更全的杂志信息网

合成碳化硅的研究背景论文

发布时间:2024-07-05 05:10:54

合成碳化硅的研究背景论文

种碳化硅微粉的生产工艺,其特征在于,其步骤如下:

(1)取碳化硅原料,经破碎机中碎,并筛分至不大于5mm的碳化硅颗粒,再用整形机对其进行整形至不大于2mm的碳化硅颗粒,且其中椭圆形颗粒占80%以上,再对其进行酸洗除杂,干燥;

(2)将上述干燥后的碳化硅颗粒用磨粉机粉碎成d50=μm的碳化硅粉,粉碎时,磨粉机主机电流设定为65-75A,风机流量设定为40-50m3/min,分析机转速为400--600转/分;

(3) 然后用涡流式气流分级机对碳化硅粉进行分级,分级时,涡流式气流分级机的风机流量为25-43m3/min,分级轮转速为2600--3300转/分,从分级口分出粒度ds94=μm的成品A,旋风口分出ds94≤μm的半成品;

(4)将涡流式气流分级机旋风口分出的半成品用叶轮式气流分级机再进行二次分级,分级时,叶轮式气流分级机的风机流量为25-10m3/min,分级轮转速为1300--1700转/分,从分级口分出粒度为ds94=μm的成品B,旋风口则分出副产品。

筛分

筛分就是把颗粒、粉末分成大小不同的粒子段。单台TS振动筛分机可配至4层筛网,能连续分选出2-5个粒级并控制较窄的粒度范围。

筛出杂质

高性能筛机在高流量处理过程中,能迅速清除百分含量低的大颗粒或小颗粒浆渣分离。TS振动筛分机能把各类浆液中的非溶性固体物质迅速清除,并连续排渣

常见的方法是将石英砂与焦炭混合,利用其中的二氧化硅和石油焦,加入食盐和木屑,置入电炉中,加热到2000°C左右高温,经过各种化学工艺流程后得到碳化硅微粉。碳化硅(SiC)因其很大的硬度而成为一种重要的磨料,但其应用范围却超过一般的磨料。

碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 粉末冶金20 552 103 粉末冶金20 496 103 粉末冶金20 724 103 粉末冶金40 441 125 粉末冶金15 689 97 搅拌铸造20 350 98 无压浸渗30 382 125 表1 碳化硅颗粒增强铝基复合材料的力学性能[1] Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为,仅重。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 /ZL101 20 375 101 /ZL101A 20 330 100 /6061 25 517 114 /2124 25 565 114 / 20 226 95 /Al 26 387 112 -表2 金属基复合材料的力学性能[1] Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. .,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.

由于天然含量甚少,碳化硅主要多为人造。常见的方法是将石英砂与焦炭混合,利用其中的二氧化硅和石油焦,加入食盐和木屑,置入电炉中,加热到2000°C左右高温,经过各种化学工艺流程后得到碳化硅微粉。碳化硅(SiC)因其很大的硬度而成为一种重要的磨料,但其应用范围却超过一般的磨料。例如,它所具有的耐高温性、导热性而成为隧道窑或梭式窑的首选窑具材料之一,它所具有的导电性使其成为一种重要的电加热元件等。制备SiC制品首先要制备SiC冶炼块[或称:SiC颗粒料,因含有C且超硬,因此SiC颗粒料曾被称为:金刚砂。但要注意:它与天然金刚砂(也称:石榴子石)的成分不同。在工业生产中,SiC冶炼块通常以石英、石油焦等为原料,辅助回收料、乏料,经过粉磨等工序调配成为配比合理与粒度合适的炉料(为了调节炉料的透气性需要加入适量的木屑,制备绿碳化硅时还要添加适量食盐)经高温制备而成。高温制备SiC冶炼块的热工设备是专用的碳化硅电炉,其结构由炉底、内面镶有电极的端墙、可卸式侧墙、炉心体(全称为:电炉中心的通电发热体,一般用石墨粉或石油焦炭按一定的形状与尺寸安装在炉料中心,一般为圆形或矩形。其两端与电极相连)等组成。该电炉所用的烧成方法俗称:埋粉烧成。它一通电即为加热开始,炉心体温度约2500℃,甚至更高(2600~2700℃),炉料达到1450℃时开始合成SiC(但SiC主要是在≥1800℃时形成),且放出co。然而,≥2600℃时SiC会分解,但分解出的si又会与炉料中的C生成SiC。每组电炉配备一组变压器,但生产时只对单一电炉供电,以便根据电负荷特性调节电压来基本上保持恒功率,大功率电炉要加热约24 h,停电后生成SiC的反应基本结束,再经过一段时间的冷却就可以拆除侧墙,然后逐步取出炉料。 高温煅烧后的炉料从外到内分别是:未反应料(在炉中起保温作用)、氧碳化硅羼(半反应料,主要成分是C与SiO。)、粘结物层(是粘结很紧的物料层,主要成分是C、SiO2、40%~60%SiC以及Fe、Al、Ca、Mg的碳酸盐)、无定形物层(主要成分是70%~90%SiC,而且是立方SiC即β-sic,其余是C、SiO2及Fe、A1、Ca、Mg的碳酸盐)、二级品SiC层(主要成分是90%~95%SiC,该层已生成六方SiC即口一SiC,但结晶体较小、很脆弱,不能作为磨料)、一级品SiC层(SiC含量<96%,而且是六方SiC即口一SiC的粗大结晶体)、炉芯体石墨。在上述各层料中,通常将未反应料和一部分氧碳化硅层料作为乏料收集,将氧碳化硅层的另一部分料与无定形物、二级品、部分粘结物一起收集为回炉料,而一些粘结很紧、块度大、杂质多的粘结物则抛弃之。而一级品则经过分级、粗碎、细碎、化学处理、干燥与筛分、磁选后就成为各种粒度的黑色或绿色的SiC颗粒。要制成碳化硅微粉还要经过水选过程;要做成碳化硅制品还要经过成型与结烧的过程。

碳化硅研究背景及意义论文

‍‍外延:在单晶衬底(基片)上生长一层有一定要求(厚度和掺杂浓度)、与衬底晶向相同的单晶层,犹如在原来的晶体向外延伸一段,称之为外延。碳化硅外延晶片即以碳化硅单晶作为衬底生长的外延片。使用领域、行业:外延晶片主要用于各种分立器件的制作,比如SBD、MOSFET、JFET、BJT、SIT和MESFET等,这些器件广泛应用于各个领域,如白色家电、混合及纯电动汽车、太阳能和风能发电、UPS、马达控制、轨道机车、轮船和智能电网等。对了,碳化硅外延晶片属于半导体行业。‍‍

凯龙高科的重结晶碳化硅的前景很好。凯龙高科而言,其推出的重结晶碳化硅方案需要根据市场需求、行业发展和技术创新等因素进行评估。从行业发展趋势来看,高温、耐腐蚀、高耐磨的碳化硅制品具有广泛的应用前景,被广泛应用于钢铁、冶金、化工、陶瓷、石油和天然气等领域。由于碳化硅材料是高科技行业的重要材料,在龙头企业的带动下,市场发展迅速,据预计,未来几年市场规模仍将保持高速增长。在此背景下,凯龙高科的重结晶碳化硅方案可能具有很好的前景。但需要注意的是,由于碳化硅材料是高科技行业的特殊材料,制造技术成本比较高,因此需要评估市场需求、技术突破和竞争等因素,并适时进行调整,以确保其长期发展的可持续性。

