更全的杂志信息网

金属氧化物催化剂的研究进展论文

发布时间:2024-07-05 15:14:45

金属氧化物催化剂的研究进展论文

如下:

【摘要】:综述了分子氧氧化环己烷制取环己酮的催化剂的研究进展,重点介绍了光催化剂、纳米催化剂、仿生催化剂、分子筛催化剂和复合催化剂在环己烷催化氧化方面的应用,其中,负载在分子筛上的纳米金催化剂具有较高的催化活性、选择性及稳定性。

【关键词】:环己烷氧化,环己酮,催化剂的认识。

环己酮是重要的有机化工原料和工业溶剂,广泛应用于医药、油漆、涂料、橡胶、农药行业、印刷和塑料回收方面。目前,工业上制取环己醇和环己酮的方法主要为苯酚加氢法、苯部分加氢法和环己烷液相氧化法,环己烷氧化法的应用最为普遍,占90%以上。

由于环己醇和环己酮比环己烷更易于被氧化,为获得适宜的环已醇和环已酮的选择性,工业上环己烷氧化转化率通常控制在,氧化选择性为90%左右。

但环己烷的大量循环造成能耗上的巨大浪费。目前,环己烷氧化工艺研究的热点主要集中在对传统工艺的改造优化、氧化剂的选择及高效催化剂的开发。开发高性能和环境友好的催化剂成为研究热点,近年来开发的一些氧化催化剂在改善环己烷转化率和产物选择性方面表现出较好的性能。

本文主要综述分子氧氧化环己烷制环己酮催化剂的研究进展。

请留下邮箱,传递论文,文章无法直接罗列

论文DOI:

全文速览

金属/氧化物界面对于多相催化具有重要意义,因为看似“惰性”的氧化物载体可以通过界面调节金属催化剂的形貌、原子和电子结构。尽管界面效应在块状氧化物载体上得到了广泛的研究,但对于团簇级纳米系统,仍然缺乏更深入的了解。作者在此证明了由混合 Pd/Bi 2 O 3 簇集合构建的纳米金属/氧化物界面的本征催化作用。该界面可以通过简单的逐步光化学方法制造。作者结合电子显微镜和微量分析阐明了Pd/Bi 2 O 3 簇的杂化结构。其中,Pd-Pd 配位数较小,更重要的是,由于Bi 2 O 3 簇中Bi 端和 Pd 之间的异质接枝,实现了Pd-Bi 空间相关性。纳米金属/氧化物界面与 Pd 之间的簇内电子转移显著削弱了乙烯吸附,且不会影响氢活化。因此,在温度低至 44 C 的加氢过程中,可以实现 91% 的乙烯选择性和 90% 的乙炔转化率。

背景介绍

金属/氧化物界面对多相催化具有重要的基础/实际意义,因为它提出了关于强金属-载体相互作用的基本问题,并在几个催化过程中发挥关键作用。从结构的角度来看,金属/氧化物界面由在化学成分、键合特性、晶格参数以及电气和机械性能方面不同的组分构成,其中粘附结构和化学性质是一个引人注目的研究课题。而从功能的角度来看,金属/氧化物界面处的化学键合和相关的电荷转移可以调节金属的形态、尺寸和电子结构,以优化反应中间体的键合强度从而获得更好的催化性能。在过去的几十年中,在金属/氧化物界面的结构解析和调控方面取得了相当大的进展,这些界面通常采用本体氧化物载体来促进金属的成核、吸附或沉积。此外,纳米金属/氧化物界面,由金属和氧化物簇之间的异质接枝形成,也有希望加强结构和电子效应,以实现更好的催化性能。然而,由于此类杂化簇的化学合成和结构解析面临巨大挑战,因此对纳米金属/氧化物界面的了解有限。

作为经常使用氧化物负载的金属催化剂的代表性反应,乙炔选择性加氢生成乙烯需要在高催化活性和选择性的两个要求之间进行权衡:氢的易活化与乙烯的弱结合。尽管 Pd 基催化剂取得了重大进展,但这两个参数的同时优化仍然具有挑战性,尤其是在 H 2 和 C 2 H 4 大量过量的前端过程中。为了达到这个目标,需要对 Pd 的几何和电子结构进行复杂的调控,这促使人们设计金属/氧化物界面。大多数 Pd/氧化物催化剂,主要为负载 Pd 纳米颗粒或孤立的 Pd 原子。不幸的是,Pd 纳米粒子在低温下可以有效地激活氢气,但它们与乙烯的强结合有利于乙烯连续氢化成乙烷。孤立的 Pd 位点催化剂,包括 Pd 单原子催化剂和 Pd 基金属化合物与乙烯具有弱 π 键,因此在乙炔加氢反应中具有良好的选择性,但它们伴随的氢活化减弱导致需要相对较高的反应温度(> 100 C)才能实现乙炔的高转化率,这可能会导致反应器床的安全问题。将氧化物载体的尺寸减小到纳米团簇尺度将显著改变它们的配位数 (CN)、表面终端和 d 带特征,因此可以通过与 Pd 的强化学和电子相互作用,实现Pd 的尺寸和电子结构调控。其中,由纳米金属/氧化物界面稳定的无配体 Pd 簇有望弥合 Pd 纳米粒子与单原子之间的尺寸和性能差距,并最大限度地发挥界面效应。

