更全的杂志信息网

金属铜离子诱导结晶研究论文

发布时间:2024-07-07 18:47:21

金属铜离子诱导结晶研究论文

全文地址 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。关键词:生物传感器;发酵工业;环境监测。一、 引言从1962年,Clark和Lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(PCR)的发展,应用PCR的DNA生物传感器也越来越多。二、 研究现状及主要应用领域1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1). 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(Psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(Trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌()组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌—胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2). 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3). 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1). 生化需氧量的测定生化需氧量(biochemical oxygen demand –BOD)的测定是监测水体被有机物污染状况的最常用指标。常规的BOD测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种SPT1和SPT2,并将其固定在玻璃碳极上以构成微生物传感器用于测量BOD,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中BOD的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中BOD的测定提供了快捷简便的方法[4]。除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的BOD值。该传感器的反应时间是15min,最适工作条件为30°C,pH=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(Fe3+、Cu2+、Mn2+、Cr3+、Zn2+)所影响。该传感器已经应用于河水BOD的测定,并且获得了较好的结果[4]。现在有一种将BOD生物传感器经过光处理(即以TiO2作为半导体,用6 W灯照射约4min)后,灵敏度大大提高,很适用于河水中较低BOD的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的BOD值。它使用三对发光二极管和硅光电二极管,假单胞细菌(Pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2). 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(NOx-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的NOx-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在pH=、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌()中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:pH=、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(Pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸GF/A,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶G,与自动系统CL-FIA台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°C下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --NP-80E)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(Trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围内,电信号与NP-80E浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(Vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(Alcaligenes eutrophus (AE1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(Saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母CUP1基因上的铜离子诱导启动子与大肠杆菌lacZ基因的融合体。其工作原理,首先是CUP1启动子被Cu2+诱导,随后乳糖被用作底物进行测量。如果Cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围()´10-3mol范围内测定CuSO4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌Alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium Spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(PCR)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用PCR技术的DNA压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的DNA样品进行同样的杂交反应并由PCR放大,产物为气单胞菌属(Aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的PSP毒素[20]。DNA传感器也在迅速的得到应用,目前有一种小型化DNA生物传感器,能将DNA识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。

微蚀剂中的铜离子会增加微蚀率,因为铜离子有助于加速腐蚀铝合金表面的过程。铜离子可以形成氧化物,这些氧化物可以促进铝合金表面的氧化反应,从而增加微蚀率。

药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( , Oligo-l,6-glucosidase ),普鲁兰酶( ),异淀粉酶( , Isoamylose ),支链淀粉一6-葡聚糖酶( ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 蜡状芽抱杆菌覃状变种(Bacillus cereus ) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 嗜酸性分解普鲁兰多糖芽抱杆菌() 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸()。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于以上不长,在以普鲁兰糖为碳源的培养基(( ~)上生长良好。 枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为~,但在时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在~有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. Bacillusnaganoensis,Bacillus deramificans, 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, , Thermotoga maritime的最适温度和pH分别是90℃, , Thermurs caldopHilus的最适温度和pH分别是75℃,, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~,α~,α~,α~,α~,α~糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量(对碎米计),β~淀粉酶活性2,000单位/克以上,;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加,麦芽糖含量平均增加了,糊精含量平均减少了高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~和α~糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达,最佳发酵条件下产量可达 .酶的最适作用温度为600C,最适pH值,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全

铜离子对微蚀率的影响非常大。铜离子能影响微蚀率的原因是它具有非常强的氧化性,可以改变金属表面的化学结构,影响金属表面的微蚀率。另外,铜离子也可以通过改变微蚀剂的结构和温度,来影响金属的微蚀率。此外,铜离子还可以改变微蚀剂的酸碱性,从而影响微蚀率。总之,铜离子是影响微蚀率的重要因素,可以通过合理控制铜离子的含量,来改善金属表面的微蚀率。

金属离子研究现状论文

药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( , Oligo-l,6-glucosidase ),普鲁兰酶( ),异淀粉酶( , Isoamylose ),支链淀粉一6-葡聚糖酶( ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 蜡状芽抱杆菌覃状变种(Bacillus cereus ) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 嗜酸性分解普鲁兰多糖芽抱杆菌() 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸()。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于以上不长,在以普鲁兰糖为碳源的培养基(( ~)上生长良好。 枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为~,但在时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在~有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. Bacillusnaganoensis,Bacillus deramificans, 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, , Thermotoga maritime的最适温度和pH分别是90℃, , Thermurs caldopHilus的最适温度和pH分别是75℃,, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~,α~,α~,α~,α~,α~糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量(对碎米计),β~淀粉酶活性2,000单位/克以上,;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加,麦芽糖含量平均增加了,糊精含量平均减少了高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~和α~糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达,最佳发酵条件下产量可达 .酶的最适作用温度为600C,最适pH值,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全