‍‍碳化硅晶片的主要应用领域有LED固体照明和高频率器件。该材料具有高出传统硅数倍的禁带、漂移速度、击穿电压、热导率、耐高温等优良特性,在高温、高压、高频、大功率、光电、抗辐射、微波性等电子应用领域和航天、军工、核能等极端环境应用有着不可替代的优势。国内独家碳化硅单晶供应商,在研发、技术、市场开发及商业运作等方面处绝对领先地位,已成功掌握76mm(3英寸)超大宝石级SiC2晶体生长核心技术工艺,达到国际2001年先进水平。在半导体器件的应用方面,随着碳化硅生产成本的降低,碳化硅由于其优良的性能而可能取代硅作芯片,打破硅芯片由于材料本身性能的瓶颈,将给电子业带来革命性的变革。

碳化硅的主要应用领域有LED固体照明和高频率器件,未来手机和笔记本电脑的背景光市场将给碳化硅提供巨大的需求增长。而由于一些特殊方面的应用,国外碳化硅生产企业对中国进行禁运,而碳化硅晶体巨大的技术壁垒又导致中国国内到目前为止仍没有企业能够生产,因此,国内下游企业和研究机构都在“等米下锅”。全球主要碳化硅晶片制造商美国Cree公司在NASDAQ上市的Cree公司的碳化硅晶片产量为30万片,占全球出货量的85%。是全球碳化硅晶片行业的先行者,为后续有自主创新能力的企业开拓了市场和发展路径。‍‍

电力电子技术的发展与展望研究作者:王娟武 班级:机设0918 专业:机电设备维修与管理 学号:0918316 学院:安徽水电学院 日期:2010年12月当今世界能源消耗增长十分迅速。目前,在所有能源中电力能源约占40%,而电力能源中有40%是经过电力电子设备的转换才到使用者手中。预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。�现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具 体应用。当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。一..电力电子技术的发展历史1. 整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了一股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。2. 逆变器时代七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。3. 变频器时代进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。2. 现代电力电子的应用领域 计算机高效率绿色电源高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。 通信用高频开关电源通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/、48V/20A扩大到48V/200A、48V/400A。因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。 直流-直流(DC/DC)变换器DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。 不间断电源(UPS)不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有、lkVA、2kVA、3kVA等多种规格的产品。 变频器电源变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。 高频逆变式整流焊机电源高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。 大功率开关型高压直流电源大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到以上,功率可达100kW。自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。 国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为。 电力有源滤波器传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有。电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。二..现代电力电子技术在电力系统中的应用1. 发电环节电力系统的发电环节涉及发电机组的多种设备 ,电力电子备的应用以改善这些设备的运行特性为主要目的。(l)大型发电机的静止励磁控制静止励磁采用晶闸管整流自并励方式具有结构简单 、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。(2)水力、风力发 电机的变速恒频励磁水力发电的有效功率取决干水头压力和流量,当水头的变化幅度较大时 (尤其是抽水蓄能机组) ,机组的最佳转速便随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。(3)发电厂风机水泵的变频调速发电厂的厂用电率平均为 8%,风机水泵耗电量约占火电设备总耗电量的6 5%且运行效率低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有众多的生产厂家,并不完整的系列产品,但具备高压大容量变频器设计和生产能力的企业不多,国内有不少院校和企业正抓紧联合开发。2. 输电环节电力电子器件应用于高压输电系统被称为“硅片引起的第二次革命”,大幅度改 善了电力网的稳定运行特性。(1)直流输电 ( HVDC)和轻型直流输电( HVDC L i g ht )技术 直流输电具有输电容量大、稳定性好、控制调节灵活等优点,对于远距离输电、海底电缆输电及不同频率系统的联网,高压直流输电拥有独特的优势。l 9 7 0年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。从此以后世界上新建的直流输电工程均采用晶闸管换流阀。(2)柔性交流输电 ( FACTS)技术 FA CTs技术的概念问世20世纪8 0 年代后期,是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压 及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。20世纪9 0年代以来,国外在研究开发的基础上开始将FA CTS技术用于实际电力系统工程。其输出无功的大小,设备结构简单,控制方便,成本较低,所以较早得到应用。3. 配电环节配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制既要满足对电压、频率 、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,即用户电力 ( Cu s t o m Po we r ) 技术或DFACTS技术,是在F ACTS各项成熟技术的基础上发展起来的电能质量控制新技术。可以DFACTS设备理解为F AC TS 设备的缩小版,其原理、结构均相同,功能也相似。由于潜在需求巨大,市场介入相对容易,开发投入和生产成本相对较低,随着 电力电子器件价格的不断降低,可以预期D F A C TS设备产品将进入快速发展期。三.电力电子技术的发展展望1. 新型电力电子器件在用新型半导体材料制成的功率器件中,最有希望的是碳化硅(SiC)功率器件。它的性能指标比砷化镓器件还要高一个数量级。碳化硅与其它半导体材料相比,具有下列优异的物理特点:高的禁带宽度,高的饱和电子漂移速度,高的击穿强度,低的介电常数,以及高的热导率。上述这些优异的物理特性,决定了碳化硅在高温、高频率、高功率的应用场合下是极为理想的半导体材料。在同样的耐压和电流水平下,SiC器件的漂移区电阻仅为硅器件的1/200,即使高耐压的SiC场效应管的导通压降,也比单极型、双极型硅器件的低得多。而且,SiC器件的开关时间可达10ns量级,并具有十分优越的FBSOA。SiC可以用来制造射频和微波功率器件、各种高频整流器、MESFETs、MOSFETs和JFETs等。SiC高频功率器件已在Motorola开发成功,并应用于微波和射频装置。GE公司正在开发SiC功率器件和高温器件(包括用于喷气式引擎的传感器)。西屋公司已经制造出了在26GHz频率下工作的甚高频的MESFET。ABB公司正在研制高功率、高电压的SiC整流器和其它SiC低频功率器件,用于工业和电力系统。理论分析表明,SiC功率器件非常接近于理想的功率器件。可以预见,各种SiC器件的研究与开发,必将成为功率器件研究领域的主要潮流之一。可是,SiC材料和功率器件的机理、理论、制造工艺均有大量问题需要解决,它们要真正给电力电子技术领域带来又一次革命,估计还需要至少10年左右的时间。2. 新能源电力电子技术在新能源发电技术和电能质量控制技术及节能技术方面有很广阔的发展间。其中风力发电和太阳能发电最受关注,而电力电子技术正是风力发电和太阳能发电的核心技术之一,这给电力电子工程师提供了千载难逢的发展机遇 ,广大 电力电子工程师务可以住这一机遇乘势而上,促进电力电子技术的发展。同时,由于一方面电力电子装置和电弧炉等装置的的大量应用,使得电能质量日益下降,另一方面用 户对电能质量的要求越来越高人们对以有源电力滤波器为代表的电能质量控制装置日益重视,研究开发越来越多。此外,由于电力系统电动机(约占发电量的6 0 % 以上 ) 和照明电源( 约占发电量的 1 0~1 5 %的大量采用,电力电子装置对无功功率和电力谐波都可有很好的补偿作用,因此,电力电子技术被称为节能的技术。目前,由于化石能源日渐枯竭,因此 ,电力电子技术在节能方面受到很大程度的重视,并且发展十分迅速。3. 电动车辆中国人多地大石油少,现在中国每年已进口许多石油。在21世纪前半叶,地球上的石油天然气资源日益减少,以至早晚会用尽。特别在中国国情下,城市交通以发展电动车辆为主是必然的趋势。大城市间的磁悬浮列车、城市内的电动高架列车和地铁列车、个人用电动自行车和电动汽车将构成未来的交通网络的主角。其中,大有电力电子产品的用武之地。磁悬浮列车的磁悬浮电源和直线电动机的变频调速;城市高架列车和地铁列车中异步电动机的变频调速;电动自行车和电动汽车中永磁无刷电机的外转子调速,在今后十年里会有很大的发展。这里,电动自行车和电动汽车的普及必须解决无刷电机及其控制器、环保电池、快速充电器和充电站网络服务等几方面的问题。现在看来,在中国推广电动自行车替代摩托车作为代步工具技术上正在趋于成熟。这里必须采用镍-氢电池组和锂离子电池组,消除常规铅-酸电池对环境的污染。这种价格尚偏贵的电池组可以采用向电动自行车用户出租使用的方式,实行由间距合理的电池充电站统一充电和用户自行充电相结合的办法。铅-酸电池与锂离子电池(如36V,10AH)相比,前者重12 kg,后者仅 kg。电动汽车的发展又是电力电子未来的潜在大市场。首先是高能量密度的清洁电池的突破。比较有希望的是燃料电池,它的起动和稳定运行都要用电力电子产品与之配套。其牵引系统方案中令人最感兴趣、并已有工业应用前景的,要属安装在四个车轮中的外转子盘式永磁无刷直流电动机驱动了。这种电机结构的优化设计、高性能控制调速传动,以及四台电机转动的协调运转,将为电动汽车的舒适运行,零半径转弯提供技术保证。今后十年将是电动汽车实用化发展的关键时期,电力电子产业可以也应该为此做出相应的研究开发工作,积极迎接这个庞大市场的到来。结束语:电力电子技术已迅速发展成为一门独立的技术、学科领域。它的应用领域几乎涉及到国民经济的各个工业部门。毫无疑问,它将成为新世纪的关键支撑技术之一。电力电子技术拥有许多微电子技术所具有的特征,比如发展迅速、渗透力强、生命力旺盛,并且能与其它学科相互融合和相互发展。参 考 文 献(1)林渭勋. 浅谈半导体高频电力电子技术.电力电子技术选编,浙江大学,1992(384-390)(2)付宇明 张辉. 电力电子技术在电力系统中的应用.信息技术,2000(162)(3)王兆安. 我国电力电子技术的新进展..逆变器世界,2008(32)(4) 陈虹. 电气学科导论. 北京:机械工业出版社,2005

