更全的杂志信息网

吞噬细胞的分类研究的论文分析

发布时间:2024-07-05 22:41:35

吞噬细胞的分类研究的论文分析

医学科研实验基础知识笔记(四):细胞自噬研究策略

细胞自噬是指细胞在外界环境因素的影响下, 细胞利用溶酶体降解自身受损、 变性或衰老的大分子物质以及细胞器的自我消化过程。自噬是细胞的一种自我保护机制, 广泛存在于真核细胞内, 在调节细胞生存和死亡的过程中, 起着重要的作用。

当细胞发生自噬后, 在自噬相关基因的调节下, 细胞通过单层或双层膜, 包裹待降解的细胞质或细胞器, 形成囊泡状的自噬体(autophagosome) 。然后自噬体再和溶酶体(lysosome)

发生融合形成自噬溶酶体(autolysosome) , 由溶酶体内的一系列水解酶, 降解自噬溶酶体内所包裹的内容物, 以实现细胞对自身代谢和能量的更新。

1.自噬的细胞学分类及过程

根据细胞内物质运输到溶酶体的方式以及生理功能的差异, 哺乳动物的细胞自噬可以分为三种类型:大自噬/宏自噬(macroautophagy) , 小自噬/微自噬(microautophagy) 和分子伴侣介导的自噬(chaperone-mediated autophagy, CMA) 。

1) 大自噬/宏自噬:我们通常所说的自噬指的就是大自噬/宏自噬。在大自噬的过程中, 细胞质中可溶性的大分子物质以及变性的细胞器, 被内质网、 线粒体来源的单层或双层膜包裹形成自噬体。接着自噬体的外膜与溶酶体膜融合, 进一步形成自噬溶酶体, 自噬体内的待降解物被一系列的水解酶降解, 最终完成整个的自噬过程。

2) 小自噬/微自噬:与大自噬过程不同, 是溶酶体膜自身发生内陷, 包裹和吞噬细胞内待降解的底物, 并在溶酶体内发生降解。小自噬与大自噬的区别就在于, 在小自噬过程中胞质成份是直接被溶酶体包裹, 没有形成自噬体的过程。

3) 分子伴侣介导的自噬:在分子伴侣介导发生的自噬过程中, 其待降解的底物都是可溶性的蛋白质分子。分子伴侣蛋白识别带有特定氨基酸序列的底物蛋白质分子, 并与之结合, 然后再经溶酶体膜上的受体 Lamp2a(lysosome-associated membrane protein 2, Lamp2) 转运到溶酶体;底物蛋白分子再在溶酶体内, 被水解酶降解。因此, 分子伴侣介导的自噬与前两者不同, 在降解蛋白时具有选择性。而大自噬和小自噬现象中, 一般而言, 在降解蛋白时没有明显的选择性。

2.自噬信号通路

3.自噬与凋亡的关系

细胞凋亡也被称为 I 型程序性细胞死亡;自噬则被称为 II 型程序性细胞死亡。凋亡和自噬是两种显著不同的细胞死亡形式, 两者在形态、 生化指标以及调控细胞死亡的过程上都存在着较大的差异, 但两者又不是两个完全独立的过程。许多研究表明, 凋亡和自噬的作用以及功能在某些情况下也是相互影响和制约的。自噬和凋亡之间存在着三种不同类型的相互作用,而且每种类型都对应着相应的特定的细胞类型、 刺激和环境。

1) 自噬和凋亡互相协同, 共同促进细胞死亡。两种效应之间, 可以其中一种效应影响另一种效应;自噬也可以作为凋亡的上游调节因子, 直接调控细胞凋亡, 从而影响细胞的死亡;

2) 自噬可以通过促进细胞存活而拮抗细胞的凋亡效应。比如, 可以通过去除因氧化应激受损的细胞器, 或降解变性的大分子物质, 为饥饿的细胞提供生存所需要的营养和能量;或者通过降解未折叠的蛋白来抑制内质网应激。自噬的这些功能将会抑制促凋亡信号的产生, 从而起到拮抗细胞凋亡的作用。

3) 自噬有时虽然自身并没有导致细胞死亡, 但却参与了细胞凋亡的过程。比如自噬参与了一些 ATP 依赖的凋亡过程。

4.自噬的分子机制和特征

1) 自噬诱导阶段(induction) :正常生理状态下, 细胞保持很低的基础自噬水平。这时细胞内能量充足,哺乳动物雷帕霉素靶蛋白复合物 1(也就是 mTOR 复合物 1,也叫做 mTORC1)处于活化的状态。活化的 mTORC1 通过磷酸化的方式使得 ATG13 发生磷酸化反应, 从而抑制细胞的自噬。

2) 成核过程(vesicle nucleation) :成核过程和 Vps34-ATG6 复合物密切相关。这个复合物还包含有调节性蛋白激酶 Vps15, 共同作用于膜泡的成核, 介导 PAS(也就是前自噬体结构pre-autophagosomal structure)的形成。

Vps34-ATG6 复合体还可以召集 ATG12-ATG5 和 ATG16 多聚体以及 LC3, 并通过后两者促进吞噬泡的伸展扩张。请大家注意, Vps34 在哺乳动物中的同源蛋白是 class III PI3K;ATG6在哺乳动物中的同源蛋白是 Beclin-1, 所以 Vps34-ATG6 复合体, 也被称为 PI3K-Beclin-1复合物。

3) 自噬体的延伸阶段:这个过程的分子机制是最为复杂的。哺乳动物自噬体的延伸主要依赖于两个类泛素化的系统:a) ATG12 的结合过程;b) LC3 的修饰过程。

ATG12 的结合过程是类似泛素化的过程, 需泛素活化酶 E1 和 E2 的参与。ATG12 首先由 E1样酶 ATG7 活化, 再通过 E2 样酶 ATG10 转运并结合 ATG5, 然后和 ATG16 结合, 生成ATG12-ATG5-ATG16 的多体复合物。这个复合物定位于前自噬体结构的外膜表面, 并参与前自噬体外膜的扩张。

LC3 在酵母中的同源基因是 ATG8。LC3 的修饰过程同样需要类似泛素活化酶 E1 和 E2 的参与。LC3 前体形成后被 ATG4 加工成胞浆可溶性的 LC3-Ⅰ, 然后在 E1 样酶 ATG7 和 E2样酶 ATG3 的作用下, 和磷脂酰乙醇胺(PE)共价连接成为脂溶性的 LC3-PE(也就是 LC3-II),并参与膜的延伸。LC3-Ⅱ能够与新形成的膜结合, 直到自噬溶酶体(Autolysosome)的形成。因此, LC3-Ⅱ常用作自噬形成的标识物, 也是一种重要的定位于自噬泡膜上的多信号传导调节蛋白。

哺乳动物的 ATG12-ATG5 类泛素化过程和 LC3 类泛素化过程并不是独立运行的, 它们之间可以相互作用、 相互调节。

4) 自噬体的成熟阶段:自噬体的成熟主要是指自噬体通过微管骨架在转运必须内吞体分类复合物(ESCRT)和单体 GTP 酶(Rab S)作用下, 与溶酶体融合形成自噬溶酶体的过程。参与成熟阶段的溶酶体相关蛋白还包括:LAMP1、 LAMP2、 UVRAG(紫外线抵抗相关肿瘤抑制基因)。

5) 自噬体的裂解阶段:是指自噬溶酶体膜的裂解及内容物在溶酶体水解酶的作用下降解的过程。降解过程中产生的氨基酸及部分蛋白可以为细胞提供营养、 能量或循环利用。

5.自噬诱导剂

a) Bredeldin A / Thapsigargin / Tunicamycin :模拟内质网应激

b) Carbamazepine/ L-690,330/ Lithium Chloride(氯化锂):IMPase 抑制剂(即Inositol monophosphatase,肌醇单磷酸酶)

c) Earle's平衡盐溶液:制造饥饿

d) N-Acetyl-D-sphingosine(C2-ceramide):Class I PI3K Pathway抑制剂

e) Rapamycin:mTOR抑制剂

f) Xestospongin B/C:IP3R阻滞剂

6.自噬抑制剂

a) 3-Methyladenine(3-MA):(Class III PI3K) hVps34 抑制剂

b) Bafilomycin A1:质子泵抑制剂

c) Hydroxychloroquine(羟氯喹)

除了选用上述工具药外,一般还需结合遗传学技术对自噬相关基因进行干预:包括反义RNA干扰技术(Knockdown)、突变株筛选、外源基因导入等。

7.自噬的检测手段

自噬的评估通常采用多个自噬阶段的标志物,因为自噬小体数量的增加可能是自噬上调也可能是自噬最后阶段降解被抑制所致,所以设置合适的对照很有必要。

(1)透射电镜,电镜观察自噬体和溶酶体的超微结构;