图文解析

图 1. Pd /Bi 2 O 3 /TiO 2 的微观结构。a 合成过程示意图。b-d Bi 2 O 3 /TiO 2 (b) 和 Pd /Bi 2 O 3 /TiO 2 (c, d) 的STEM 图像。从上到下和从左到右的插图分别是投影结构模型、模拟 ADF-STEM 图像、HRSTEM 图像中圆形区域的 FFT 图案以及模拟 ADF-STEM 图像的 FFT图案。 e Pd /Bi 2 O 3 /TiO 2 的元素mapping图像。

图 2. Pd /Bi 2 O 3 /TiO 2 的表征。a TiO 2 、Pd/TiO 2 、Bi 2 O 3 /TiO 2 和 Pd /Bi 2 O 3 /TiO 2 的 XRD 图; b Pd/TiO 2 、Pd /Bi 2 O 3 /TiO 2 和氧化Pd /Bi 2 O 3 /TiO 2 (Pd /Bi 2 O 3 /TiO 2 -ox) 的Pd K-edge EXAFS傅里叶变换光谱;c Bi L 3 -edge EXAFS的傅里叶变换光谱;d Bi 2 O 3 /TiO 2 、Pd /Bi 2 O 3 /TiO 2 和Pd /Bi 2 O 3 /TiO 2 -ox 的 Bi L 3 -edge XANES 光谱。Bi 和 Bi 2 O 3 粉末用作参考样品。 e Pd/TiO 2 、Pd /Bi 2 O 3 /TiO 2 和 Pd /Bi 2 O 3 /TiO 2 -ox 的 Pd K-edge XANES 光谱。钯箔用作参考样品。 f 不同样品的 CO 吸附 FT-IR 光谱。

图 3. Pd /Bi 2 O 3 /TiO 2 在乙炔加氢中的催化性能。a Pd /Bi 2 O 3 /TiO 2 、Pd /Bi 2 O 3 /TiO 2 和PdAg 3 /Al 2 O 3 样品的选择性与乙炔转化率的函数关系。 b 乙炔转化率为 95%时,在不同催化剂上 C 2 H 4 的选择性。 c 乙炔转化率为 90%时,反应温度 (T 90 ) 和C 2 H 4 选择性。 对于 Pd /Bi 2 O 3 /TiO 2 ,在室温下很容易发生氢解离。非选择性乙炔加氢的强放热效应,最终导致温度失控,达到 C。d 在 40 C 下,Pd /Bi 2 O 3 /TiO 2 上的 C 2 H 2 转化率, C 2 H 4 选择性随时间变化曲线。e Pd/TiO 2 、Bi 2 O 3 /TiO 2 和Pd /Bi 2 O 3 /TiO 2 的 H 2 -TPR 曲线。f在 Pd/TiO 2 和 Pd /Bi 2 O 3 /TiO 2 上,C 2 H 4 脉冲吸附的微量热研究。

图 4. DFT 计算揭示的反应机理。a 用于 DFT 计算的 Pd 簇结构(Pd:青色,Bi:紫色,O:红色)。b 在 Pd(111) 上,和在 Bi 2 O 3 (100) 上负载的 Pd 8 簇上乙炔加氢生成乙烷的能量分布。 c投射到 Pd(111) 和 Pd 8 簇结构Pd 原子的 d 电子上的态密度。 选择 Pd(111) 的表面 Pd 原子和 Pd 8 簇结构中最活跃的 Pd 原子(C 2 H 4 吸附最强烈)来绘制 DOS。 d 带中心 (ε d ) 的位置用红色方框突出显示。 d C 2 H 4 的 E ads 与 Pd 簇表面不同 Pd 原子的 ε d 的函数关系。 最稳定的吸附结构用实心正方形表示,而其他不太稳定的吸附结构用空心正方形表示。 Pd(111) 的表面 Pd 原子也显示为红色实心方块以供比较。蓝色拟合线表明更小的 ε d 对应于更大的 C 2 H 4 E ads 。

