 2.4 城镇应统筹规划,多种方式解决热源,鼓励发展地热、电热膜供暖等采暖方式;城市市区 应发展集中供热和以热定电的热电联产,替代热网区内的分散小锅炉;热网区外和未进行集中 供热的城市地区,不应新建产热量在2.8 MW 以下的燃煤锅炉。 2.5 城镇民用炊事炉灶、茶浴炉以及产热量在O.7 MW 以下采暖炉应禁止燃用原煤,提倡使 用电、燃气等清洁能源或固硫型煤等低污染燃料,并应同时配套高效炉具。 2.6 逐步提高煤炭转化为电力的比例,鼓励建设坑口电厂并配套高效脱硫设施,变输煤为 输电。 2.7 到2003年,基本关停50 MW 以下(含50 MW)的常规燃煤机组;到2010年,逐步淘汰不 能满足环保要求的100 MW 以下的燃煤发电机组(综合利用电厂除外),提高火力发电的煤炭 使用效率。 3 煤炭生产、加工和供应 3.1 各地不得新建煤层含硫份大于3%的。矿井。对现有硫份大于3%的高硫小煤矿,应予关闭。对现有硫份大于3% 的高硫大煤矿,近期实行限产,到2005年仍未采取有效降硫措施、或 无法定点供应安装有脱硫设施并达到污染物排放标准的用户的,应予关闭。 3.2 除定点供应安装有脱硫设施并达到国家污染物排放标准的用户外,对新建硫份大于1.5 %的煤矿,应配套建设煤炭洗选设施。对现有硫份大于2% 的煤矿,应补建配套煤炭洗选 设施。 3.3 现有选煤厂应充分利用其洗选煤能力,加大动力煤的人洗量。 3.4 鼓励对现有高硫煤选煤厂进行技术改造,提高选煤除硫率。 3.5 鼓励选煤厂根据洗选煤特性采用先进洗选技术和装备,提高选煤除硫率。 3.6 鼓励煤炭气化、液化,鼓励发展先进煤气化技术用于城市民用煤气和工业燃气。 3.7 煤炭供应应符合当地县级以上人民政府对煤炭含硫量的要求。鼓励通过加入固硫剂等 措施降低二氧化硫的排放。 3.8 低硫煤和洗后动力煤,应优先供应给中小型燃煤设施。 4 煤炭燃烧 4.1 国务院划定的大气污染防治重点城市人民政府按照国家环保总局《关于划分高污染燃料 的规定>,划定禁止销售、使用高污染燃料区域(简称“禁燃区”),在该区域内停止燃用高污染燃 料,改用天然气、液化石油气、电或其他清洁能源。 4.2 在城市及其附近地区电、燃气尚未普及的情况下,小型工业锅炉、民用炉灶和采暖小煤炉 应优先采用固硫型煤,禁止原煤散烧。 4.3 民用型煤推广以无烟煤为原料的下点火固硫蜂窝煤技术,在特殊地区可应用以烟煤、褐 煤为原料的上点火固硫蜂窝煤技术。 4.4 在城市和其它煤炭调入地区的工业锅炉鼓励采用集中配煤炉前成型技术或集中配煤集 中成型技术,并通过耐高温固硫剂达到固硫目的。 4.5 鼓励研究解决固硫型煤燃烧中出现的着火延迟、燃烧强度降低和高温固硫效率低的技术 问题。 4.6 城市市区的工业锅炉更新或改造时应优先采用高效层燃锅炉,产热量7 MW 的热效率 应在80%以上,产热量<7 MW 的热效率应在75%以上。 4.7 使用流化床锅炉时,应添加石灰石等固硫剂,固硫率应满足排放标准要求。 4.8 鼓励研究开发基于煤气化技术的燃气一蒸汽联合循环发电等洁净煤技术。 5 烟气脱硫 5.1 电厂锅炉 5.1.1 燃用中、高硫煤的电厂锅炉必须配套安装烟气脱硫设施进行脱硫。 5.1.2 电厂锅炉采用烟气脱硫设施的适用范围是: 1)新、扩、改建燃煤电厂,应在建厂同时配套建设烟气脱硫设施,实现达标排放,并满足 SO2排放总量控制要求,烟气脱硫设施应在主机投运同时投入使用。 2)已建的火电机组,若So2排放未达排放标准或未达到排放总量许可要求、剩余寿命(按 照设计寿命计算)大于1O年(包括l0年)的,应补建烟气脱硫设施,实现达标排放,并满足8o2 排放总量控制要求。 3)已建的火电机组,若S 排放未达排放标准或禾达到排放总量许可要求、剩余寿命(按 照设计寿命计算)低于10年的,可采取低硫煤替代或其它具有同样SO2减排效果的措施,实现 达标排放,并满足So2排放总量控制要求。否则,应提前退役停运。 