(2)WB检测标志物LC3/Atg8和p62/SQSTM1;生化检测自噬体膜标志蛋白, 特别是ATG12、 ATG5 和 LC3;荧光显微镜检测 LC3 或GFP-LC3 斑点的形成;生化检测自噬底物 p62。

(3)WB检测Lamps、Atg5、Atg14和Beclin-1。

(4)组织蛋白酶Cathepsin活力检测。

(5)IF检测自噬潮autophagic flux

自噬过程进行观察和检测 细胞经诱导或抑制后,需对自噬过程进行观察和检测,常用的策略和技术有:

(1)观察自噬体的形成

由于自噬体属于亚细胞结构,普通光镜下看不到,因此,直接观察自噬体需在透射电镜下。Phagophore的特征为:新月状或杯状,双层或多层膜,有包绕胞浆成分的趋势。自噬体(AV1)的特征为:双层或多层膜的液泡状结构,内含胞浆成分,如线粒体、内质网、核糖体等。自噬溶酶体(AV2)的特征为:单层膜,胞浆成分已降解。(autophagic vacuole,AV)

(2)在荧光显微镜下采用GFP-LC3融合蛋白来示踪自噬形成

由于电镜耗时长,不利于监测(Monitoring)自噬形成,人们利用LC3在自噬形成过程中发生聚集的现象开发出了此技术。无自噬时,GFP-LC3融合蛋白弥散在胞浆中;自噬形成时,GFP-LC3融合蛋白转位至自噬体膜,在荧光显微镜下形成多个明亮的绿色荧光斑点,一个斑点相当于一个自噬体,可以通过计数来评价自噬活性的高低。

(3)利用Western Blot检测LC3-II/I比值的变化以评价自噬形成自噬形成时,胞浆型LC3(即LC3-I)会酶解掉一小段多肽,转变为(自噬体)膜型(即LC3-II),因此,LC3-II/I比值的大小可估计自噬水平的高低。

(注意:LC3抗体对LC3-II有更高的亲和力,会造成假阳性。需要多种检测方法结合使用,同时需考虑溶酶体活性的影响。)

(4)检测长寿蛋白的批量降解:非特异

(5)MDC(Monodansylcadaverine,单丹磺酰尸胺)染色:包括自噬体,所有酸性液泡都被染色,故属于非特异性的。

(6)CellTrackerTM Green染色:主要用于双染色,但其能染所有的液泡,故也属于非特异性的。

自噬相关蛋白的定位 在研究自噬相关蛋白时,需对其进行定位。

由于自噬体与溶酶体、线粒体、内质网、高尔基体关系密切,为了区别,常用到一些示踪蛋白在荧光显微镜下来共定位:

Lamp-2:溶酶体膜蛋白,可用于监测自噬体与溶酶体融合。

LysoTrackerTM 探针:有红或蓝色可选,显示所有酸性液泡。

pDsRed2-mito:载体,转染后表达一个融合蛋白(红色荧光蛋白+线粒体基质定位信号),可用来检测线粒体被自噬掉的程度(Mitophagy)。

MitoTraker探针:特异性显示活的线粒体,荧光在经过固定后还能保留。

Hsp60:定位与线粒体基质,细胞死亡时不会被释放。

Calreticulin(钙网织蛋白):内质网腔

(注意:这些蛋白均为胞浆蛋白,爬片或胰酶消化的细胞在做免疫荧光前需先透膜(permeablize),可采用处理。)

8.自噬研究常规思路

通常情况下,除了研究自噬现象本身,大家更多的是将自噬与各种生命活动或者疾病结合起来,把自噬作为这些方向的一个机制来研究。比如研究自噬如何参与肿瘤的发生发展、如何参与肿瘤的耐药性与复发转移、如何参与肿瘤免疫治疗的效果、如何参与炎症反应、如何参与氧化应激,如何参与自闭症、阿尔兹海默症的发生与治疗等,通常的研究模式:

(1)证明自噬参与了相关研究表型(电镜、LC3II/I-WB、LC3亚细胞定位、LC3荧光示踪监测自噬流等)

(2)证明自噬在表型中起到关键作用(通过自噬抑制剂、激动剂进行关联研究)找到表型与自噬桥梁分子(检测pI3K通路、Beclin-1、ATG家族各成员)

(3)在基因层面通过gain of/lost of function研究桥梁分子在自噬中的作用。

9.研究自噬的文献参考

[1]. Emerging Mechanisms in Initiating and Terminating Autophagy. Trends Biochem Sci. 2017 Jan;42(1):28-41.

[2]. Targeting autophagy in cancer. Nat Rev Cancer. 2017 Sep;17(9):528-542.

[3]. Autophagy: controlling cell fate in rheumatic diseases. Nat Rev Rheumatol. 2016 Sep;12(9):517-31.

[4]. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat Rev Immunol. 2016 Nov;16(11):661-675.

[5]. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron. 2017 Mar 8;93(5):1015-1034.

[6]. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 2017 Apr;14(4):247-258.

[7]. Epigenetic Control of Autophagy: Nuclear Events Gain More Attention. Mol Mar 2;65(5):781-785.

[8]. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Jul;16(7):487-511.

一、三种细胞的关系是:

白细胞包括了淋巴细胞和吞噬细胞,吞噬细胞与淋巴细胞为白细胞分类下的两种不同细胞。

二、吞噬细胞、白细胞、淋巴细胞的区别:

1、具体分类不同

白细胞不是一个均一的细胞群,可以分为三大类:粒细胞、单核细胞和淋巴细胞。因此淋巴细胞属于白细胞的一种。而吞噬细胞是中性粒细胞的一种,中性粒细胞又属于粒细胞,因此吞噬细胞也是白细胞的一种。