碳化硅陶瓷的研究论文

(1) 高纯SiO2纤维的制备过程机理及其析晶性能研究,1995年国家教委科技进步三等奖。(2) 热强BAS玻璃陶瓷基体及碳纤维增强复合材料研究,1997年航空工业总公司科技进步二等奖。(3) 1800℃高温风洞氮化硅结合碳化硅陶瓷内衬应用研究,1999年航空工业总公司科技进步二等奖。(4) 耐高温长寿命抗氧化陶瓷基复合材料应用技术研究 I制造设备研制,2002年陕西省科技进步二等奖。(5) 耐高温长寿命抗氧化陶瓷基复合材料应用技术,2003年国防科工委科技进步一等奖。(6) 碳基和碳化硅基复合材料的环境性能研究,2003年教育部提名国家科学技术二等奖。(7) 氮化硅/碳化硅陶瓷材料的应用技术研究,2004年西安市科学技术一等奖。(8) 耐高温长寿命抗氧化陶瓷基复合材料应用技术,2004年国家技术发明一等奖,该成果入选教育部2004年度中国高等学校十大科技进展。(9) 耐高温长寿命抗氧化陶瓷基复合材料应用技术研究 II 制造技术与应用研究,2004年陕西省科技进步一等奖。 (1) 1997年获首届美国United Technologies-Ronghong优秀科技教育奖(2) 1997年荣获西北工业大学陕飞奖教金(3) 1999年荣获陕西省优秀博士学位论文(4) 1999年荣获西北工业大学教学成果二等奖(5) 2000年荣获西北工业大学优秀青年教师(6) 2001年荣获陕西省优秀博士学位论文(7) 2002年被评为教育部跨世纪培养人才(8) 2003年荣获中国航空学会青年科技奖(9) 2003年荣获西北工业大学指导本科生(张亚妮)获优秀毕业论文奖(10) 2004年荣获陕西省十大杰出青年、陕西省青年突击手(11) 2004年享受国家政府特殊津贴(10) 2005年中华全国青年联合会会员(11) 2005年被国防科工委授予 国防科技工业优秀科技创新团队,本人为队骨干成员

1)精细结构纳米微孔聚酰亚胺材料的射线化学合成(国家自然科学基金项目,批准号:11175163,~)( 主持)2)原位射线成型合成精细结构微孔聚酰亚胺的探索(中物院发展基金重点项目,批准号:2009A0302016,~)(主持)3)芳香族特种有机材料脉冲辐解与闪光光解研究(国家自然科学基金NSAF联合基金项目,批准号:10676036,院外承担单位:中科院上海应用物理研究所,~)(指导)4)高性能均孔EPDM泡沫材料的制备及性能研究(新开课题方向,~)(主持)5) 特种核环境相关有机材料辐射效应的实验考察与计算化学研究(国家自然科学基金NSAF重点项目)6)偕胺肟型吸附分离材料的辐照接枝合成研究(中物院科学技术基金面上项目,~)(指导)7)辐射接枝合成偕胺肟型吸附分离功能材料 (海水提铀)的研究(新开课题方向,~)(主持)8)单细胞凝胶电泳技术在低剂量核辐射监测中的应用(中物院科学技术基金面上项目,批准号:20050547,~)(指导)9)辐射技术用于先进SiC纤维研制的关键技术研究(中物院科学技术基金重大项目,批准号:2004Z0502,~)(主持)10)纳米填料填充EPDM的辐射硫化研究(中物院科学技术基金面上项目,批准号:20040539,~)(指导)11)结构材料及零部件库存性能研究(中物院×××预研项目,~)(指导)12)核辐射对××高聚物材料性能和结构影响的研究(中物院×××预研基金重大项目,批准号:1999Z0503,~)(主持)13)电子束辐照先驱体热解合成SiCf/SiC先进复合材料的研究(日本科技厅及日本学术振兴会博士后研究资助项目,~)(主持 )14)电子束辐照聚碳硅烷热解合成先进碳化硅陶瓷材料的研究(国家自然科学基金面上项目,批准号:19875043,~)(主持)15)纳米金属与SiC功能陶瓷的相容性及其共混物的性能研究(中物院×××预研基金院外项目,批准号:99050228,院外承担单位:国防科技大学,~)(主持院内实施)16)聚硅氮烷类陶瓷先驱体的合成及其辐照效应研究(中物院×××预研基金院外项目,批准号:970534,院外承担单位:国防科技大学,~)(主持院内实施)17)多官能团单体对聚碳硅烷陶瓷先驱体辐射不熔化反应的敏化效应研究(中物院×××预研基金项目,批准号:970566-516,~)(主持)18)辐射交联聚碳硅烷裂解合成碳化硅陶瓷纤维的研究(中物院×××预研基金项目,批准号:970565-512,~)(主持)19)阻燃型高发泡聚烯烃高级隔热材料的研究与开发(中物院××科技预研一般项目,军民两用技术,~)(主持)20)合成橡胶辐射硫化(日本科技厅核能研究科学家交换计划项目,~)(主持 实施)21)纤维增强辐射交联聚烯烃热缩包覆片材的研制及二代通讯电缆接续附件的开发(××转民产品开发项目,)(研制组长)22)惯性约束聚变(ICF)靶用超低密度微泡沫碳氢材料的研制(863计划项目,~)(参与)23)激光物理实验(ICF & XRL)靶用C8H8薄膜的研制(863计划项目,~)( 参与)24)激光物理实验(ICF & XRL)靶用Fomvar膜的研制(863计划项目,~)( 参与)25)乙烯-丙烯共聚物的辐射交联研究(新开课题方向,~)( 硕士学位论文)26)氘氚同位素标记化合物的合成研究(新开课题方向,~)(参与 )27)惯性约束聚变(ICF)靶玻璃微球充氚系统的建立与工艺研究(863计划项目,~)(参与)28)萃淋树脂分离铀、钍及稀土元素的研究(新开课题方向,~)( 学士学位论文)