4)超期服役的火电机组,若SO2排放未达排放标准或未达到排放总量许可要求,应予以淘汰。 5.1.3 电厂锅炉烟气脱硫的技术路线是: 1)燃用含硫量2%煤的机组、或大容量机组(200 MW)的电厂锅炉建设烟气脱硫设施时, 宜优先考虑采用湿式石灰石一石膏法工艺,脱硫率应保证在90%以上,投运率应保证在电厂 正常发电时间的95%以上。 2)燃用含硫量<2%煤的中小电厂锅炉(<200 MW),或是剩余寿命低于10年的老机组 建设烟气脱硫设施时,在保证达标排放,并满足SO2排放总量控制要求的前提下,宜优先采用 半干法、干法或其它费用较低的成熟技术,脱硫率应保证在75%以上,投运率应保证在电厂正 常发电时间的95%以上。 5.1.4 火电机组烟气排放应配备二氧化硫和烟尘等污染物在线连续监测装置,并与环保行政 主管部门的管理信息系统联网。 5.1.5 在引进国外先进烟气脱硫装备的基础上,应同时掌握其设计、制造和运行技术,各地应 积极扶持烟气脱硫的示范工程。 5.1.6 应培育和扶持国内有实力的脱硫工程公司和脱硫服务公司,逐步提高其工程总承包能 力,规范脱硫工程建设和脱硫设备的生产和供应。 5.2 工业锅炉和窑炉 5.2.1 中小型燃煤工业锅炉(产热量<14 MW )提倡使用工业型煤、低硫煤和洗选煤。对配 备湿法除尘的,可优先采用如下的湿式除尘脱硫一体化工艺: 1)燃中低硫煤锅炉,可采用利用锅炉自排碱性废水或企业自排碱性废液的除尘脱硫工艺; 2)燃中高硫煤锅炉,可采用双碱法工艺。 5.2.2 大中型燃煤工业锅炉(产热量14 MW)可根据具体条件采用低硫煤替代、循环流化床 锅炉改造(加固硫剂)或采用烟气脱硫技术。 5.2.3 应逐步淘汰敞开式炉窑,炉窑可采用改变燃料、低硫煤替代、洗选煤或根据具体条件采 用烟气脱硫技术。 5.2.4 大中型燃煤工业锅炉和窑炉应逐步安装二氧化硫和烟尘在线监测装置。 5.3 采用烟气脱硫设施时,技术选用应考虑以下主要原则: 5.3.1 脱硫设备的寿命在15年以上; 5.3.2 脱硫设备有主要工艺参数(pH值、液气比和SO2出口浓度)的自控装置; 5.3.3 脱硫产物应稳定化或经适当处理,没有二次释放二氧化硫的风险; 5.3.4 脱硫产物和外排液无二次污染且能安全处置; 5.3.5 投资和运行费用适中; 5.3.6 脱硫设备可保证连续运行,在北方地区的应保证冬天可正常使用。 5.4 脱硫技术研究开发 5.4.1 鼓励研究开发适合当地资源条件、并能回收硫资源的技术。 5.4.2 鼓励研究开发对烟气进行同时脱硫脱氮的技术。 5.4.3 鼓励研究开发脱硫副产品处理、处置及资源化技术和装备。 6 二次污染防治 6.1选煤厂洗煤水应采用闭路循环,煤泥水经二次浓缩,絮凝沉淀处理,循环使用。 6.2 选煤厂的洗矸和尾矸应综合利用,供锅炉集中燃烧并高效脱硫,回收硫铁矿等有用组份, 废弃时应用土覆盖,并植被保护。 6.3 型煤加工时,不得使用有毒有害的助燃或固硫添加剂。 6.4 建设烟气脱硫装置时,应同时考虑副产品的回收和综合利用,减少废弃物的产生量和排 放量。 6.5 不能回收利用的脱硫副产品禁止直接堆放,应集中进行安全填埋处置,并达到相应的填 埋污染控制标准。 6.6 烟气脱硫中的脱硫液应采用闭路循环,减少外排;脱硫副产品过滤、增稠和脱水过程中产 生的工艺水应循环使用。 6.7 烟气脱硫外排液排人海水或其它水体时,脱硫液应经无害化处理,并须达到相应污染控 制标准要求,应加强对重金属元素的监测和控制,不得对海域或水体生态环境造成有害影响。 6.8 烟气脱硫后的排烟应避免温度过低对周边环境造成不利影响。 6.9 烟气脱硫副产品用作化肥时其成份指标应达到国家、行业相应的肥料等级标准,并不得 对农田生态产生有害影响。

我行可以的 我行可以的 我行可以的

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2