2、功能不同

白血病主要功能是防卫作用,不同种类的白细胞以不同的方式参与机体的防御反应。淋巴细胞主要的功能是免疫识别功能,吞噬细胞主要用于识别异物并将其吞入和消灭。

3、分布不同

白细胞一般有活跃的移动能力,它们可以从血管内迁移到血管外,或从血管外组织迁移到血管内。因此,白细胞除存在于血液和淋巴中外,也广泛存在于血管、淋巴管以外的组织中。

淋巴细胞中的T细胞和B细胞都是抗原特异性淋巴细胞,它们的最初来源是相同的,都来自造血组织。而吞噬细胞来自于骨髓和血液,常聚集于人体侵入物的所在地。

参考资料来源:百度百科-白细胞

参考资料来源:百度百科-吞噬细胞

参考资料来源:百度百科-淋巴细胞

非特异性免疫非特异性免疫是指无特殊针对性的对病原体的天然抵抗力。它是在生物进化过程中逐步形成的,所以不只是某个个体所特有的,是种系所共有的,可遗传的。它与机体的组织结构和生理功能有密切关系。在抗感染过程中,它发挥作用快、范围广泛,是抗感染的第一道防线。非特异性免疫主要包括下述五方面:皮肤、粘膜和屏障结构的屏障作用,淋巴组织(淋巴结、脾等)的过滤作用,血清、体液和组织分泌物的杀菌作用,单核-吞噬系统的吞噬作用,炎症反应的病理防御作用。2、特异性免疫特异性免疫又称“获得性免疫”。是人体在生活中与抗原物质接触后所产生的免疫功能,是出生后形成的。其特点为具有特异性,例如患过伤寒的病人就只获得对伤寒杆菌的免疫力。而对其他病原菌则无抵抗力。特异性免疫分为自然免疫和人工免疫。自然免疫是通过自然的方法,如由于机体感染了某种疾病因而获得了对该疾病的免疫力。此种免疫可以保持很久,甚至终身。又如,胎儿经母体胎盘、初生婴儿经初乳获得的抗体,可使其在出生后的短时期内(一般六个月)不容易得某些传染病,如麻疹、白喉等,这也属自然免疫。人工免疫则是指人体经过预防接种后所获得的免疫。免疫期可持续几个月至几年,对传染病的预防起很大作用;或者人体经注射抗体以获得对抗传染病的能力,均称“人工免疫”。后者有效期短,一般2~3个星期。多用于治疗或暂时预防某些传染病。3、吞噬细胞。把外界固态物质吞入细胞内的过程。吞噬的颗粒外包一层来自质膜的薄膜,称为吞噬体。后者与溶酶体靠近,两者的膜互相融合形成消化泡;不能消化的剩留残渣排出细胞外。有的原生动物(如变形虫)借此摄取营养。后生动物网状内皮系统的细胞中,能吞噬外界的细菌、灰尘和各种胶体,有防御的功能,称为吞噬细胞。4、抗原凡能激发人体产生抗体和细胞免疫,并能抗体结合的物质叫做抗原。大多数蛋白质和细菌多糖能刺激人体,产生免疫反应,包括产生抗体或免疫细胞。5、抗体人体在抗原物质刺激下所形成的一类能同抗原发生特异性结合的球蛋白,它存在于血液、淋巴液和组织液里。过去把抗体叫做丙种球蛋白,现在都叫做免疫球蛋白。6、疫苗利用病原微生物及其代谢产物,经过人工减毒或灭活方法制成的自动免疫制剂。过去曾把用病毒或立克次氏体制成的免疫制剂称疫苗,将用细菌菌体制成的称菌苗,把细菌外毒素经甲醛脱毒制成的称类毒素。近年来,随着制造免疫制剂方法的改进,把预防接种用的自动免疫制剂统称为疫苗。疫苗的分类方法有多种,常按疫苗性质把疫苗分为减毒活疫苗和灭活疫苗(死疫苗)两大类。活疫苗用减弱毒力或无毒的病原微生物(细菌、病毒等)制成。接种后,能在人体内生长、繁殖,但不发病。它在体内作用时间长,免疫效果好,接种次数少,但不易保存。如麻疹疫苗、卡介苗等。灭活疫苗是用物理方法或化学方法使病原微生物失去毒力后而制成。接种后能刺激机体产生特异性免疫。由于这类疫苗在人体内不能生长繁殖,较为安全、稳定,但对身体刺激时间短,产生的免疫力不高。需多次注射才能产生比较巩固的免疫力。如百白破混合疫苗、乙脑疫苗等。7、疫苗的研制自有人类以来,疾病一直是人类的敌人,尤其以传染病为甚。中世纪,天花、鼠疫、霍乱等烈性传染病的流行,给欧洲乃至全球造成了巨大灾难。在这些传染病中,有些是细菌引起的感染,有些的元凶是病毒。20世纪各种抗生素的发现使细菌性感染不再是医生面临的难题,但病毒性传染,如艾滋病以及目前肆虐全球的非典病毒仍然困扰着人类,这将又是一场疾病对科技和人类的挑战。细菌与病毒是致病元凶。细菌是一种单细胞生物,可以被抗生素及多种化学药物杀死。病毒是非细胞生物,只有疫苗才能消灭它,抗生素对它不起作用。此次在我国及世界流行的非典型肺炎的病原体是一种冠状病毒。病毒比细菌小得多,细菌通常以微米(mm,1/1000毫米)作为测量单位,而测量病毒大小的单位是纳米(nm,即1/1000微米)。由于病毒具有自我复制的功能,研制有效的无毒抗病毒药物要比抗菌药物困难得多。抗生素只作用于细菌,对各种病毒感染均无效。与抗生素相比,疫苗的成分较为复杂,为多种蛋白质或糖类等的混合物,主要用于各种传染性疾病的预防,在发病前使用,发病时一般不使用。每种微生物疫苗只能预防相应的疾病,专一性极强。疫苗免疫人体后,可使机体产生特异性的抗体,当该种类的病原体入侵人体时,体内的抗体立刻将其识别,并与病原体结合,启动一系列的机制,最终将病原体消灭。疫苗与病毒的斗争由来已久。在人类借助各种仪器观察到微生物的存在之前,人们就已认识到了传染病的存在,通过免疫预防传染病在人类的生存史上留下了光辉的篇章。天花是最早被人类文字记载的烈性病毒性传染病。症状为先发热、呕吐,然后出皮疹,皮疹经过丘疹、疱疹、脓疱的过程,最后干缩,患者或者留有疤痕,或者双目失明,或者在皮疹尚未出血前即已死亡。天花的免疫预防是人类控制和消灭传染病的成功范例。据推测,可能在一二万年前地球上就有天花。约在公元2、3世纪,天花传入我国,16世纪传入美洲,18世纪传入澳洲,全球没有一个国家幸免。在天花流行期间,每4个感染者中就有1个死亡。中国民间传统的治疗方法是:将天花患者身上干缩、脱落的痂碾碎,吹到正患天花病症的人的鼻孔里。目前,没有任何记载显示中国人如何得到此种治疗天花的方法,也许是中国人精通的以毒攻毒法使然,但此法确实能够令天花病人的病症不再恶性发展

细胞分子研究论文

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

你们学校没有CNKI吗??那里面你要的文章用卡车装。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦

分子细胞杂志

细胞分子生物学

期刊名 molecular biology of the cell 出版周期: 半月刊 中科院杂志分区 细胞生物学分类下的 3 区期刊 ,该杂志由于刊文量越来越大, 影响力大大降低,由开始的7分以上一路下滑 近四年影响因子:2013年度 2012年度 2011年度 2010年度 出版社或管理机构 杂志由 AMER SOC CELL BIOLOGY 出版或管理。 ISSN号:1059-1524 杂志简介/稿件收录要求 Molecular Biology of the Cell, the journal owned and published by The American Society for Cell Biology, publishes papers that describe and interpret results of original research concerning the molecular aspects of cell structure and function. Studies whose scope bridges several areas of biology are particularly encouraged, for example cell biology and genetics. The aim of the Journal is to publish papers describing substantial research

molecular biology of the cell是关于细胞生理、分子生物学的杂志。该杂志 在 CELL BIOLOGY (细胞生物学) 同类期刊中的影响因子排名第 51 位。期刊详情:NLM ID:9201390 出版国家:United States 出版地:Bethesda, MD 出版商:American Society for Cell Biology 出版周期:月刊 创刊年份:1992 语言:英语 SCI收录:YES ISSN:1059-1524 (印刷版)1939-4586 (电子版) 1059-1524 (ISSNLinking) 目前收录于:IM PubMed收录:YES 研究领域:细胞生理、分子生物学

论文解读!新方法首次详细揭示核孔复合物的组装过程doi:在一项新的研究中,来自瑞士苏黎世联邦理工学院和挪威卑尔根大学的研究人员开发出一种方法,使得他们能够首次详细研究大型蛋白复合物的组装过程。作为他们的案例研究,他们选择了最大的细胞复合物之一:酵母细胞中的核孔复合物。相关研究结果近期发表在Cell期刊上,论文标题为“Maturation Kinetics of a Multiprotein Complex Revealed by Metabolic Labeling”。论文通讯作者为苏黎世联邦理工学院的Karsten Weis和Evgeny Onischenko。这些研究人员将他们的新方法称为KARMA(kinetic analysis of incorporation rates in macromolecular assemblies, 高分子组装中掺入速率的动力学分析),该方法是基于研究代谢过程的方法构建出来的。研究代谢的科学家们长期以来一直在他们的研究工作中使用放射性碳,例如,标记葡萄糖分子,然后细胞吸收并代谢放射性碳。这种放射性标记使得人们能够追踪葡萄糖分子或其代谢物出现的位置和时间点。论文详解!挑战常规!染色质既不是固体也不是液体,而是更像一种凝胶doi:基因组生物学中一个自DNA发现以来一直困扰着科学家们的基本问题:在我们的细胞核内, DNA和蛋白的复杂包裹物(即染色质)是固体还是液体?在一项新的研究中,来自加拿大阿尔伯塔大学和美国科罗拉多州立大学的研究人员找到了这个问题的答案。他们发现染色质既不是固体也不是液体,而是更像一种凝胶。相关研究结果近期发表在Cell期刊上,论文标题为“Condensed Chromatin Behaves like a Solid on the Mesoscale In Vitro and in Living Cells”。论文通讯作者为阿尔伯塔大学肿瘤学系教授Michael Hendzel和科罗拉多州立大学的Jeffrey Hansen。Hendzel说,以前,生物化学等领域是在染色质和细胞核的其他组分以液体状态运行的假设下进行的。这种对染色质物理特性的新理解挑战了这种观点法,并可能导致对基因组如何编码和解码的更准确理解。:淋巴结受一种独特的具有免疫调节潜能的感觉神经元支配doi:长期以来,神经系统和免疫系统一直被认为是身体中的独立实体,但是一项新的研究发现了这两者之间的直接细胞相互作用。来自哈佛医学院、布罗德研究所和拉根研究所的研究人员发现,痛觉神经元围绕在小鼠淋巴结周围,可以调节这些淋巴结的活动,而淋巴结是免疫系统的关键部分。相关研究结果近期发表在Cell期刊上,论文标题为“Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential”。这项新研究揭示了介导神经系统和免疫系统之间交谈的细胞。它还为更多关于神经系统如何调节免疫反应的研究铺平了道路。重磅解读!肥胖损伤免疫细胞功能并加速肿瘤生长的分子机制!doi:肥胖与十几种不同类型的癌症风险增加有关,同时也与患者的预后和生存率下降直接相关。多年来,科学家们已经识别出驱动肿瘤生长的肥胖相关的过程,比如代谢改变和慢性炎症等,但他们并未详细阐明肥胖和癌症之间的具体相互作用。近日,一项刊登在国际杂志Cell上题为“Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity”的研究报告中,来自哈佛医学院等机构的科学家们通过研究揭开了这一谜题,研究者发现,肥胖会促进癌细胞在争夺能量的战斗中战胜杀死肿瘤的免疫细胞。研究者表示,高脂肪饮食会降低肿瘤中的CD8+ T细胞的数量和抗肿瘤活性,之所以出现这种情况,是因为癌细胞为了应对脂肪供应的增加而重编程自身的代谢,从而更好地吞噬富含能量的脂肪分子,并剥夺了T细胞的燃料,并能加速肿瘤的生长。研究者Marcia Haigis说道,将相同的肿瘤放在肥胖和非肥胖的环境中,就能够揭示癌细胞会应对高脂肪饮食而对其细胞代谢重新布线;相关研究结果表明,在某种环境中可能有效的疗法或许在另一种环境中不那么有效,鉴于目前肥胖在人群中的流行,或许就需要科学家们进一步研究理解了。阻断脂肪相关的代谢重编程或能明显减少高脂肪饮食的小鼠机体的肿瘤体积,由于CD8+ T细胞是免疫疗法激活宿主机体免疫系统抵御癌症的主要武器,本文研究中,研究人员提出了改进此类疗法的新型策略。癌症免疫疗法能给癌症患者的生活产生巨大影响,但并非每名患者都能获益。如今研究人员知道随着肥胖改变,T细胞和肿瘤细胞之间存在着新陈代谢的拉锯战, 本文研究或许就提供了探索这种相互作用的路线图,这或能帮助我们开始以新的方式思考癌症免疫疗法和联合疗法的作用机制。