浅谈金属催化有机反应中的碱效应论文

碱, 包括有机碱和无机碱, 在许多催化和计量有机反应中扮演极其重要的角色. 碱的存在不仅可以促进化学反应, 而且可以改变反应途径. 但化学家们对碱的作用的认识仍然不够明确, 缺乏系统的理解. 最近, 北京大学席振峰课题组对近年来涉及到碱的许多催化反应进行了系统分析, 概括出了影响碱作用的诸多因素, 其中包括碱性、溶解度、电离度、聚集度、溶剂、金属离子大小、金属离子Lewis 酸性、金属离子的“软硬”度、阴离子的大小、阴离子的配位作用等. 本文将对该文及相关文章中有关金属催化有机反应中碱的效应进行介绍.碱的强度可用不同的标准来衡量, 如夺取质子的能力及亲核性, 亲核性又与底物的性质相关. 目前, 大部分的研究认为碱在化学反应中的主要作用是去质子化和中和体系中的质子或酸.

有机碱的强度与取代基和结构有很大关系, 如常用的有机胺的碱性强度在许多文献中都有报道. 在有机溶剂中有很好溶解度的碱金属和碱土金属胺基化合物、烷氧基化合物以及其它金属有机化合物也常被看作有机碱, 例如叔丁醇钠, LDA 及M[N(SiMe3)2] (M=Li, Na,K). 典型的无机碱由金属离子和具有碱性或亲核性的负离子构成, 许多无机碱在有机溶剂中的溶解度较小, 常常需要使用极性大的有机溶剂来提高其溶解度. 无机碱的强度与很多因素有关, 其中最重要的因素是配对离子之间的静电作用及负离子的化学组成和结构. 在去质子化反应中, 影响反应效率的因素除了碱的去质子能力之外, 底物去质子后形成的碳负离子或其它负离子的稳定性也对反应产物收率有极大影响, 而后者的稳定性与金属离子密切相关, 因此无论是正离子和负离子的性质对反应的效率及其选择性的影响都是非常明显的. 例如,Kobayashi 等在2012 年报道了叔丁醇锂作用下的吲哚3-位羧基化反应该反应最初使用的是钯催化的体系, 反应中选择不同碱会使得反应收率有明显变化.当使用弱碱K2CO3 时能得到痕量的羧基化产物, 而当使用较强的Cs2CO3时, 反应收率有了显著提高. 碱性强弱的影响同样体现在叔丁醇类碱中——使用碱性较弱的叔丁醇锂能得到好的反应收率但碱性相对较强的叔丁醇钠则不能得到预期产物, 这很有可能与形成的碳负离子的稳定性相关. 由此可见, 无机碱中的正负离子的性质是影响反应的核心因素之一.

无机碱中的阴离子种类很多, 在有机合成中常用的阴离子包括碳酸根, 磷酸根, 烷氧基和胺基, 卤素及其他类卤素负离子等. 阴离子对反应的影响不仅体现在对反应速度和产率的影响上, 同时也有可能对反应的选择性产生影响 实验结果表明不同阴离子对反应结果的影响很大, 同时需要维持较低的碱阴离子浓度反应才能正常进行. 在这个特殊的反应中, 阴离子的种类对反应有很大影响, 而阳离子影响很小. Doucet等报道过对于相同的底物, 当使用不同的碱时, 会得到不同的产物.ClCF3[Pd] TBABbase, DMAcF3CNaOAc: 64%; KOAc: 61%; Na2CO3: 61%; Cs2CO3: 25%;CaO: 67%; t-BuONa: 3%; NEt3: 12%+ (2)阴离子也可作为配体与催化剂中的金属配位, 从而影响金属中心的反应性. 在许多Pd 催化的偶联反应中碱的作用很有可能是多方面的, 除了传统的促进转金属化, 其与催化剂作用从而提高活性中心的氧化加成能力也不可忽视, 同时金属中心与无机碱中的阴离子的作用, 也有可能提高阴离子的碱性. Fagnou 等[4]在研究Pd催化偶联反应中提出的.协同的“金属化/去质子化”(concerted metalation/deprotonation, 简称“CMD”)来解释碱的作用: 碱与金属中心Pd 配位, 使碱的去质子化能力提高, 从而可活化C—H 键.