总结与展望

基于上述结果,作者证明了纳米金属/氧化物界面在乙炔选择性加氢中的重要催化作用。Pd-Bi 2 O 3 杂化簇具有小的 Pd-Pd 配位以及簇内电子转移,可以在不影响 H 2 活化活性的情况下实现弱 C 2 H 4 吸附。Pd-Bi 2 O 3 纳米团簇相对于 Pd 单原子和纳米粒子的优异低温催化性能可能为混合纳米团簇的基础研究开辟新的机会。此外,所展示的逐步光化学策略也为制备混合纳米团簇和纳米金属/氧化物界面提供了一条新途径。

指出了催化剂是选择性催化还原(SCR)脱硝系统的核心,催化剂的寿命直接关系着SCR脱硝系统的运行成本,分析了SCR反应过程催化剂失活的各项因素,并针对特定的失活原因,详细阐述了失活SCR催化剂再生技术的原理和特点,就现行应用于废弃含钒催化剂提取钒的工艺进行了探讨。1 引言燃煤电厂排放的氮氧化物(NOx)是主要大气污染物之一,也是形成光化学烟雾、酸雨污染及破坏臭氧层的主要物质。如何有效控制NOx排放已成为当前环境保护中令人关注的重要课题[1]。而在众多的脱硝技术中,选择性催化还原法(Selective Catalytic Reduction,SCR)以其无副产物,装置简单并且脱除效率高(可达90%以上)、运行可靠、便于维护等优点,已成为现阶段世界上应用最为广泛的烟气脱硝技术。采用SCR技术的关键问题是选择优良的催化剂,它的性能直接影响到SCR系统的整体脱硝效果。经过多年的工业实践和验证,目前广泛使用的是以锐钛矿型二氧化钛为载体负载钒氧化物作为活性物质,辅以氧化钨或氧化钼为助催化剂的金属氧化物催化剂。目前,用于燃煤电厂烟气脱硝的钒基催化剂的工作温度范围为310~430 ℃,相当于锅炉省煤器出口的烟气温度。因此SCR脱硝反应器直接安装在锅炉省煤器与空气预热器之间,即所谓的高位布置方式[2]。尽管这种布置方式下催化剂活性最大,有利于反应的进行,但该布置区间烟气中高浓度的粉尘会冲刷催化剂并使其中毒,同时烟气温度过高使得催化剂发生烧结、失活,使催化剂的寿命缩短。当催化剂的活性下降致使其性能劣化到一定程度时,就要更换催化剂,在运行费用中除了氨的消耗,催化剂的更换更是占据了大部分费用。对于可逆性中毒的催化剂和活性降低的催化剂可以通过再生重新利用,再生费用只有全部更换费用的20~30%,而活性可恢复到原来的90%~100%,甚至更高[3]。此外,不可再生的废弃SCR脱硝催化剂中含有钒等有价金属,直接丢弃会造成环境污染,其中钒是稀有金属,在自然界中分散而不集中,富集钒矿不多,提取和分离比较困难。近几年随着科技的发展,对钒需求量每年约增长5%,致使钒价不断上扬。因此,从废弃SCR脱硝催化剂中回收V2O5既能避免对环境的污染,又能节约宝贵的资源。2 SCR催化剂的失活机理在SCR系统运行过程中,导致SCR催化剂活性降低乃至失活的原因主要有以下几种[4,5]。 高温引起的烧结、活性组分挥发温度对于SCR催化剂活性有较大的影响,对于V2O5-WO3/TiO2催化剂的热力型失活也有相关的研究,长时间暴露于450 ℃以上的高温环境中可引起催化剂活性位置(表面)烧结,直接导致催化剂颗粒增大,表面积减小,一部分活性组分的挥发损失,进而使催化剂活性降低。Reiche等人[6]研究了V2O5 /TiO2在不同温度下的活性变化,结果发现当温度高于500℃时催化剂将严重失活。Moradi等人[7]的研究结果表明,催化剂失活过程中,外部环境温度是一个重要的参数。当外界环境温度升高时,亚微观粒子在催化剂失活中的作用将被加强。 碱金属、碱土金属氧化物引起的催化剂中毒飞灰中的可溶性碱金属主要包括Na与K这两种物质,在水溶液离子状态下,它们能够渗透到催化剂深层直接与催化剂活性颗粒反应,使酸位中毒以降低其对NH3的吸附量和吸附活性,继而降低催化活性[8]。