肿瘤相关巨噬细胞的论文参考文献

单细胞测序分析CD45+的细胞(免疫细胞)→利用经典标记对免疫细胞注释,研究免疫细胞的成分差异→阐明免疫细胞改变的分子机制→研究免疫细胞TCR序列的变化,克隆性,说明起源问题→研究髓系细胞,TAMs(肿瘤相关巨噬细胞),WCGNA研究细胞分子特征→细胞间相互作用(scTHI)

我们获得了一个详细的单细胞分辨率的食管鳞状细胞癌(ESCC)免疫细胞图谱。阐述了哪些免疫细胞处于休眠状态,哪些免疫细胞处于增值状态,以及这些细胞与免疫抑制之间的关系。

①食管癌在组织学上可分为两个亚型:腺癌(EAC)和鳞状细胞癌(ESCC)。食管鳞癌是食管癌的主要亚型,约占全世界食管癌的90% ②最近,PD-1抗体用于晚期食管癌一线化疗失败的患者显示,与化疗相比,总体生存率只有中度的改善。 ③我们用高维(high-dimensional)scRNA序列分析了从七个切除的食管鳞癌肿瘤及其邻近组织中分离的总免疫细胞。同时进行T细胞受体(TCR)测序,以获得T细胞克隆性的信息 ④相较于癌旁正常组织,肿瘤组织T细胞明显扩增。 ⑤我们在这些肿瘤中发现了耗尽的T细胞、耗尽的NK细胞、调节性T(Treg)细胞、交替激活的巨噬细胞(M2)和耐受性树突状细胞(tDCs),表明ESCC中 存在炎症但免疫抑制的TME 。 ⑥我们鉴定出了一个与预后相关的基因集

①我们分析了从7对新鲜、手术切除的肿瘤和ESCC邻近组织中分离出CD45+细胞进行单细胞测序。过滤后,共80787个细胞(每个样品3248-9078),中位基因数1170个。 ②我们将所有样本的单细胞数据进行标准化和汇总,并进行无监督聚类以识别可区分的群体,用的是 ③我们利用典型标记对这些细胞进行了注释;这些细胞类型的经典标记物的表达与注释一致

④我们发现肿瘤中的t细胞和单核/巨噬细胞增多。与此相反,B细胞和NK细胞的百分率降低

(S133、S134和S150)--在这些肿瘤中,T细胞所占的比例不到总细胞的2%。 (S135、S149、S158、S159)--这些肿瘤中,免疫谱在PCA中呈现显著变化,其中6–12%的细胞是T细胞。

①T细胞和NK细胞是TME中主要的细胞毒性免疫细胞,我们对来自所有样本的T细胞和NK细胞进行无监督聚类,我们鉴定了6个CD4 T细胞簇,7个CD8 T细胞簇,1个CD4和CD8双阴性T细胞簇和3个NK细胞簇

②在T细胞中,我们使用已知的功能性标记来提示CD4 T细胞群,包括天真、记忆、效应、耗尽的T细胞和Tregs。这些标记物还鉴定了CD8T细胞群,包括记忆、效应、细胞毒性和耗尽的T细胞。

④我们进一步分析了与GFBP2、LAG3和FOXP37表达高度相关的基因。前50个基因用于细胞毒性、衰竭和Treg的分配。然后我们使用这些特征分析T细胞簇,发现富集分数与公布的特征一致。 ⑤CD4群体中存在着谱系联系,exhaustion和Treg评分的可视化证实了这两个簇之间的重叠 ⑥细胞毒性和耗尽的CD8 T细胞都表达许多效应分子,如GnY和GZMH,而耗尽的DCD8 T细胞表达的IFNG水平高于细胞毒性细胞(图2f),这表明耗尽的T细胞仍表达高水平的某些效应分子并试图对肿瘤细胞作出反应; 这些结果提示CD8-C5-CCL5处于衰竭早期,CD8-C7-TIGIT处于衰竭期,CD8-C6-STMN1可能是CD8-C5-CCL5与CD8-C7-TIGIT的过渡期。

①我们比较了肿瘤和邻近组织中的T细胞簇。CD45+细胞中的 (Treg cluster CD4-C6-FOXP3) and (exhausted CD4 T cells CD4-C5-STMN1 )的百分比与匹配的邻近组织相比显著增加; 流式细胞术也证实了在ESCC肿瘤中Tregs的富集。 同样,耗尽的cd8t细胞在肿瘤中富集。

②在ESCC中,PD1在CD8 T细胞中的表达一直较高(图3f)。肿瘤组织中Tregs和耗尽的DCD4和CD8 T细胞显著增加表明存在免疫抑制环境 ③我们还观察到,与匹配的邻近组织相比,肿瘤组织中的NK细胞显著减少; NK-C1-NCR3表达高水平的NCR3、CD266、NKG7和LAMP1(图3h)。 相反,NK-C3-KLRC1和NK-C2-STMN1簇高水平表达KLRC1和ITGA1抑制性受体(图3h)。 流式细胞术分析证实,与邻近组织相比,ESCC中NKG2A(KLRC1)在NK细胞中的表达增加(图3i)。事实上,NK-C3-KLRC1和NK-C2-STMN1的细胞毒性分数极低;相反,衰竭分数升高(图3j),这表明在ESCC中NK细胞不足,功能受损

①根据TCR结果我们共观察到15654个独特的tcr序列。观察到克隆扩展,克隆大小从2到2600(图4a)。 如预期的那样,患者之间没有发现共享克隆。与其他癌症类型的研究一致,大多数TCR是独特的。然而,TCR基因型的组成在患者中是高度可变的

②S149和S150肿瘤中有65%和68%的T细胞具有两个以上细胞共用的TCR,这表明这些肿瘤中T细胞的高度克隆性扩增(图4b)。与匹配的邻近组织相比,7名患者的肿瘤中有4人的扩增克隆数增加。

④CD8 T细胞的克隆性细胞明显多于CD4 T细胞,并且幼稚的CD4-C1-CCR7簇显示出非常有限的克隆性扩增(图4d)。 ⑤CD8-C1-NKG7是CD8 T细胞中的细胞毒性簇,在邻近组织中具有较高的频率,在邻近组织中也显示出比肿瘤组织中更高的克隆扩增(图4e)。

⑥然而,与邻近组织相比,肿瘤中的Tregs克隆数增加(图4f),这表明特异性克隆细胞的扩张可能是肿瘤中Tregs高百分比的原因。 ⑦我们在CD4细胞的所有簇(包括Tregs)和CD8细胞的所有簇(C2除外)中发现了TCR序列的共享(图4g,h) ⑧CD8-C7-TIGIT与CD8-C5-CCL5和CD8-C6-STMN1共有的克隆数分别为166()和156()(图4i)。 ⑨Treg簇CD4-C6-FOXP3在肿瘤中也有相同的趋势,与CD4-C1-CCR7共有的克隆型占,在邻近组织中占(图4j和补充图8c)

①接下来,我们对髓系细胞进行无监督聚类。十四个簇被鉴定,包括9簇单细胞/巨噬细胞和5簇树突状细胞(图5a)。 ②利用已发表的信号特征:单核细胞(Mono)、经典活化巨噬细胞(M1)、交替活化巨噬细胞(M2)和髓源性抑制细胞(MDSCs); ③我们使用Monocle,一种无监督的推断方法,来构建细胞转化的潜在发展轨迹。另一种算法Slingshot的结果(s9b); 巨噬细胞中M1和M2信号之间的显著相关性(补充图。9c),表明ESCC中存在一个复杂的巨噬细胞极化过程,这与其他研究一致 Mono-C1-VCAN显示出强大的单核细胞信号(图5b)。