催化剂金属中心和碱的匹配才能产生协同作用, 从而有效促进催化过程. 2014 年Norrby 等报道了碱在Buchwald-Hartwig Amination 反应中的作用. 他们研究了t-BuO-和DBU 在不同溶剂中对反应过程的影响, 并通过Eq. 3 所示反应进一步验证了理论计算结果. 在非极性溶剂中, t-BuO-可以有效地拔除和钯配位的吗啉上胺氢, 进而进行有效的C-N 偶联. 而中性碱DBU 效果不好, 需要在高温和微波下才能促进反应进行. 在极性溶剂中, 尽管计算表明相对非极性溶剂中DBU 参与的反应能垒变小了, 但是和t-BuO-相比效果仍然较差.阳离子在过渡金属催化的反应所起到的作用同样不可忽视. 在偶联反应中, 转金属化的速率与碱中的阳离子种类有很大关系[6]. 阳离子的大小、软硬度以及Lewis 酸性等[6]都有可能对反应结果造成影响. 阳离子也有可能影响反应活性中间体的结构及稳定性. Shibasaki等[8]在2009 年报道了不对称催化合成手性有机硼酯的反应, 叔丁醇锂、钠、钾都能促进这一反应的进行,但反应的收率和ee 值对应的碱都是t-BuOLi>t-BuONa>t-BuOK, 表明锂离子对该反应的特殊效应. 2010 年,Hayashi 等也提及t-BuOM (M=Li, Na, K)中阳离子会影响反应途径, t-BuO-是一个单电子供体, 配对阳离子如是Na 和K 离子时, 反应会涉及单电子转移(singleelectron transfer, 简称SET)过程.

总之, 碱在催化反应中的作用极其复杂, 在催化循环中的任何一步都有可能对反应结果造成影响, 碱的不同甚至会影响基元反应的本质, 这主要体现在碱对催化剂、配体以及底物和基元反应的影响都不可忽视, 从而使其效应更加复杂. 但碱在许多催化反应中的核心功能会逐渐更加清晰. 席振峰教授课题组通过对文献的分析, 提出了碱对反应影响的诸多因素, 使化学家对碱在催化过程中的复杂性有了新的认识, 这是一个极其重要的科学问题, 有待于化学家进行更加系统全面的研究.。