碱金属元素被认为是对催化剂毒性最大的一类元素,因此碱金属中毒本质成为探讨的焦点。Kamata等[9]通过脱硝活性实验证实,随着催化剂表面K2O含量的增加,NO转化率急剧下降,当K2O质量分数达到1%时,催化剂活性几乎完全丧失。他们还利用DRFIT等方法分析得到了催化剂钾中毒机理:K2O存在使得SCR催化剂活性位之一的Bronsted酸性活性位的数量大大减少,同时也削弱了Bronsted酸性位的酸性,但是随着SCR催化剂表面K2O含量的增加,另一种活性位Lewis酸性位的数量几乎不发生变化,这说明SCR催化剂钾中毒后,活性的下降是由Bronsted酸性位的变化引发的。另外,碱金属物质的增加,会使载体氧化物的pH值增大,在高温的烧结下,会使催化剂晶型改变而造成结构坍塌,堵塞内孔而导致活性降低。因此,若烟气中K2O、Na2O的含量增加,则催化剂的失活现象就更严重[10]。朱崇兵等[11,12]利用模拟中毒法使得V2O5-WO3/TiO2催化剂中毒,通过检测中毒后催化剂的脱硝活性,比较了相同摩尔比的碱金属氧化物中毒条件下催化剂的失活程度,得到如下结论:碱金属氧化物与催化剂表面V物种的结合生成部分碱金属盐(如KVO3、NaVO3),改变了催化剂的表面结构,使催化剂中有效活性位的数量大大降低,从而导致催化剂活性降低。两种碱金属氧化物对催化剂的毒性顺序为K2O>Na2O。 碱土金属元素(Ca、Mg)对于SCR催化剂的影响主要表现在氧化物在催化剂表面的沉积并进一步发生反应而造成孔结构堵塞。Benson等[13]对催化剂表面XRD的检测结果表明,催化剂表面沉积的碱土金属化合物主要为CaSO4,其余为Ca3Mg(SiO4)2和CaCO3,其中CaSO4和CaCO3是由CaO分别与SO3和CO2反应得到的。Nicosia等[14]通过NH3-TPD和DRFIT的测量证实,Ca也能够和K一样,影响Bronsted酸性位和V5+ O上NH3的吸附,而对于Lewis酸性位则几乎没有任何影响,但在同摩尔分数下Ca的影响比K小。 非金属氧化物引起的催化剂中毒砷(As)是大多数煤种中都存在的成分,SCR催化剂的砷中毒是由气态砷的化合物扩散进入催化剂表面及堆积在催化剂小孔中,然后在催化剂的活性位置与其他物质发生反应,引起催化剂活性降低。烟气中气态砷的主要形态为As2O3,在SCR催化剂所处的温度区间会部分生成As3O5或As4O6[5]。Hans等[16]通过ESEM照片显示,As2O3主要沉积并堵塞催化剂的中孔,即孔径在~μm之间的孔。磷与砷同属于VA族的元素,存在于烟气中磷化合物主要以P2O5的形式存在,P2O5不是机械地固定在催化剂的表面上的,而是也通催化剂的活性组分进行化学反应,从而导致SCR催化剂钝化。Kamata等[17]考察了不同P2O5负载量下催化剂脱硝活性的变化,并通过表征手段对SCR催化剂的磷中毒机理进行深入研究。结果表明,催化剂的活性随着P2O5负载量的增加而下降,但相比碱金属的影响则要小很多,磷致催化剂中毒机理被认为是P取代了V-OH和W-OH中的V和W,生成了P-OH基团,P-OH的酸性不如V-OH和W-OH,减少了Bronsted酸性位的数量,致使催化剂的脱硝活性下降。 烟气中其他成分导致的催化剂失活飞灰成分复杂,它的组成与性质因燃煤品种、燃烧温度及燃烧方式不同而变化,其中除了含有大量碱金属、碱土金属、P、As主要毒性氧化物外,还含有一定量的铁、铅、硅等游离氧化物,这些游离氧化物同样能够与活性位发生作用而使催化剂钝化。此外,烟气中的HCl气体对SCR催化剂也有一定的毒害作用,表现在一方面,在烟气温度低于340℃时,HCl会与NH3反应,生成NH4Cl黏附在催化剂表面,致使活性位与烟气接触的表面积下降;另一方面,催化剂表面上的氯离子会与V结合生成VCl2和VCl4,从而破坏了催化剂的活性位。 