④我们用wgcna对单核/巨噬细胞进行加权相关网络分析 我们发现绿松石模块与单核细胞簇、单核细胞C1-VCAN和单核细胞C2-IL1B正相关,与M2簇宏C3-CSF1和MDSC簇MDSC-C1-C1QC、MDSC-C2-APOE负相关(图5d,e);我们进一步分析了这个模块中的基因以及它们与Mono-C1-VCAN的关联(图5f),以选择最相关的前50个基因,形成一个特征集; 有趣的是,这一特征与ESCC(图5g)以及宫颈鳞状细胞癌和肺鳞状细胞癌(补充图9g)的高无进展生存率密切相关,这表明这一特征可作为ESCC和其他组织鳞状细胞癌的预后生物标志物。

①五个DC簇表达热图(图6a);DC-C3-LAMP3癌旁组织中富集(图6b)。

②发现LAMP3+DC与其他树突状细胞亚群相比具有更高的活性和迁移能力,同时其还富集到了耐受性特征(图6c)

④流式显示:LAMP3+DC表达的CD83、CCR7和PDL1明显高于LAMP3 DC(图6e,f)、提示LAMP3+DCs的成熟、迁移和调控能力。 ⑤多色ihc染色也证实了肿瘤组织中CD11C+LAMP3+PDL1+IDO+DCs的存在(图6g)。 ⑥我们进一步用IFNγ和LPS治疗dc。有趣的是,我们发现IFNγ和lps刺激诱导dc表达PDL1和IDO(图6h); 当DCs与CD4+CD45RA+幼稚T细胞共培养时,诱导FOXP3表达的能力增强(图6i)。 提示IFNγ和LPS可能在体外诱导耐受性DCs

①我们基于已知配体-受体对在任何两种肿瘤浸润性免疫细胞中的共同表达,对潜在的细胞-细胞相互作用进行了系统分析 scTHI--另一种广泛使用的方法--分析巨噬细胞和Tregs的相互作用 ②我们发现巨噬细胞和Tregs之间TNF-TNFSF1B、CCL4-CCR8和IL-1β-IL1R2的相互作用具有较高的相互作用得分,并且Tregs在肿瘤中表达高水平的TNFSF1B、CCR8和IL1R2(图7a–c)

③肿瘤中分离的树突状细胞中IL1R2的表达高于癌旁组织,多色IHC也证实了IL1R2在Tregs中的表达。(图7d)

通过scrna-seq分析巨噬细胞中LILRB1的表达,并通过FACS进一步验证。我们发现,与邻近组织相比,ESCC中巨噬细胞中LILRB1的表达增加(图7h,i和补充图7)。

①在这里,我们结合了深链RNA序列和TCR序列,并阐明了整个免疫景观,包括ESCC和邻近组织中固有的和适应性的免疫细胞图谱;描述了ESCC免疫细胞的分类、比例、功能变化及机制、细胞间相互作用 ②ESCC富含免疫抑制细胞:Tregs, exhausted CD8 T,CD4 T and NK cells, M2 macrophages, and tDCs;促进免疫逃避和肿瘤进展 ③我们证明耗尽的CD4、CD8 T细胞和NK细胞是主要的肿瘤内增殖免疫细胞室,尽管这些细胞富含耗尽基因。 与耗尽簇(CD8-C7-TIGIT)相比,预耗尽簇CD8-C5-CCL5和CD8-C6-STMN1可能是更好的免疫治疗靶点,因为耗尽簇处于永久性和不易逆转的耗尽阶段,由于其表观遗传变化,使其更耐检查点抑制。 ④发现肿瘤浸润的NK细胞不仅在ESCC中普遍减少,而且还表达高水平的检查点分子,包括NKG2A和CD49d,提示处于耗尽状态;据报道,抗NKG2A和抗CD49d是促进抗肿瘤活性的检查点抑制剂 ⑤T细胞的TCR序列共享,提示T细胞启动后有着广泛的分化。 ⑥衰竭的CD8 T细胞(CD8-C7-TIGIT)与其他CD8簇具有更高比例的共享克隆,尤其是衰竭前簇CD8-C5-CCL5和CD8-C6-STMN1,这与这些簇的相关状态和多步衰竭假说相一致。 相反,CD8-C1-NKG7是细胞毒性最强的CD8 T细胞簇,在肿瘤中克隆性T细胞明显减少 最近在膀胱癌中也有类似的发现,细胞毒性cd8t细胞(FGFBP2+clusterin)在正常组织中的克隆性比在膀胱癌中的克隆性强。 另一方面,食管细胞毒性细胞的克隆扩增可能是由于食管中的非肿瘤抗原的偶然暴露,并且相邻组织中的大多数CD8-C1-NKG7细胞表达低水平的CD39,这表明它们是旁观者CD8 T细胞。 幼稚的CD8 T细胞可能不常渗入食管或被局部环境激活,因此不太可能被检测为独立的群体。 ⑦单核细胞/巨噬细胞在肿瘤中的关键作用已经在肝癌、乳腺癌和肺癌中用scRNA-seq进行了描述; 通常,巨噬细胞的活化分为炎症前M1状态或与炎症溶解相关的M2状态; 我们的分析显示单核细胞/巨噬细胞存在于单核细胞、M1和M2状态的光谱中;M1相关基因和M2相关基因经常在同一细胞中共同表达;M1和M2信号的共存表明TAMs比经典的M1/M2模型更复杂,这种现象在乳腺癌和肝癌中也有发现 当使用WGCNA分析单核/巨噬细胞的基因相关性时,我们发现一组基因与单核细胞呈正相关,在ESCC和其它类似的病理类型肿瘤有着较好的预测预后能力 ⑧cDC2特别参与MHCⅡ类介导的抗原提呈和cd4t的活化和扩增细胞.cDC1也是抗肿瘤免疫所必需的。最近,一些文献报道了TME中的DCs,发现大多数与我们的数据一致。 比较了不同癌肿之间的这种差异,对分析出来的细胞做了些功能分析。 ⑨我们的工作进一步证实了树突状细胞与巨噬细胞之间的相互作用; 在Treg上表达的IL1R2可能通过阻断IL1β依赖性效应T细胞的活化而增强Treg的功能; IL1R2在活化的肿瘤树突状细胞上表达,并与肺腺癌的预后不良相关。 我们的研究还表明,Tregs可能通过hhla-A、B、C和LILRB1相互作用调节巨噬细胞的功能。 研究TAMs中这种免疫抑制MHC类I-LILRB1信号轴的机制将有助于开发恢复巨噬细胞功能的疗法。 总之,我们的ESCC和邻近组织免疫细胞的转录图谱提供了一个了解免疫状态的框架,并揭示了ESCC环境中免疫细胞的动态特性。此外,我们还从多个方面阐述了食管鳞癌的免疫抑制状态,这些都是食管鳞癌及其他癌症免疫治疗的潜在新靶点