近日,电子 科技 大学材料与能源学院夏川教授以第一作者和共同通讯作者身份在国际著名期刊Nature Chemistry (《自然–化学》)上发表题为“General synthesis of single-atom catalysts with high metal loading using graphene quantum dots”的研究论文。该研究开发了一套高载量过渡金属单原子材料的普适性合成策略,实现了高达 40 wt.% 或 at.% 的高过渡金属原子负载,比目前报道的单原子负载量提升了几倍甚至数十倍。 该工作由电子 科技 大学、加拿大光源和美国莱斯大学三个单位共同合作完成。材料与能源学院的夏川教授为论文第一作者和通讯作者,美国莱斯大学的汪淏田教授和加拿大光源的胡永峰教授为论文通讯作者。该合作团队在电催化材料研究和电化学反应器设计领域建立了坚实的基础,并取得了丰硕的研究成果。 过渡金属单原子材料具有极高的原子利用率、独特的电子结构以及明晰且可调的配位结构,在各种电催化过程中展现出优异的活性。但常规单原子材料中金属原子密度较低(通常小于5 wt.%或1 at.%),大大限制了其整体催化性能及工业应用前景,因此发展出高载量过渡金属单原子材料普适性合成策略至关重要。现有“自上而下”和“自下而上”工艺对提高合成单原子材料的金属负载量有很大的局限(图1, a-b)。以碳材料负载的单原子为例,现有的“自上而下”方法通过在碳材料载体表面制造缺陷,然后通过缺陷稳定单原子。然而,无法精确调控缺陷尺寸导致缺陷位点的数目极大地受到限制,而且当金属负载量提高时,容易在大尺寸的缺陷位处形成团簇。“自下而上”方法则使用金属和有机物前驱体(如金属有机框架、金属-卟啉分子、金属-有机小分子)热解碳化的方式获得负载金属单原子的碳材料。在金属负载量过大时,金属原子之间将因为没有足够的隔离空间而导致热解过程中团簇或者颗粒的产生。 鉴于此,该团队发展了区别于现有“自上而下”和“自下而上”工艺的单原子催化材料制备方法(图1c),以突破单原子负载量的限制。该团队创新性地使用比表面大、热稳定性高的石墨烯量子点作为碳基底,对其进行-NH2基团修饰,使其对金属离子具有高配位活性。引入金属离子后可得到以金属离子作为节点、功能化石墨烯量子点作为结构单元的交联网络,最后热解即可得到高载量的金属单原子材料。相较于传统“自上而下”和“自下而上”的单原子催化剂合成方法,该研究报道的方法既保证了高含量金属离子初始锚定时的高分散性又能有效抑制后续热解过程基底烧结重构引起的金属原子团聚。 XAFS、HADDF-STEM等多种表征手段证明,由该法制得的负载型金属单原子催化材料在保证金属原子单分散的同时还能实现远超现有文献报道水平的金属载量。借助该方法,该团队成功制备出质量分数高达(原子分数为)的Ir单原子催化材料(图2),该负载量相较于文献报道的Ir单原子最高载量提升了数倍。 另外,该合成策略还具有普适性,能够用于制备其他贵金属或非贵金属的高载量金属单原子催化材料。例如,在碳基底材料上,Pt单原子的负载量最高可达 wt.%,Ni单原子负载量可达15 wt.%(图3)。 夏川,电子 科技 大学材料与能源学院教授,国家青年人才。研究方向为基于新能源的电催化、电合成、电化学生物合成,致力于实现碳平衡的能量与物质循环。在“液体燃料与基础化学品现场合成”这一特色方向开展了深入、系统的研究,在反应器与催化剂设计领域均取得丰硕成果,共发表学术论文50余篇,授权美国专利3项,H因子34,引用5200余次。近五年来,以第一作者/通讯作者身份在Science、Nat. Energy、Nat. Catal.、Nat. Chem.等国内外高水平期刊共发表论文20余篇,其中ESI高被引论文9篇,热点论文2篇。

铜金属材料论文研究

留下邮箱,找到两篇论文,发给你!

这种文体一般是先指出对方错误的实质,或直接批驳(驳论点),或间接批驳(驳论据、驳论证);继而,针锋相对地提出自己的观点并加以论证。驳论是跟立论紧密联系着的,因为反驳对方的错误论点,往往要针锋相对地提出自己的正确论点,以便彻底驳倒错误论点。侧重于驳论的议论文是驳论文.驳论文往往破中有立,边破边立,即在反驳对方错误论点的同时,针锋相对地提出自己的正确观点.批驳错误论点的方法有三种:1.驳论点2.驳论据3.驳论证.但归根结底是为了驳论点。 驳论文是议论文常见的论证文体,在对一些社会丑陋现象的批判与揭露上价值尤为突出,但学生在写作中往往感到不知从何驳起,无从下笔。其实,这类文章写作有一个思路,那就是:1、列现象,2、示弊端,3、探根源,4、指出路。本文适宜高中课文,鲁迅先生的名篇《拿来主义》为例,对驳论文的这一特征予以探析。

写铜的从古至今的历程,我过炼铜很早,有一个曾青得铁即为铜的炼铜法,铜是重金属,铜常用做导线,金属物表面镀铜,农药常用波尔多液什么的。

重金属离子捕捉剂的研究论文

1、具有强大的螯合力能有效地与重金属发生化学反应生成不溶物,尤其是汞、镉,主要应用于湿法硫工艺过程中;2、几乎能吸附所有的重金属,尤其在废水处理中,通过简单的处理可以去除所有溶解的残留重金属;3、金属—沉淀物具有良好的温度稳定性,重金属很难重新释放到环境中去,是环境友好的重金属捕捉剂; 4、具有良好的毒理学和生物学特性,其毒性很低;5、具有良好的存储稳定性和操作安全性,不属于危险物品,无不良气味,不分解出有毒物质。