张立同从事航空航天高温陶瓷及其复合材料研究,在氮化硅结合碳化硅、自增韧碳化硅、定向自生共晶硼化物复合材料、硅炭氮纳米吸波材料以及连续纤维增韧钡长石复相玻璃陶瓷复合材料等方面均取得新突破。特别在连续纤维增韧碳化硅陶瓷基复合材料及其制造技术方面,打破国际封锁,建立了具有中国自主知识产权的制造技术与设备体系。 1980年,在张立同的科研理论指导下,中国首次采用铜川上店土型壳材料铸造成功了第一批高精度、低粗糙度的斯贝低压一级无余量空心导向叶片。新铸叶片的尺寸精度及内部质量与国际著名的罗罗发动机公司的斯贝发动机叶片相当,表面粗糙度还略低于英国叶片。斯贝发动机的引进,使张立同的研究进入到向国际先进行列看齐的新阶段。 张立同主持研究的“无余量熔模铸造技术”,不仅将中国的熔模铸造水平推向了国际先进行列,而且还为发展中国新型发动机复杂内腔叶片及薄壁复杂整体构件奠定了理论和工艺基础。铜川上店土型壳材料,也被正式命名为“中华高岭土型壳材料”。 2000年和2008年先后创建超高温结构复合材料国防重点实验室和陶瓷基复合材料工程中心,为中国陶瓷基复合材料研究与工程转化搭建平台,工程化成果广泛用于航空航天领域,并向民用领域拓展。 张立同合著专著二部,授权国家发明专利50余项,发表SCI和EI收录论文400余篇。 专著 序号名称出版源年份备注1自愈合陶瓷基复合材料制备与应用基础化学工业出版社2015张立同编著2纤维增韧碳化硅陶瓷复合材料 模拟、表征与设计化学工业出版社2009张立同主编3复合材料手册化学工业出版社2009益小苏 ,张立同主编4近净形熔模精密铸造理论与实践国防工业出版社2007张立同参编5中国材料工程大典 第10卷 复合材料工程化学工业出版社2005益小苏 ,张立同主编期刊论文 序号名称出版源年份作者1化学气相渗透制备SiC_w/SiC层状结构陶瓷科学通报2015成来飞,张立同等2SiC_w/SiC层状结构陶瓷的制备及其应用中国材料进展2015解玉鹏,成来飞,张立同等3碳/碳化硅复合材料摩擦磨损性能分析航空材料学报2005张亚妮,徐永东,张立同等4碳陶刹车材料的研究进展航空制造技术2014徐兴亚,张立同,范尚武等5吸波型SiC陶瓷材料的研究进展航空制造技术2014张亚君,殷小玮,张立同6化学气相沉积层状BCx/SiC涂层自愈合机制复合材料学报2013张伟华,成来飞,张立同等7Si-B-C陶瓷涂敷2D C/SiC复合材料的抗氧化性能复合材料学报2013左新章,张立同等8液硅渗透法制备Ti3SiC2改性C/C-SiC复合材料复合材料学报2012范晓孟,殷小玮,张立同等9新型碳化硅陶瓷基复合材料的研究进展航空制造技术2003张立同,成来飞,徐永东10高温透波材料研究进展航空材料学报2003韩桂芳,陈照峰,张立同等11连续纤维增韧陶瓷基复合材料可持续发展战略探讨复合材料学报2007张立同,成来飞12陶瓷基复合材料在火箭发动机上的应用固体火箭技术2000邹武,张康助,张立同13连续纤维增韧碳化硅陶瓷基复合材料研究硅酸盐学报2002徐永东,成来飞,张立同14CVI法制备连续纤维增韧陶瓷基复合材料硅酸盐学报1995徐永东,张立同,成来飞15高温陶瓷基复合材料制备工艺的研究材料工程2000肖鹏,徐永东,张立同16CVI法制备三维碳纤维增韧碳化硅复合材料硅酸盐学报1996徐永东,张立同等17层状Ti3SiC2陶瓷的组织结构及力学性能复合材料学报2002李世波,王东,张立同等18高温结构陶瓷材料的设计准则硅酸盐通报1997徐永东,张立同,韩金探 张立同培养博、硕研究生近百名,获国家教学成果二等奖1项。 据中国科学技术信息研究所、国家工程技术数字研究馆信息:1995年至2004年期间,张立同共培养8名学生获得博士学位,基本情况如下 :【曾庆丰】 学位类别:博士;授予学位日期 2004年04月01日; 授予学位单位:西北工业大学;学位论文:C/SiC复合材料优化设计【邹武】 学位类别:博士;授予学位日期 2001年11月01日; 授予学位单位:西北工业大学;学位论文:三维编织C/SiC复合材料的制备及其性能研究【殷小玮】 学位类别:博士;授予学位日期 2001年03月01日; 授予学位单位:西北工业大学;学位论文:3DC/SiC复合材料的环境氧化行为【肖鹏】 学位类别:博士;授予学位日期 2001年10月01日; 授予学位单位:西北工业大学;学位论文:CSCVI法制备C/SiC的过程特征及其模拟【王汝敏】 学位类别:博士;授予学位日期 1991年12月01日; 授予学位单位:西北工业大学;学位论文:改性双马来酰亚胺树脂基体研究【刘晓辉】 学位类别:博士;授予学位日期 1997年12月01日; 授予学位单位:西北工业大学;学位论文:高抗冲复合材料的研究【成来飞】 学位类别:博士;授予学位日期 1997年12月01日; 授予学位单位:西北工业大学;学位论文:1650℃长寿命碳/碳复合材料防氧化涂层研究【杨觉明】 学位类别:博士;授予学位日期 1995年09月01日; 授予学位单位:西北工业大学;学位论文:用溶胶凝胶法制备热强BAS玻璃陶瓷的工艺理论基础及其材料性能研究

需要的话~QQ我365592930~~著名要论文的~~我在校园网上帮你免费下

低碳经济的论文研究背景

减碳是每个人的责任,低碳生活就是改变生活细节,养成一些良好的低碳习惯。然而我们该如何写有关低碳生活的论文呢?下面是我给大家推荐的关于低碳生活的形势与政策论文,希望大家喜欢!

《发展低碳经济,倡导低碳生活》

摘 要:节能减排,是政府的责任,社会的责任,也是我们每一个人的责任。城市作为人类活动的中心,是温室气体的主要排放源,也是低碳经济发展的关键平台。

关键词:低碳经济 节能减排 低碳生活

中图分类号:F205 文献标识码:A

文章编号:1004-4914(2011)07-094-01

工业革命使人类生产生活发生了根本性的变化,机械化、电器化、自动化减轻了人们的劳动强度、提高了工作效率。但是,工业经济从它诞生之日起负面影响就开始显现,最严重的莫过于全球气候变化。大量温室气体,主要是二氧化碳的排出,导致全球气温升高,环境日益恶化。

世界气象组织公布的报告指出,近10年是有记录以来全球最热的10年。全球变暖使得南极冰川开始融化,进而导致海平面升。德国的最新调查显示,在不久的将来,图瓦卢―太平洋的一个岛国,会因为温室效应而被海水淹没。地球发烧也给人类的健康造成了巨大的危害,传染病时有爆发,严重威胁我们的生存环境。