TCR测序方法简介 TCR测序干货 WGCNA

​ 肿瘤内刺激树突状细胞(SDC)在刺激细胞毒性T细胞和诱导抗肿瘤免疫反应中起着重要的作用。 了解调节它们在肿瘤微环境(TME)中的丰度的机制可以揭示新的治疗机会。作者发现,在人黑色素瘤中,SDC的丰度与细胞因子FLT3LG基因的瘤内表达有关。FLT3LG主要由淋巴细胞产生,尤其是小鼠和人类肿瘤中的自然杀伤(NK)细胞。在小鼠TME中,NK细胞与SDC形成稳定的结合,小鼠NK细胞的遗传和细胞消融表明:FLT3L的产生在调节肿瘤中SDC的丰度方面发挥重要作用。虽然抗PD-1‘检查点’免疫疗法主要以T细胞为靶点,但作者发现NK细胞频率与人肿瘤中保护性SDC、患者对抗PD-1免疫治疗的反应性以及提高总体生存率有关。作者的研究表明,固有免疫SDC和NK细胞共同作为T细胞定向免疫治疗的良好预后工具,这些固有细胞是增强T细胞肿瘤反应所必需的,表明这一轴是新疗法的靶点。 人类中分别由整合素CD103和血栓调节蛋白(BDCA-3,又称CD141)的表达确定。 肺的研究表明,这些细胞在肿瘤中比在邻近的正常组织中更少。 在黑色素瘤中不常见的WNT-β-catenin通路突变病例中,这些DC数量的减少与预后不良有关,也与肿瘤中趋化因子表达模式的缺陷有关。 在这里,作者发现sdc数与预后不良之间的关系可能更加普遍。在本研究中,作者发现TME中BDCA-3+SDC的保护水平与黑色素瘤患者较好的总生存期(OS)相关。作者进一步将肿瘤内SDC的数量与FMS相关的酪氨酸激酶3配体(FLT3LG)的基因表达联系起来,FLT3LG是cDC 1的形成性细胞因子。 作者利用一种新型的Flt 31报告小鼠,将肿瘤内淋巴细胞鉴定为肿瘤中Flt 31的产生者,其遗传学和功能研究表明,自然杀伤(NK)细胞是产生Flt 31以控制肿瘤中SDC水平的完整细胞类型。 作者进一步证明,人黑色素瘤中的SDC与肿瘤内NK细胞的水平有关,并且这两种固有免疫细胞类型与抗PD-1免疫治疗的反应性相关。 这些结果表明,NK细胞通过在肿瘤中产生FLT3LG,控制肿瘤中SDC的水平,提高患者对抗PD-1免疫治疗的反应性。 研究思路: 1、人黑色素瘤中BDCA-3+ SDC水平与整体存活率的提高相关。 我们之前的工作发现了8个基因的“SDC标签”,它来源于SDC与小鼠肿瘤内所有其他髓系群体的直接比较(图1A)。 我们使用这种SDC基因标签来评估黑色素瘤样本谱中与转移性黑素瘤数据相关的临床结果数据的SDC数目,并发现六个“SDC标签”基因从转移时起就与增加的OS有显著的个体关联(补充表1)。 此外,在Kaplan-Meier分析中,我们将每个样本的整个标签以66%的严格度分为“高”或“低”表达,我们发现高表达与OS的增加显著相关(Fig. 1b);在33%和50%的严格度下观察到类似的相关性(补充图1A)。 肿瘤基因组图谱(TCGA)黑色素瘤数据集(补充图)中概述了SDC基因标签与OS增加的相关性 (Supplementary Fig. 1b)。进一步发现肿瘤浸润淋巴细胞(TIL)类型的层组与SDC基因标签高度相关() 。 此外,使用SDC和非刺激髓样细胞(NSMs)特征比值的基因标记的表达(代表刺激和抑制性髓细胞群体的相对丰富度)也显示与OS和T细胞浸润增加有很强的相关性(补充图1C-E)。 这些数据表明,肿瘤中SDC的相对水平与OS的增加有关。 2、瘤内SDC丰度预示抗PD-1免疫治疗的反应性。 肿瘤SDC最初被定义为具有向T细胞交叉呈现肿瘤抗原并刺激T细胞的能力,并在小鼠模型中被证明是产生较好的抗PD-1反应所必需的。 因此,我们寻求确定SDC水平是否与T细胞检查点阻断剂治疗的有效性有关,预计该治疗将可能释放更多的CD8+T细胞控制肿瘤。 为了将这一分析扩展到黑色素瘤患者,并更广泛地确定抗PD-1免疫治疗反应所需的免疫成分,我们分析了两组独立的活组织切片或转移性黑色素瘤患者手术切除的肿瘤活检(组A:n=33,包括已经接受各种免疫治疗的患者;组B:n=23,都是抗PD-1免疫治疗前的;补充表2)。 活组织切片消化成单细胞悬液,随后用流式细胞术和RNA测序(rna-seq)进行分析,同时跟踪患者的临床结果以及抗PD-1免疫治疗的反应性。 患者被分为“无应答者”组,定义为病情稳定或进展的组,或“应答者”组,定义为对抗PD-1治疗有部分或完全应答者(见方法)。 我们设计了一个全面的流动面板来定量人体肿瘤中的免疫浸润(Fig. 1d–f and Supplementary Fig. 2a,b),虽然我们发现黑色素瘤患者免疫浸润的数量存在异质性,但总免疫浸润与抗PD-1免疫治疗的反应性之间没有明显的相关性(图1D)。 相反,TME内的多个髓细胞系倾向于对免疫治疗有反应 (Fig. 1e,f)。 CD14(-)肿瘤相关巨噬细胞(TAMS)在抗PD-1治疗反应患者中呈增加趋势,但这仅见于一个群组(图1E)。 B组中CD14+细胞数量高对抗pd-1免疫治疗的响应有不好的预后,而在组A中,CD14+CD16+单核细胞可以有效地从CD14+CD16 - TAMs中分离出来,肿瘤内单核细胞水平升高,比TAMS更明显,对抗PD-1免疫治疗有负的预后价值(图1e)。 此外,BDCA-1+DC(CDC2s)在2个群组中均未显示与应答者状态相关的显著变化 (Fig. 1f)。有趣的是,在总抗原呈递细胞(APCs; gating on CD19–HLA-DR+ cells)中,BDCA- 3+ DCs(通过CLEC9a染色进一步证实哪些是cDC1)的高比例强烈预测了两组黑素瘤患者对抗pd -1治疗的反应的高比例强烈预测了黑色素瘤患者对抗pd-1治疗的反应(Fig. 1f) 3、FLT3LG表达与肿瘤中SDC水平相关 鉴于SDC与患者预后和抗PD-1免疫治疗反应性有很深的关联,我们寻求确定控制肿瘤中保护性骨髓细胞水平的细胞和分子机制。 包括肿瘤SDC在内的cDC1s形成的细胞因子是FLT3L,但这种细胞因子在肿瘤中的内源性来源尚不清楚。 利用他们的黑色素瘤数据集(包含来自肿瘤活细胞总数的配对流式细胞术和RNA-seq数据)(组A;补充表2),我们发现在肿瘤中BDCA-3+DC水平与FLT3LG的表达显著相关(图 1g)。 我们证实了肿瘤中SDC水平与FLT3LG表达之间的这种相关性,利用SDC基因标签来估计公开的TCGA黑色素瘤数据集中的SDC水平。 FLT3LG高表达(中位分裂)的TCGA黑色素瘤样本明显增加OS,这与FLT3LG在肿瘤SDC控制中的重要作用一致。 这些发现表明,控制tme中的细胞因子flt3lg可以对sdc的水平产生重要影响,sdc是一种对癌症免疫反应和抗pd-1免疫治疗反应非常重要的细胞类型。 4、淋巴细胞是肿瘤微环境中FLT3L的主要来源 肿瘤中FLT3LG表达与SDC水平的相关性,引出了哪个细胞类型产生FLT3L的问题。因此,我们在内源性小鼠Flt3l位点下游引入可诱导的编码Cre和teal荧光蛋白(TFP)的DNA,从而获得了Flt3l-报告小鼠(Fig. 2a)。携带与此等位基因纯合的异位B16F10肿瘤的小鼠,尽管血清总FLT3L有少量但可重复的下降,但其在TME中的常规DC和淋巴细胞比例相似,这表明该蛋白在肿瘤中有类似的功能(补充 Fig. 3a–c)。Flt3l-纯合报告小鼠注射异常的B16F10肿瘤,在肿瘤移植后2周,TFP作为Flt3l表达的读数,仅在淋巴细胞内检测到(Fig. 2b,c)。在表达Flt3l的淋巴细胞中,NK细胞表达量最高,T细胞表达量较低,B细胞表达量不高( Fig. 2b,c; Fig. 3e,f))。当用抗flt3l抗体检测细胞表面的蛋白时,这些细胞群呈阳性(图2d)。从肿瘤、肿瘤引流淋巴结(LN)和非肿瘤引流淋巴结(LN)分离的NK细胞中,Flt3l的表达水平与TFP的表达水平相似,表明Flt3l的表达不受TME的调节(Supplementary Fig. 3d)。在其他肿瘤模型中也发现了类似的报告等位基因表达模式,包括自发产生的肿瘤模型(例如,多瘤中T抗原乳腺癌模型,其目的是表达mCherry和卵清蛋白(PyMTChOVA);Supplementary Fig. 4a,b)。有趣的是,野生型(WT)携带b16f10肿瘤动物血清中FLt3L水平没有显著差异,表明局部产生的flt3L对sdc水平和预防癌症很重要(Supplementary Fig. 4c)。 5、肿瘤中淋巴细胞产生FLT3L对于正常的SDC水平是必须的 接下来,我们在小鼠身上进行了基因实验,以检测淋巴细胞及其亚群在控制TME中SDC水平中的作用。对缺乏T细胞和NK细胞的IL2RG-/-小鼠(补充图5a)注射异常的B16F10黑色素瘤,分析肿瘤中髓系细胞和淋巴系细胞的水平。虽然来自IL2RG-/-小鼠的B16F10肿瘤的肿瘤面积与其WT对照组大致相同,但是IL2RG-/-动物肿瘤可显著降低TME中CD 103+SDC的表达,而CD11b+DC的频率无明显变化(图3a和补充图5a)。