重金属捕捉剂是液体金属沉淀剂。它可以有效沉淀金属离子,使废水中的金属离子浓度降低。

就是重金属捕捉剂与重金属离子发生化学反应,短时间内生成不溶于水、含水量低、容易过滤的絮状物。

选择好的重金属捕捉剂应从以下因素考虑。1、用量更少,成本更低经过分子结构层面的设计,相同用量的第三代固体重捕剂可以螯合更多的重金属离子生成不 溶性沉淀。其用量相对于液体重捕剂可减少 1/3-1/2,总体成本降低 30%以上。2、适用 pH 范围广在更宽的的范围内均具有很强的螯合能力,能够与重金属形成完全不溶于水的螯合沉淀物的重金属捕捉剂,才具备处理不同类型的重金属废水的能力。3、达到表三标准目前环保执法力度越来越严格,投加重金属捕捉剂后,重金属废水的处理效果需要达到表三以下,方可排放。

氧化亚铜粉二次结晶研究论文

玉沁是玉中带有颜色的一种通常为丝状的物质。玉沁一般可分为五种:黄色沁称土沁,白色为水沁,绿色为铜沁,紫红色为血沁,黑色为水银沁。 据一位著名玉器专家曾卫胜(曾卫胜是宝玉石鉴定专家,对古玉沁色有较深的研究,曾发表研究论文《玉器“沁色”的做旧仿古与鉴别》) 介绍,玉具有善于吸收其他物质的特性。被埋在土中的玉器,会将近邻的物质吸入自己体内,如土地中的水银,相邻的松香、石灰及其他各种物质都会随之浸淫到玉里面,再加上玉本身存在的物质也会起着变化作用,所以凡是出土的古玉,都会沾染上某种或几种颜色,这就是所谓“沁色”。当古玉出土后,经过人的把玩,其体内的物质成分又会受到人气的涵养,从而使玉性又会慢慢复苏,古玉原先的沁色也会随之发生奇妙的变化,呈现出五光十色的丰富色彩。 由于玉质的不同、入土的时间、地点不同,玉受沁的深浅程度也自然不一样,所以出土的古玉沁色会有千差万别。在玉器行业内有沁色“十三彩”之说,意思就是说玉器色彩之多。古玉之所以沁色不同也跟近邻物质有着密切关系,玉器埋于土中时间长了必然会受到土的侵蚀,受土侵蚀较轻的称“土蚀”、“土锈”",较重的称“土浸”、“土斑”,它们都是受地气熏蒸而致。由于这种含沙性的土时间久了会渗到玉的肌理中,并与玉的本身物质发生变化,合为一体,所以这样形成的“土锈”、“土斑”用刀是刮不掉的。如受黄土沁的古玉颜色如栗子黄;受松香沁的古玉颜色如蜜蜡,呈淡黄色;受靛青沁的古玉色如青天,这是由于服装上的靛蓝深入到玉的纹理;受铁沁的古玉颜色赤红,称“枣皮红”,色深的称“酱瓣紫”;受铜沁的古玉色如翡翠,称“鹦哥绿”,这是因为铜器入土后,产生铜绿,如果玉器在它边上,铜绿就深入其中,出土复原后色泽比翠更加娇嫩滋润;受地中温度影响的古玉则都变成白色,谓之“鸡骨白”、“象牙白”、“鱼肚白”等;受石灰沁的古玉呈淡绯色,经过盘玩后,色如绯霞一样光彩夺目。 由于我国玉文化历史久远,因此有不少好玉之士,对沁色的研究却有不少精辟之处,但其中也有相当多的对“玉沁”的以讹传讹的说法流传下来。而现代人面对这些说法,应当通过认证的科学态度加以认识。不过在这其中还存在一些想当然的所谓专家,不借助专科只是,总以一知半解的方法,给沁色做出武断的解释。比如说“寿衣沁”便是一例。陕西省扶风县召陈村出土的西周双龙纹玉环,上面有古玉书中形容的微发紫色的“寿衣沁”。古人认为是“寿衣”的色沁入玉里,而现代不少专家都认为,所谓“寿衣沁”是含有高锰酸钾的锰矿物沁入玉体使然。其实自然界的天然锰矿,只以二氧化锰的形式存在,俗称软锰矿,它要经过高温还原才能作为着色剂呈现紫色。古代没有高锰酸钾这种化合物,所以直接的锰矿物沁入玉体呈现紫色的说法是欠缺道理的。古人为什么要说是“寿衣沁”?大概与古人因地制宜把自然界中的二氧化锰矿粉作为织物印染着色剂还原后使用有关。这些印染后的衣物带有锰元素,入葬后与人体骨骼肌和肝脏内含有的大量锰元素一起作用,在尸体氧化腐败后,沁入玉体使然的。 再比如说“铜绿沁”,有很多人都认为那是由于铜锈沁入的结果,这种理解是错误的。其实铜锈的产生是个电解氧化的过程,铜锈大致可分三种:一种是氧化铜,锈色呈黑色或棕黑色,属于无定形结晶性粉末;另一种是氧化亚铜,锈色为红色粉末状固体;最后一种是碱式碳酸铜,呈孔雀绿颜色,为细小颗粒的无定形结晶性粉末。从这些可以推断,古玉中绿沁的形成,如果和铜沁有关联的话,那也是只有在碱式碳酸铜的电解条件下形成的。曾经在南越王墓出土的玉盖杯,从上面可以发现金属与玉器接触的地方留有沁色。玉材中有金属阳离子成分,它和铜金氧化后的阳离子长期接触后,在氧化的气氛下,发生了电解过程,从而产生了沁色现象。南越王墓出土的玉盖杯,在四组钻孔镶嵌属件的地方,电解沁色后的变化,使玉盖上都有了沁色。而其他部位因没有镶嵌金属件,同样的墓葬环境下,结果没有任何沁色产生。一般沁色的形成是一种由外向里的浸润过程,而铜绿沁则是在氧化条件下,通过电解阳离子交换的过程,最终产生的铜沁。认识这一点对于鉴定大有裨益。 以上这些都是鉴别古玉器“玉沁”的一些简单常识。我们的古玉鉴定常常借助的是眼学。面对那么多的古玉沁色和许多未知的玉文化领域,在没有更多的科技研究成果支持下,要判断一件玉器的真伪,确实是件不容易的事情。现在的作伪仿古技术,已经大大超越了个体的人脑智慧程度,一个作伪方法的出现,往往是依靠—个作伪群体的学识,或者借助公布出来的科技研究成果集合而成的。所以旧时的眼学如果没有一个与时俱进的升华过程,想对一些传世古玉进行有说服力的鉴定,怕是很难很难。古玉器专家曾卫胜特别提醒古玉收藏者,由于现代科技手段作伪“沁”已经达到很高水品,希望收藏者在平时的收藏学习过程中认真研究,多学多问,要慢慢体会,不要急功近利,尽量少吃亏。