环境越来越恶化,必须在我们使用的主要能源、运输方式、居住的建筑物、城市的设计上等进行技术革新,寻找替代能源,改善我们的生存环境。而低碳经济是以低能耗、低污染、低排放为基础的经济模式,从一定意义上说,发展低碳经济能够减少二氧化碳排放量,延缓气候变暖,保护我们人类共同的家园。低碳经济是指在可持续发展理念指导下,通过技术创新、制度创新、产业转型、新能源开发等多种手段,尽可能地减少煤炭石油等高碳能源消耗,减少温室气体排放,达到经济社会发展与生态环境保护双赢的一种经济发展形态。

低碳经济的核心是技术创新,体现为低碳产品、低碳技术、低碳能源的开发利用等。我国的可再生能源资源很丰富,例如太阳能热水器,农村的小沼气,运用得很普遍;水电、部分发展较好的风电(如新疆塔里木的风电)等,也非常有竞争力;中国每年所利用的农作物秸秆等生物质能,折合标煤约三亿吨;交通领域,现在电动汽车时速可以达到150公里,最远可以跑400公里,如果蓄电池性能再好一点、动力更强一点,竞争力就会更大。太阳能汽车、氢能燃料电池等技术也在研发中。

发展低碳经济,最重要的是减少碳排放,提高能源效率,也就是节能减排。政府机关是节能减排政策的制定者,应率先垂范。人们常说,村看村,户看户,群众看干部。党政机关要带好头,自觉从我做起,从点滴做起,从身边的小事做起。不需要用水了,立即关掉水龙头;一盏灯能照明,就不要开第二盏灯;开空调时,不必将温度设置得太低。同时建立机制,引导干部职工节约每一度电、每一滴水、每一张纸,形成人人节约、时时节约、事事节约的新风尚。

节能减排,是政府的责任,社会的责任,也是我们每一个人的责任。城市作为人类活动的中心,是温室气体的主要排放源,也是低碳经济发展的关键平台。所谓低碳城市,是指在发展经济和提高人们生活质量的过程中实现了低碳化的城市。进入发展快车道的中国,城市化速度越来越快,紧抓低碳变革与中国城市发展这一重大机遇,加速低碳城市的创建,将对中国经济转型升级作出巨大贡献。

我国的许多城市正在进行低碳试点改革。例如:重庆市将低碳试点工作与产业结构调整、城市规划建设、推进科技创新相结合,通过提升节能环保等新兴产业比重,加快建设“宜居重庆、森林重庆”,从而实现低碳发展。天津市则积极构建高端化、高质化、高新化产业结构,形成了航空航天、新能源新材料等8大优势支柱产业,它的特点是与新加坡合作,建设生态城市和低碳示范区。南昌市奉行“生态立市、绿色发展”的思路,坚持清洁生产与低碳生活并重,通过加快实施发展低碳产业、建设低碳城市行动计划打造低碳生态经济示范城市。

低碳已经成为一种潮流,但普通老百姓对于“低碳经济”的理解并不深刻,我们要开展广泛深入的宣传,建立社会全员联动网络,形成政府推动、行业带动、学校主动、社会互动、媒体联动的低碳宣传系统,使低碳理念深入人心。例如:在商场进行低碳商品“规模摆放”,在社区进行“低碳消费达人”评选活动,在学校开展“低碳消费”知识竞赛等等。引导公众要树立节能环保意识,转变传统的以高耗能为代价的“便利消费”、“面子消费”、“奢侈消费”模式,在吃、穿、住、行、用等方面做到低碳消费、科学合理消费。

减碳是每个人的责任,低碳生活就是改变生活细节,养成一些良好的低碳习惯。比如说:将废旧报纸铺垫在衣橱的最底层,不仅吸潮,还能吸收衣柜中的异味,还可以擦洗玻璃,减少使用污染环境的玻璃清洁剂;出门购物,尽量自己带环保袋,减少使用塑料袋,塑料废物去到垃圾处理厂及堆田区,一般需要20~30年才能被土壤稀释及完全氧化;出门自带喝水杯,减少使用一次性杯子;夏天开空调前,先打开窗户让室内空气自然更换,开空调后调至室温25℃~26℃之间,这样既省电也低碳;不开汽车而改骑自行车或步行;冰箱内存放食物的量以占容积的80%为宜,放得过多或过少,都费电;使用冰箱时减少开门次数也是减少碳排放的一个小妙招,实验表明,如果每天开冰箱门10次,每次15秒,一天碳排放402克,而每天少开5次冰箱门,一个家庭每天减排201克碳;少买不必要的衣服,服装在生产、运输过程中,要消耗大量的能源,同时产生废气、废水等污染物,在保证生活需要的前提下,每人每年少买一件衣服可节约千克标准煤,相应减排二氧化碳千克,如果全国每年有2500万人做到这一点,就可以节能约万吨标准煤,减排二氧化碳16万吨。

发展低碳经济,倡导低碳生活,只有落实到现实的行动,才能营造我们美好的家园。

我们要提高“低碳”意识,对自己的生活方式、消费习惯进行简单易行的改变,一起减少全球温室气体排放。选择“低碳生活”,注意节电、节气、熄灯一小时,从这些点滴小事做起。只要每个人都行动起来,加入低碳行列,我们的生存环境一定会得到改善。

我们要通过经济发展方式的转型、消费方式的转型、能源结构的转型、能源效率的提高,使中国向低碳经济、低碳社会迈进。发展低碳经济,节能减排,关乎每一个人的现在和未来。低碳生活代表更健康、更自然、更安全的生活,让低碳成为一种生活习惯,只要你愿意主动去约束自己,改善自己的生活习惯,从现在开始你就可以加入进来,共同倡导低碳,呵护地球。

参考文献:

1.林汐.低碳经济与可持续发展党政干部读本.人民出版社,2010

2.陶良虎,何毅亭.中国低碳经济:面向未来的绿色产业革命.研究出版社,2010

(作者单位:中共商丘市梁园区委党校 河南商丘 476000)

点击下页还有更多>>>关于低碳生活的形势与政策论文

低碳经济对出口贸易的影响及对策论文

在学习、工作中,许多人都有过写论文的经历,对论文都不陌生吧,论文是学术界进行成果交流的工具。那要怎么写好论文呢?以下是我为大家收集的低碳经济对出口贸易的影响及对策论文,仅供参考,大家一起来看看吧。

摘要:

低碳经济已成为当今世界经济发展的新趋势,发展低碳经济是宁夏自治区优化外贸结构的重要契机。结合宁夏出口贸易发展现状,分析低碳经济对宁夏出口贸易的影响,提出以下建议:优化产业结构和能源结构,转变出口贸易增长方式;加快发展特色优势农业;积极开拓多元化出口市场。

关键词:

低碳经济;宁夏自治区;出口贸易

近年来,随着世界经济的高速发展,工业活动中大量使用化石能源,向空气中排放了大量二氧化碳等温室气体,温室效应显著,严重威胁着世界各国人民的生存,阻碍了“地球村”的可持续发展,全球经济向低碳发展模式转型是大势所趋,宁夏自治区作为对外贸易发展空间较大的地区,“低碳化”发展势在必行。

一、低碳经济背景下宁夏出口贸易现状分析

(一)出口规模不断扩大,抗风险能力仍然较弱

近年来,宁夏自治区发展外贸的条件逐步完善。在国家“十二五”规划提出“扩大内陆开放、加快沿边开放”之后,宁夏获准设立国家内陆开放型经济试验区。无论是凭借宁夏自身的区位优势,还是丝绸之路在此的历史积淀,宁夏都将成为国家“向西开放”战略决策的重要区域,成为丝绸之路经济带建设中拓展战略空间的中转站。宁夏的对外贸易经过长期发展,2011—2014年宁夏出口贸易整体呈现快速增长势头,出口贸易额从2011年的亿美元增至2014年的亿美元,年均增幅达。受竞争优势不强、外向经济脆弱、市场风险抵御能力较弱等因素影响,加之国际市场需求严重萎缩,2015年宁夏出口贸易受到较大冲击,出现大幅下降,全年进出口总额亿美元,同比下降。其中,出口亿美元,同比下降;进口亿美元,同比下降。