为了检测淋巴细胞特异性地产生FLT3L在控制SDC水平中的作用,我们将IL2RG-/-骨髓与WT或Flt3l-/-混合骨髓移植到致死性照射的Flt 31-/-受体动物体内,形成混合骨髓嵌合体(图3b)。在肿瘤中与能产生FLT3L的淋巴细胞间隔的IL2RG-/-:WT混合骨髓嵌合体相比,其淋巴细胞室不能产生FLT3L的IL2RG-/-:Flt3l-/-,CD 103+SDC的水平降低(图3b)。肿瘤中CD 103+SDC水平的差异并不是由于T细胞或NK细胞的整体缺失所致,而是丰富的肿瘤引流和非引流LN的IL2RG-/-:Flt3l-/-骨髓嵌合体(补充图5b)。与IL2RG-/:WT-混合骨髓嵌合体相比,IL2RG-/:Flt3l-/-混合骨髓嵌合体的CD11b+DC无明显减少(图3b);此外,在肿瘤引流和非引流皮肤LN中,居住或迁移的CD11b+DC均无缺陷,提示IL2RG-/:Flt3l-/-混合骨髓嵌合体中CD11b+DC无整体缺陷(补充图5c)。有趣的是,在IL2RG-/:Flt3l-/-骨髓嵌合体中,肿瘤引流和非引流LN中常驻CD8+DC和迁移CD 103+DC的水平也降低,提示淋巴细胞的需求更广泛地延伸到cDC1的产生(补充图5c) 6、NK细胞,而不是T细胞,控制着肿瘤中SDC的丰度。 为了直接检测特定类型淋巴细胞在肿瘤中控制CD 103+SDC水平的作用,在小鼠B16F10黑色素瘤模型中,我们敲出了表达Flt3l报告基因的T细胞和NK细胞。由于重组激活基因(Rag)突变而缺乏所有T细胞的小鼠其肿瘤组织中CD103+DC水平没有减少(图3c和补充图5d)。此外,通过抗体消耗CD4+或CD8+T细胞的WT小鼠也表现出正常的SDC细胞密度(数据未显示)。为了探讨NK细胞的作用,小鼠在B16F10肿瘤注射前3天开始每3天用抗抗体治疗一次,结果导致了NK细胞的大量丧失,但淋巴细胞的其他变化和肿瘤生长受限(补充图5e)。而缺乏NK细胞的小鼠TME中CD 103+SDC的频率降低,CD11b+DC的水平无明显变化(图3d)。与我们以前的发现一致,肿瘤中的T细胞刺激依赖于肿瘤内的CD 103+DC,缺乏NK细胞的小鼠肿瘤中活化的T细胞数量有减少的趋势。(补充图5e)。有趣的是,NK细胞的耗竭导致CD103+DC在肿瘤引流和不引流LN中的水平略有下降,但有显着性差异(补充图5f),再次表明除了在肿瘤中的作用外,NK细胞在控制CD103+DC水平方面发挥了更广泛的作用。这些结果表明,虽然T细胞和NK细胞都能在肿瘤中产生Flt 31,但T细胞的缺失对肿瘤CD103+DC水平没有影响。而NK细胞产生Flt3l在调控肿瘤中这些保护性DC的水平中起重要作用。 7、TME中NK细胞与SDCs发生频繁而稳定的相互作用 NK细胞是肿瘤中SDC水平所必需的主要淋巴细胞。然而,NK细胞和SDC在肿瘤中非常少见,因此我们提出这样一个问题:NK细胞如何控制肿瘤中的SDC?与其他APC相比,SDC在TME中很少存在,并且很少与传入的T细胞相互作用。相反,当我们对B78黑色素瘤进行活体双光子切片成像时,我们发现NK细胞(Ncr1-GF标记P)经常与SDC密切接触(抗X-C基序趋化因子受体1(XCR 1)的抗体标记;图4a和补充视频1)。对由转染mCherry-OVA融合结构的B78亲本细胞组成的B78-cherryOVA肿瘤14进行活体双光子成像后用于PyMTChOVA小鼠品系,我们发现大约的NK细胞在Xcr1-Venus+ cDC1的5μm范围内,而只有的MHCⅠ类限制的卵清蛋白特异性(OT-I)T细胞在Xcr1-Venus+ cDC1的5μm范围内(图4b)。此外,我们还观察到,在XCR 1+cDC 1中,大于5μm的NK细胞迁移(与实质性位移相关的运动),而与之密切接触的NK细胞(<5μm)的运动能力降低,与连续和/或突触接触一致(图4c和补充视频2)。这些结果表明,在肿瘤中,NK细胞是FLT3L的最相关来源,FLT3L控制着SDC水平,这可能是由于NK细胞对cDC1 DC亲和力增强所致。这一发现与最近在TME 中NK细胞和XCR 1+DC的趋化因子受体配对的研究结果是一致的。与NK细胞直接作用于DC的情况一致,当从WT小鼠LNS中分选CD 103+DC并与NK细胞共培养时,CD103+DC 24h和72h的存活率显著提高(图4d)。这些研究表明,NK细胞比T细胞更能与肿瘤中的SDC形成稳定的相互作用,靶向NK细胞水平可增加FLT3L的产生,进而提高肿瘤中SDC的水平或生存期可能是一种新的治疗手段。应该注意,虽然我们看到有证据表明NK细胞为CD 103+DC在肿瘤中提供了更高的存活率,但NK细胞也可能作用于DC前体以控制这些SDC。 8、人肿瘤中NK细胞丰度与FLT3LG表达及BDCA-3+ SDCs相关 我们的小鼠研究表明,NK细胞产生FLT3L,并控制肿瘤中SDC的水平。根据这些发现,我们通过基于先前发表的数据集和NK细胞特异性基因的表达谱生成NK细胞基因特征来调查人类数据集中NK细胞的丰度(图5a和补充图6)。用NK细胞基因标记对TCGA黑色素瘤样本中NK细胞丰度的估计,我们发现肿瘤中NK细胞的水平与FLT3LG的表达(图5b)有明显的相关性,这与肿瘤内NK细胞是FLT3LG的来源是一致的。与NK细胞基因标签结果一致(图5b),天然细胞毒性触发受体1的表达(NCR 1)、NK细胞上NK细胞受体基因的特异性表达(补充图6)与FLT3LG在肿瘤中的表达存在显著的个体相关性(补充图7a)。因此,利用SDC(Fig1a)和NK细胞(Fig5a)的基因标记来估计细胞丰度,我们发现黑色素瘤(Fig5c)患者的NK细胞和SDC水平之间存在显著的相关性,这与我们的小鼠数据一致。此外,NCR1、a NK-specific gene的表达与sdc信号有显著的个体相关性。为了直接比较SDC和NK细胞的数量,收集人黑色素瘤活检标本,消化成单细胞悬液,用流式细胞术进行分析(队列A;补充图2和补充表2)。直接分析肿瘤中的NK细胞和SDC,发现肿瘤中NK细胞水平与BDCA-3+DC水平显著相关(图5d)。肿瘤中的BDCA-3+DC与肿瘤中CD4+T辅助细胞(TH)、CD8+T细胞或CD 45-细胞水平无关(补充图7c-e),提示NK细胞与BDCA-3+DC之间存在特异性的相关性。NK细胞与BDCA-3+DC之间的相关性在其他癌症类型的TME中也被发现,尤其是在头颈部鳞状细胞癌中(HNSCC;图5e),这表明这种先天免疫细胞关系可能比单一的适应症或亚适应症更广泛。 9、人类黑色素瘤中的NK细胞与整体存活率的提高相关 SDC与NK细胞呈正相关,从逻辑上预测NK细胞数量也能预测生存期。 每个患者中归一化为z评分,根据中位数划分(50%严格度),NK细胞基因标签(图5A)用于将患者分为NK细胞数“低”或“高”。 这表明,在两个独立数据集的Kaplan-Meier图分析中,NK细胞数高的患者OS显着增加(图6A和补充图 7F)。 在TCGA黑色素瘤数据集中,NCR 1的表达与OS的增加显著相关;此外,NK细胞特征中的5个基因中有4个单独与OS的增加有关(图6b)。 这些发现表明,正如我们在小鼠模型中所显示的那样,在黑色素瘤患者中NK细胞产生FLT3LG,控制肿瘤中BDCA-3+刺激性DC水平,并导致患者生存期增加。 我们注意到这些发现并不排除NK细胞在肿瘤排斥反应中的一个更传统的作用,即直接肿瘤细胞溶解。 10、NK细胞预测黑色素瘤患者对抗PD-1免疫治疗的反应 鉴于NK细胞产生FLT3LG和控制肿瘤中SDC水平,从而预测抗PD-1免疫治疗反应中的重要作用,我们探讨了NK细胞和/或T细胞是否与免疫治疗反应有关。 我们发现抗PD-1免疫治疗的反应性与T调节(Treg)细胞、CD4+Th细胞、CD8+T细胞和PD-1+CTLA-4+T细胞无明显相关性(Fig. 6c),尽管其中一些群体的趋势较弱。 特别是,我们没有重述以前的数据,表明PD-1+CTLA-4+CD8+“耗尽”的T细胞特征可以预测预后。 然而,NK细胞在抗PD-1免疫治疗后的肿瘤中明显增多(Fig. 6c)。 这些发现与我们在小鼠中的发现一致,即NK细胞、FLT3L和SDC形成了一组影响预后的决定因素,至少在一定程度上可能是由NK通过产生FLT3L而增强SDC所驱动的。 11、NK-SDC轴与抗PD-1免疫治疗的反应性相关 用于黑色素瘤群组A的综合流式细胞仪板对TME中的33个免疫群体进行定量(补充图2和补充表2)。 为了确定TME中的NK细胞和SDC水平是否与抗PD-1免疫治疗的反应性唯一相关,我们在每个样本中对人群分数进行了z评分,发现在TME中已鉴定的免疫细胞中,BDCA-3+DC和NK细胞与抗PD-1免疫治疗的反应性显著相关(图6E和补充表3)。 此外,从这个角度来看,很高频率的HLA-DR-CD4+T细胞似乎与抗PD-1反应密切相关,并可能代表BDCA-3+DC和NK细胞数量不多的患者的另一种预后特征。 这可能表明PD-1阻断可被多种类型的免疫浸润所支持,尽管还需要进一步的研究来证实。 由于作者水平有限,欢迎批评指正!!