(1)取少量粉末放入足量稀硫酸中.在所得溶液中再滴加KSCN试剂,若假设1成立,红色粉末是Fe2O3,则实验现象是固体完全溶解,溶液呈血红色;故答案为:固体完全溶解,溶液呈血红色;(2)滴加KSCN试剂后溶液不变红色,说明溶液中无铁离子,可能是氧化亚铜在酸中发生氧化还原反应生成氧化铜和铜,生成的铜能把铁离子还原为亚铁离子,使溶液遇到硫氰酸钾不变红色,所以滴加KSCN试剂后溶液不变红色,不能说明原混合物不含氧化铁;故答案为:不合理;当原固体粉末为Fe2O3和Cu2O的混合物时,加入稀H2SO4后产生的Fe3+与Cu反应生成Fe2+,滴加KSCN溶液后也可能不变红色;(3)固体完全溶解,无固体存在,说明固体含有氧化铁和氧化亚铜;反应生成的铜会和铁离子全部反应,反应的离子方程式为:Cu2O+2H+═Cu+Cu2++H2O、2Fe3++Cu═2Fe2++Cu2+;故答案为:Fe2O3和Cu2O;Cu2O+2H+═Cu+Cu2++H2O、2Fe3++Cu═2Fe2++Cu2+;(4)①红色粉末为Fe2O3和Cu2O的混合物溶于硫酸后氧化亚铜反应生成的铜会还原铁离子为亚铁离子,加入氧化剂过氧化氢氧化亚铁离子为铁离子,调节溶液PH使铁离子全部沉淀,为不引入杂质需要加入氧化铜或碱式碳酸铜调节溶液PH,AC会引入新的杂质;故答案为:B;D;②流程分析判断固体X为氢氧化铁沉淀;故答案为:Fe(OH)3;③操作Ⅰ是溶液中得到溶质结晶水合物;是通过蒸发浓缩冷却结晶,过滤洗涤干燥得到晶体;故答案为:蒸发浓缩、冷却结晶.

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2