(二)贸易方式以一般贸易为主,加工贸易份额较小

近年来,宁夏的贸易方式以一般贸易为主,加工贸易增速虽高于一般贸易,但所占比重依然较小。以2015年为例,一般贸易进出口额为亿美元,同比下降25%。其中,出口亿美元,同比下降;进口亿美元,同比下降。加工贸易进出口额为亿美元,同比增长40%,占全区进出口总额的。其中,出口7588万美元,同比增长,占全区出口总额的;进口6347万美元,同比下降,为近年来首次出现负增长,占全区进口总额的(见表2)。

(三)出口商品以资源高碳工业品为主,农业特色产业优势尚未充分发挥

宁夏自治区的外贸进出口产品结构由农副产品、轻纺产品、机电产品、高新技术产品和冶金制品构成。出口的工矿产品中以资源为主的有硅铁和金属镁等,大多为加工制造业的中间产品,高附加值的高端技术类产品较少。2015年,宁夏监控的重点出口商品出口额为亿美元,同比下降。其中,资源类产品持续走低,金属镁、碳化硅、增碳剂、活性炭出口额分别为484万美元、1608万美元、192万美元和4328万美元,同比分别下降、、和。羊绒纱线、泰乐菌素、机床及铸件和轮胎等特色优势产品出口形势良好,出口额分别为9133万美元、8794万美元、7548万美元和1614万美元,同比分别增长、、和。《宁夏农业特色优势产业发展规划(2008-2012)》中提出,要集中推进枸杞、清真牛羊肉、牛奶、马铃薯、瓜菜五大战略性主导产业,优质粮食、淡水鱼、葡萄、红枣、优质牧草、农作物特种六大区域性特色优势产业,苹果和中药材两个地方性特色产业,形成13个优势产业带。但近年来,出口商品仍以硅铁、金属镁、钽铌制品等资源性商品为主,《规划》中的特色产业并无体现,宁夏发展特色农业出口的潜力巨大。

(四)对传统和新兴市场出口均呈下降趋势,对少数市场出口保持稳步增长

随着宁夏自治区对外贸易的不断发展,商品远销亚洲、美洲和非洲多个地区。以2015年为例,宁夏对亚洲、欧洲和非洲等传统市场分别出口亿美元、亿美元和亿美元,同比分别下降、和。尽管新兴市场不断拓展,但受新兴经济体增速放缓、国际市场需求疲软等因素影响,宁夏对阿联酋、印度、马来西亚、印度尼西亚和柬埔寨等新兴市场出口同比分别下降、、、和,仅对韩国、越南、香港和澳门保持了增长,同比分别增长、、和。

二、低碳经济对宁夏出口贸易的影响

(一)出口产品成本增加,出口产品竞争力下降

宁夏自治区出口的产品主要以机电产品、资源类、纺织类等碳排放密集的工业品为主,与低碳经济大背景下国际贸易的新要求相去甚远。为了降低成本,在生产制造过程中,多数企业采用相对低廉的能源和材料,在出口中多是以量取胜,而“低碳”将会倒逼企业使用清洁能源、采用高新工艺、研发高新技术等,这必然会使成本大大提高,从而降低宁夏出口产品的竞争力。

(二)开拓出口市场的难度增大

宁夏自治区出口市场相对集中,排在前几位的国家分别为美国、阿联酋、沙特、埃及、德国和日本。可以看出,宁夏出口市场主要集中于西方发达国家和新兴工业化国家,这些国家和地区的科技水平较高,在发展低碳经济方面拥有绝对优势。宁夏自治区作为出口贸易份额较少的省份,在对外贸易中被动地处于劣势,发达国家通过立法等手段推行苛刻的低碳规则,实行严格的贸易保护政策,必然会对宁夏自治区的出口贸易形成较大阻碍。

(三)低碳贸易壁垒将成为出口贸易新障碍

宁夏自治区的出口市场非常集中,对发达国家和新兴工业化国家市场的过度依赖增加了自身对外贸易的风险性和不稳定性。发达国家以保护环境、强调节能减排为由推行贸易保护主义,将使宁夏自治区的出口贸易面临新的贸易壁垒。

三、宁夏发展“低碳”型出口贸易的对策建议

(一)优化产业结构和能源结构,转变出口贸易增长方式

从宁夏自治区商品出口结构看,全区以制造业见长,以劳动密集型和资源密集型为主,出口产品的技术含量、环保标准和附加值都很低。发展低碳经济,要积极有效地进行产业结构升级,不断改进和优化进出口贸易结构,必须利用高新技术和低碳技术改造传统出口产品,减少污染程度较高的初级产品和工业制成品的'出口,应综合运用财政、金融、产业政策,严格控制高能耗、重污染的产业,推进能源节约,预防和治理环境污染,促进能源与环境协调发展。同时,还应加大力度开发新能源,减少“高碳”能源的开发和利用,提高能源利用率,合理调整能源结构,发展替代能源,降低出口贸易成本,以应对低碳经济条件对全区出口贸易的影响。

(二)加快发展特色优势农业

按照现代农业发展的要求发展特色优势农业,大力发展优质粮食、枸杞、酿酒葡萄、乳制品、清真牛羊肉、马铃薯、水产品、瓜果蔬菜等特色农产品,重点在品牌、绿色和清真上做文章,做大做强优势特色产业,打造具有宁夏农业特色的优势产业集群。

(三)积极开拓多元化出口市场

低碳经济的转化、研发与新技术应用是一个长期的过程,宁夏自治区出口贸易在巩固和扩大传统市场同时,更应关注并主动拓展独联体、东欧、拉丁美洲和非洲等新兴市场,开拓东盟等自由贸易区市场,推进市场多元化,从而降低发达国家低碳贸易壁垒带来的风险。

[参考文献]

[1]游建雄.低碳经济对广东出口贸易的影响及对策[N].顺德职业技术学院学报,2014(1):82-83.

[2]吴素芳.中阿博览会新起点下的宁夏进出口贸易发展的问题[J].对外经贸实务,2014(8):52-53.[3]詹晶.低碳经济对衡阳出口贸易的影响及应对策略[N].南华大学学报,2012(4):6-8.

【拓展阅读】

论文写作过程

1、论文选题。

确定选题就是确定研究课题(亦即论文题目),这是写好论文的第一步。它决定毕业论文写什么,怎么写,以及是否写得好。选题正确,论文会写得得心应手,写起来又快又好;否则情况会适得其反。

论文选题的原则是什么?

(1)选择有研究价值的课题;

(2)选择自己有能力完成的课题;

(3)选题宜小不宜大。

选题的途径有哪些呢?