细胞分化论文文献

好的,格式发来我给你

写作思路:阐明自己的论点,进行举例论证,根据细胞分裂的机理特征和生理作用以及分类来阐述自己所知道的细胞分裂的相关知识。

正文:

生物是指具有动能的生命体,也是一个物体的集合。而个体生物指的是生物体,与非生物相对。 其元素包括:在自然条件下,通过化学反应生成的具有生存能力和繁殖能力的有生命的物体以及由它(或它们)通过繁殖产生的有生命的后代,能对外界的刺激做出相应反应,能与外界的环境相互依赖、相互促进。并且,能够排出体内无用的物质,具有遗传与变异的特性等。

诱导芽的形成和促进芽的生长。对组织培养的烟草髓或茎切段,细胞分裂素可使已不具备分裂能力的髓细胞重新分裂。这种现象曾被用于细胞分裂素的生物测定。

茎切段的分化常受细胞分裂素及生长素比例的调节。当细胞分裂素对生长素的浓度比值高时,可诱导芽的形成;反之则有促进生根的趋势。如对抑制的腋芽局部施用细胞分裂素或在侧芽上涂抹一定浓度的生长素,可以解除顶端对侧芽的抑制(即顶端优势)。天然的簇生植物(莲座状植物)或由于病害发生“丛枝病”的植物里,常含有较多的细胞分裂素。

细胞分裂素还有防止离体叶片衰老、保绿的作用,这主要是由于细胞分裂素能够延缓叶绿素和蛋白质的降解速度,稳定多聚核糖体(蛋白质高速合成的场所),抑制DNA酶、RNA酶及蛋白酶的活性,保持膜的完整性等。在叶片上局部施用细胞分裂素,能吸聚其他部分的物质向施用处运转和积累。

细胞分裂素的作用方式还不完全清楚。已知在tRNA中与反密码子相邻的地方有细胞分裂素,在蛋白质合成过程中,它们参与到tRNA与核糖体mRNA复合体的连接物上。但这可能不是外源细胞分裂素的作用方式。

因为在tRNA中,细胞分裂素的合成是由原来在tRNA中的嘌呤的改变产生的。而外源细胞分裂素并不参入tRNA中,但可促进硝酸还原酶、蛋白质和核酸的合成。除了天然的促进细胞分裂的物质外,还用化学方法人工合成了一些类似激动素的物质。通常也统称细胞分裂素。其中活性较强,也最常用的是6-苄基嘌呤。

细胞核分裂的状况可分为3种:即有丝分裂、减数分裂和无丝分裂。有丝分裂是真核细胞分裂的基本形式。减数分裂是在进行有性生殖的生物中导致生殖母细胞中染色体数目减半的分裂过程。它是有丝分裂的一种变形,由相继的两次分裂组成。

无丝分裂又称直接分裂。其典型过程是核仁首先伸长,在中间缢裂分开,随后核也伸长并在中部从一面或两面向内凹进横缢,使核变成肾形或哑铃型,然后断开一分为二。差不多同时细胞也在中部缢裂分成两个子细胞,由于在分裂过程中不形成由纺锤丝构成的纺锤体或中心体发出的星射线,不发生由染色质浓缩成染色体的变化,故命名无丝分裂。

一共两篇看看吧①生物科技小论文——草莓的无土栽培作者:孔凡阳 草莓的无土栽培摘 要:1、利用学校的生物园地,通过配制合理的营养液,完全 可以进行草莓的无土栽培。 2、无土栽培的草莓具有生长速度快、长势好、花芽分化 早、开花结果早、产量高的特点。 关键词:培养基、营养液、无土栽培、简单易行 将作物栽培在除土壤以外的培养基上,叫无土栽培。无土栽培具有不占地或少占地、换茬快、环境清洁、产品无污染和生长好、品质优、色鲜味美等优点,为花卉蔬菜、粮食以及水果生产的工业化、自动化开辟了广阔的前景。一、实践目的 通过对草莓的无土栽培实践活动,使我们初步掌握无土栽培的技术,懂得利用水培法来确定植物必须矿质元素的原理和矿质元素对植物的生理作用,同时也培养了同学们的学习兴趣和实践能力。二、实践原理 植物根从土壤溶液中吸收水分和无机盐,土壤颗粒主要起着固着作用。根据这一原理,将植物生活所需的无机盐按一定比例配成营养液进行作物的无土栽培。三、实践方法 采用与泥土盆栽草莓相对照试验,盆栽草莓使用一般的菜园土作固着物,施用化肥和农家肥,进行水肥管理。四、实践器材 无土花盆(双层塑料套盆或采用罐头瓶、硬泡沫塑料做定植板也行)、草莓苗、营养液原液、天平、洗净的碎石或蛭石、温度计等。五、 试验与管理 1、试验时间:1997年9月-1998年5月;1998年9月-1999年5月 2、试验地址:校生物园 3、营养液原液:经试验得知,表1为最佳配方。 4、栽培方法:选择无病虫害、植株矮壮、具4-5片叶、顶芽饱满的壮苗,洗净根上泥土后,定植在无土花盆的上盆中,用碎石子或蛭石作固着物,下盆中盛清水,待长出新根后(1周左右)将清水倒掉,换上培养液。 表1 无土栽培草莓营养液原液配方成分名称 含量(MG/L) 硝酸钙 236 硝酸钾 303 磷酸铵 57 硫酸镁 123 三氯化铁 500 硼 酸 氯化锰 、管理: (1)及时添加营养液。每周补液1-2次。每次50-100ml。进入4月份以后,气温升高、蒸发快,同时正当开花、结果盛期,需肥量大,每2-3天补液1次,并要增加营养液的浓度。一般开花前培养液浓度是原液∶水=1∶9开花后培养液浓度为原液∶水=∶ (2)隔天上午喷水1次,4月开始每天喷水1次,保持相对湿度70-80%。 (3)光照为生物园里的自然光照(注意不要放在直射太阳光下,以免培养液温度升得过高造成根坏死)。 (4)注意及时摘除老叶、匍匐茎。当发现植株下部的叶片呈水平着生,开始发黄、叶柄基部也开始变色时,应立即摘除。匍匐茎消耗养分大,为保证果大质优,发现生在叶片基部的幼嫩线状物——匍匐茎,要及时摘除。 (5)注意病虫害防治。草莓虫害主要有蚜虫和红蜘蛛,可用内吸杀虫剂防治,如甲胺磷、乐果等。病害主要有灰霉病、病毒病等,可用波尔多液、托布津等杀菌剂防治。 (6)注意及时疏蕾垫果。六、观察记录情况 1、根系在2℃时开始活动,在7℃时开始长新根,最适生长温度为15-20℃,高于30℃时停止生长,并有根部变色受害情况,在-8℃时根系受到冻害。 2、地上茎、叶气温在5℃时开始生长,生长最适气温为15-25℃气温过高过低生长都较缓慢,气温高于30℃以上有老叶焦边现象。 3、气温在5℃以上开始花芽分化,花芽分化最适气温在5-15℃之间,开花在10℃以上,开花盛期在15℃左右。 4、培养液pH值在最为适宜。 5、开花结果情况见下表表2 无土栽培草莓开花结果记录统计表盆数 盆栽时间 第一花序 第二花序 总果实/株 月/日 叶片数 开花月/日 小花朵数 果实成熟月/日 开花月/日 小花朵数 果实成熟月/日 数量 重(克) 20 9/239/26 4-5 3/234/6 11-17 4/124/27 4/104/21 5-9 4/205/18 9-171 53-257七、结果与体会 1、无土栽培的草莓比盆栽草莓生长速度快、长势好、花芽分化

这些当然是我们研究的内容了,但这么直接向我们要论文,未必有点……仅凭20分我们是大学里高生物的,

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2