(1)在导师的指导下确定选题;

(2)从搜集、阅读资料中获得选题;

(3)从社会实践和科学实践中寻找选题;

(4)从好学深思之中得到选题。

2、参考资料的收集筛选。

写作论文是对科学技术信息的再处理,是否充分地利用已有研究文献资料,将决定选题的质量、科学研究的质量和论文写作的质量。

怎么整理收集到的文献资料?搜集到的文献信息需要加以整理,作为写作论文的参考和依据。

(1)进行分类筛选。对搜集到的文献进行分类,把有用的资料按内容异同加以集中或分开,与此同时,把无用的或参考作用不大的资料加以剔除。

(2)阅读和研究资料,鉴别资料和数据的新颖性和适用性。用有序排列、摘录、做卡片和在电脑中设立专门文件夹的方式建立参考文献档案。

(3)根据所搜集的文献信息,再次考虑最初确定的选题和写作计划及论文纲要,从参考文献中得到启发和依据,以此订正选题,补充写作计划,细化论文提纲,开始论文写作。

3、撰写论文开题报告

(1)拟论文提纲摘要

(2)书写参考文献

(3)论文写作进度安排

4、论文正文书写

(1)按照拟好的题纲,参考选取的文献,组织论文全文

(2)注意论文格式

(3)书写论文致谢

5、论文答辩(毕业论文)

毕业论文答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。为了搞好毕业论文答辩,在举行答辩会前,校方、答辩委员会、答辩者(撰写毕业论文的作者)三方都要作好充分的准备。

在答辩会上,考官要极力找出来在论文中所表现的水平是真是假。而学生不仅要证明自己的论点是对的,而且还要证明老师是错的。

低碳经济与低碳生活摘要:本文阐述了低碳经济与低碳生活的概念和两者之间的关系。“低碳经济”是国际社会应对人类大量消耗化石能源、大量排放二氧化碳引起全球气候灾害性变化而提出的新概念。“低碳经济”不仅意味着制造业要加快淘汰高能耗、高污染的落后生产能力,而且意味着引导公众反思那些浪费能源、增排污染的不良嗜好,从而充分发掘消费和生活领域节能减排的巨大潜力。指出“低碳经济”仅有先进技术的支撑是不够的,必须依托于“低碳生活”才能实现减排的目的。而“低碳生活”是一种简单、简约、俭朴和可持续的生活方式,要实现“低碳生活”,宣传引导和制度保障是缺一不可的。关键词:环境科学;低碳经济;低碳生活;可持续消费1低碳经济的概念及形成背景今年6月5日“世界环境日”的主题定为:“转变传统观念,推行低碳经济”(“Kick the Habit!Towards a Low Carbon Economy”)。“低碳经济”,是近年来国际社会应对人类大量消耗化石能源、大量排放二氧化碳引起全球气候灾害性变化而提出的新概念。它的核心是在市场机制基础上,通过制度框架和政策措施的制定和创新,形成明确、稳定和长期的引导和鼓励,推动提高能效技术、节约能源技术、可再生能源技术和温室气体减排技术的开发和运用,并促进整个社会经济朝向高能效、低能耗和低碳排放的模式转变进入21世纪,全球油气资源不断趋紧,保障能源安全压力逐渐增大,全球环境容量瓶颈凸现,同时气候变化问题也成为有史以来人类面临的最大的“市场失灵”问题。在此背景下,英国率先提出“低碳经济”的概念,并于2003年颁布了《能源白皮书》(英国能源的未来——创建低碳经济)。现在,欧美发达国家大力推进以高能效、低排放为核心的“低碳革命”,着力发展“低碳技术”,并对产业、能源、技术、贸易等政策进行重大调整,以抢占先机和产业制高点。日本作为推动“低碳经济”的急先锋,投入巨资致力于发展“低碳技术”;美国参议院2007年提出了《低碳经济法案》,美国政府制定了低碳技术开发计划。这一切对我国而言,已形成压力和挑战。我国现在正处于工业化、城市化、现代化加快推进的阶段,基础设施建设规模庞大,能源需求快速增长。“高碳经济”特征突出的现实,成为我国可持续发展的一大制约。怎样走出一条既确保经济社会快速发展,又不重复西方发达国家以牺牲环境为代价谋求发展的老路,同时又不盲目让西方国家牵着鼻子走,是我们必须面对的课题。2从技术角度看低碳经济保障能源安全和应对气候变化无疑是“低碳经济”要实现的最重要的两个目标。英国所倡导的“低碳经济”,是通过制定和实施工业生产、建筑和交通等领域的产品和服务的能效标准和相关政策措施,通过一系列制度框架和激励机制促进能源形式、能源来源、运输渠道的多元化,尤其是对替代能源和可再生能源等清洁能源的开发利用,实现低能源消耗和低碳排放的目标。最终实现以更少的能源消耗和温室气体排放支持经济社会可持续发展的目的。新能源二氧化碳排放量的不确定性从技术创新的角度看,“低碳经济”的理想形态是充分发展太阳能光伏发电、风力发电、氢能以及生物质能技术。一般把太阳能光伏发电、风力发电、氢能等称为新能源或替代能源,生物质能认为是替代能源中的可再生能源。风力发电虽然近年来发展很快,技术有一定程度的突破,但目前它的成本也还是高于煤电、水电。此外,人们认为风力发电在发电过程中不排放二氧化碳,而火力发电过程要排出大量二氧化碳,因此说风电不排放二氧化碳,这实际上是一种误解。与火力发电相比,风力发电在发电过程中是不排放或很少排放二氧化碳,但在制造风力发电设备及其维修、维护过程中是一定要排放二氧化碳的,我们不能光比较发电过程的二氧化碳排放量,而应当比较火力发电和风力发电发出单位电量的全程二氧化碳排放量。所以说,认为风力发电、电动汽车不污染环境,不排放二氧化碳的观念首先是不科学的。再比如现阶段太阳能发电的成本是煤电、水电的5-10倍,[1]作为二次能源的氢能,目前离商业化目标还很远,技术还很不成熟。目前新能源开发的高成本一方面说明技术不过关,另一方面也意味着所谓新能源并不是无污染,也不见得二氧化碳排放量就低,在没有进行全程二氧化碳排放量的比较之前,不能轻言新能源是低二氧化碳排放的能源。生物质能技术的实施结果生物能源是可再生能源,发展生物质能技术,看似“一石两鸟”,既解决化石能源紧张的替代和缓解问题又改善环境。但从目前实施的结果看,它带来的问题似乎比解决的问题还要多。美国发展生物质能的新政策出台后,美国的粮农们纷纷扩大玉米的种植面积,或将种植其他作物的土地也改种为玉米。据统计,2007年美国玉米种植面积和产量均创下1944年来最高纪录,产出的玉米中多达五分之一被用来生产乙醇汽油。如此旺盛的需求当然也带来了价格的上扬,仅2007年一年,美国国内的玉米价格就上涨了50%。[2]此外,由于被玉米挤占了种植空间,大豆的供应量减少,价格也开始上涨。因此布什的新能源政策招致了不少人的批评。联合国粮农组织专家琼·齐格勒警告说,一些国家将粮食转化为燃油的做法是一种“反人类罪”,这种做法将加剧全球范围内的粮食短缺,抬高粮食价格,让更多贫困人口难以承受。利用粮食作物转换成生物燃料的政策对于日益严峻的全球粮食短缺问题无疑雪上加霜,必将给世界造成更大规模饥荒。在中国,2007年猪肉和食用油价格的一路飙升,一个非常重要的原因就是饲料价格的上涨,而且粮食价格飞涨波及的不仅仅是中国。美国的一项能源政策对世界范围内的食品价格产生这么大的影响,可谓美国的生物燃料政策的实施客观上已经形成了全球8亿有车一族与20亿最贫困人口之间针对粮食展开的较量。而具有讽刺意味的是,开发生物质能的计划并未带来化石能源紧张问题丝毫的缓解,倒是使新旧问题相互交织,给人类带来了更多的困扰。但这并不意味着技术创新和新能源的发展对于“低碳经济”不重要,而是我们在推行“低碳经济”的同时要倡导“低碳生活”,或者说,“低碳生活”应当是“低碳经济”的重要组成部分。3.低碳经济应与低碳生活相依托“低碳经济”的重要含义之一,不仅意味着制造业要加快淘汰高能耗、高污染的落后生产能力,而且意味着引导公众反思那些浪费能源、增排污染的不良嗜好,从而充分发掘消费和生活领域节能减排的巨大潜力。在市场经济体制和观念下,“低碳经济”高能效、低能耗技术状态下的生产仍然是追逐最大利润,因此大量生产就是不可避免的,所生产的产品最终一定要想办法卖出去的,而且是卖的越多越好。大量生产必然会产生大量污染、大量排碳。单位能耗降低了,但总量大大增加,二氧化碳的排放量是不会减少多少的。举例来说,通过几十年的努力小汽车行驶一百千米的耗油量下降了约50%,但小汽车的总量却增加了几十倍,显而易见的是污染和二氧化碳排放量也增加了许多倍。因此说,“低碳经济”仅有先进技术的支撑是不够的,必须依托于“低碳生活”才能实现减排的目的。“低碳生活”是可持续的生活方式“低碳生活”是一种简单、简约和俭朴的生活方式。我们的衣食住行都与二氧化碳排放量乃至于气候变化有关,比如一张A4纸的能源含量接近度电,[3]由此也可算出它的二氧化碳排放量。如果绝大多数人的生活能够采取低排碳的适度消费的方式,那么“低碳经济”的实现是有可能的,有怎样的生活方式就有怎样的经济。“低碳生活”不只是制造业、建筑业中许多节能技术改进的细节,它包括日常生活习惯中许多节能细节。对于世界第一人口大国来说,每个人生活习惯中浪费能源和二氧化碳排放量的数量看似微小,一旦以众多人口乘数计算,就是巨大的数量。如今在发达国家,很多人已经接受了由低碳经济带来的低碳生活方式,为了过上低碳生活,他们愿意做出自我牺牲,从关掉暖气到放弃驾车去上班。今天欧洲人越来越喜欢乘坐火车出行,一个主要原因是乘高速列车带来的人均碳排放只有飞机的1/10。简约生活,也正成为更多中国人家奉行的生活准则。一些收入早已进人中产阶级的市民,也会穿着旧衣服去早市买便宜青菜,骑自行车出行,使用最老款的手机。煮鸡蛋早关一分钟煤气、用洗衣服的水冲厕所、随手关灯,打印用双面纸等习惯早已深入到那些最有教养的阶层中去,带来心灵的宁静。然而,能够自觉地在可持续消费价值观指导下做到适度消费的人是不多的,大量消费依然是社会生活的主旋律。低碳经济绝大部分时刻还只是一个概念,低碳生活也只是处在令人尴尬的纸上谈兵阶段。在实际生活中,以大量消耗能源、大量排放温室气体为代价的“面子消费”、“奢侈消费”的比例太高。一方面在努力实现“低碳经济”,一方面又不停地挥霍。这些都是消费主义文化使然。消费主义文化总是不断刺激你去换最新款的手机、电视、衣服、鞋子;轰炸般的商业广告煽动着公众一浪高过一浪的消费欲望,把人变成商业利润的工具。不少刚参加工作不久的年轻人,用一个月的收入买一款新式手机或一个名牌皮包眼睛都不眨。中国现在每年平均淘汰近7000多万部手机,产生着大量的电子垃圾。[4]不少年轻女性家里堆满了各种款式的鞋子和皮包,但还是要去买更新的款式。在提倡“低碳生活”的今天,“能挣会花”的口号不再象征着现代化理念,而象征着一种浪费资源的野蛮消费方式。大量生产、大量消费、大量废弃的生活方式,正走向人类文明的反面,严重制约了可持续发展战略的实施,不但污染了生态环境,而且污染了人们的心灵。正是这种无限膨胀的消费欲望造成了世界能源、资源的紧张。“低碳生活”要有制度保障今年6月13日,湖北省首次公示部分省直机关办公建筑能源审计结果,包括省建设厅、交通厅、发改委在内的20个省直机关办公楼,每年每平方米的平均耗电量为80度,是普通民宅的3~4倍。[5]而在这之前,国务院办公厅以及湖北省政府都发布了节能降耗建设加以型机关的通知,并且也有一些具体的要求。不能取得明显成效的根本原因在于,公务人员的节能纯粹是个人道德、认识的体现,即使有一些具体的要求,也只是柔性的,没有一种刚性的制度约束,来催逼他节能。如果政府节能有制度保证,那么公务人员一旦不节能,就会受到组织、经济等方面的惩戒,将会极大地推进节能在政府层面的落实。6月16日《解放日报》报道,上海市将办公节能措施具体化,如制定了“夏季着清凉装上班,除外事礼仪需要外不穿西装不系领带”、“办公楼四楼以下不乘用电梯”、“公务出行拼车、乘用公交车”等规定,正在将办公节能措施具体化,并率先在公务人员中推行,这在大方向上应该看作是走向了制度化。如果这些制度再辅之以惩戒措施,将会更现实化,也便于操作。全民的环境与可持续发展宣传教育开展以多年,公众的环保意识有了一定程度的提高,除了道德层面的教育引导外,还必须有制度的约束。6月1日之前,许多人怀疑“限塑令”的可操作性,但颁布后,还是得到了广大市民的理解,并且取得了实效。总之,“低碳生活”的广泛实施,,将扼制“高碳经济”的蔓延,促进“低碳经济”发展。而实现这一目标,“低碳生活”的宣传引导和制度保障是缺一不可的。参考文献[1]吴晓江.戒除嗜好!面向低碳经济[N].文汇报:2008年6月5日[2]赖华夏.石油涨价的蝴蝶效应[J].世界环境,2008(2):10[3]田晨.低碳生活是一种更好的生活方式[J].世界环境,2008(2):31[4]陈晓凤.简约生活[J].自然之友通讯,2008(3):48[5]毛建国.惟有通过法制催逼政府节能[N].中国青年报,2008年6月17日

碳化硅的制备及其性能研究论文

碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 粉末冶金20 552 103 粉末冶金20 496 103 粉末冶金20 724 103 粉末冶金40 441 125 粉末冶金15 689 97 搅拌铸造20 350 98 无压浸渗30 382 125 表1 碳化硅颗粒增强铝基复合材料的力学性能[1] Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为,仅重。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 /ZL101 20 375 101 /ZL101A 20 330 100 /6061 25 517 114 /2124 25 565 114 / 20 226 95 /Al 26 387 112 -表2 金属基复合材料的力学性能[1] Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, , 材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. .,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.

1、复合添加剂的共沉淀法制备及 ZnO 压敏陶瓷研究2、碳化硼球面薄膜及空心微球的制备3、溶胶–凝胶法制备双层宽频增透膜的研究4、pH 值对聚合钛离子/蒙脱石复合结构及其 TiO2纳米粒子属性的影响研究5、氧化钇掺杂锆铈酸钡质子导体的制备及性能研究6、前驱体热解氮化硼/碳化硅复相泡沫陶瓷的抗氧化与高温隔热性能研究7、Zn2+、Cr3+掺杂对水热合成纳米 CoAl2O4尖晶石色料的影响8、快淬对 Mg2Ni 复合储氢合金电化学性能的影响9、玻璃空间电离辐照着色损伤动力学研究10、有机前驱体法 BN 纤维的制备和表征11、应变对四方相 BaTiO3缺陷及极化的影响12、CdS-K2La2Ti3-xPbxO10的制备及其光催化性能13、陶瓷结构、介电性能与结晶化学特性14、低成本电化学法制备 RE2Zr2O7缓冲层15、棒状 ZnWO4纳米晶的合成及其光催化性能16、纳米 磁颗粒的低温磁特性研究17、高压 PLD 法生长 ZnO 和 Zn1-xMgxO 纳米棒及其荧光性能

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2