催化剂的堵塞与机械磨损造成催化剂堵塞的主要是飞灰的小颗粒及反应过程中形成的铵盐,它们沉积在催化剂表面的小孔中,阻碍NOx、NH3和O2达到催化剂活性位,引起催化剂钝化。另外,在催化剂的安装、更换过程中,不可避免地要冲击催化剂;并且由于SCR反应器中的催化剂垂直布置,烟气自反应器顶部垂直向下平行催化剂流动,在较大气速下,烟气中的大颗粒物质会对催化剂造成较大磨损。3 SCR催化剂循环再利用技术 SCR催化剂的再生技术对采用SCR技术的燃煤电站而言,催化剂中毒失活不仅会增加SCR系统的运行成本,同时也会带来不可忽视的环境问题。考虑到催化剂的运行成本和催化剂处置的难度,催化剂再生是处理催化剂的首选方法[18]。 水洗再生 通过压缩空气冲刷去除催化剂表明的浮尘,然后用去离子水冲洗以清洗和溶解与催化剂表明结合的尘土及盐分子,再用空气干燥。此方法简单有效,可以冲洗溶解性物质以及冲刷掉催化剂表面部分颗粒物,可以比较明显提高催化剂的脱硝效率,用此方法处理的催化剂活性能从50%恢复到83%左右[19]。水洗再生对碱金属中毒的催化剂基本是有效的,但仍然有报道一些商业SCR催化剂碱金属中毒后采用水浸泡后溶液中检测不到碱金属[20]。 酸、碱液处理再生酸液处理催化剂再生报道常用于催化剂金属氧化物中毒后的再生。一般是将中毒后的催化剂在一定浓度的酸溶液中浸泡若干时间,再用清水洗涤至pH值接近7,将处理好的催化剂在低于100℃的温度下干燥[21]。有研究者[20,22]通过实验证明:硫酸处理再生比单纯的水洗再生更有效,酸洗再生后K2O得以完全清除。同时在催化剂表面引入了SO2-4,使其再生后催化剂的脱硝活性在350~500℃内高于中毒前。Foerster研究了Fe2O3对V2O5-WO3/TiO2催化剂的毒化作用,并考察了酸洗处理对催化剂的再生效果。研究发现,由于Fe2O3对SO2具有催化氧化作用,Fe2O3的添加导致催化剂SO2的氧化率不断提高,而脱硝活性下降。使用含有一定量抗氧化剂和表面活性剂的酸液处理后,Fe2O3得以完全清除,脱硝活性可恢复到原来的95%~100%,SO2氧化率得到很好抑制[23]。酸碱组合式处理催化剂再生,用于催化剂非金属氧化物(As2O3、P2O5)中毒后的再生。其过程与酸洗再生过程类似,先将中毒的催化剂置于一定浓度的碱溶液中浸泡若干时间,随后过剩的的碱用无机或有机酸进行中和处理,将处理好的催化剂干燥后用活性元素的水溶性化合物进行浸渍。研究表明[24,25],利用酸碱组合式处理方法对As2O3、P2O5中毒SCR催化剂进行再生,能有效去除毒性物质,再生后的催化剂在SCR反应中表现出很高的脱硝活性。 SO2酸化热再生金属氧化物中毒的SCR催化剂也可用SO2酸化热再生。将已经钝化的催化剂在去离子水中清洗,在100℃条件下烘干1h,然后置于SO2气体中于350~420℃温度条件下煅烧,实现催化剂活性恢复。离子水的预先处理对于催化剂的再生作用明显。SO2酸化热再生与酸液再生的原理相同,都在于提高催化剂表面的酸位点。Zheng等[26]采用SO2酸化热再生方法对钾中毒SCR催化剂进行处理。活性测试实验结果表明,催化剂在250~450℃时的脱硝效率已达到中毒前的50%~72%。 热(还原)再生 在惰性保护气体氛围下,以一定速率升高催化剂温度,保持一段时间,然后降温,整个过程惰性气体可以防止氧化等反应发生。热再生主要可以分解积累在催化剂表面吸附的铵盐,可将催化剂表面吸附的铵盐分解形成SO2。热还原再生过程与热再生过程类似,在惰性气体中混合一定比例的还原性气体,在高温环境中利用还原性气体与催化剂表面与金属结合的硫酸盐发生反应,实现催化剂的脱硫再生过程。文献[27]报道对V2O5/AC催化剂,以Ar气为载气热再生和以5%NH3-95%Ar热还原再生过程进行比较,发现热还原再生过程效果优于热再生过程。 废钒催化剂提取钒工艺当SCR催化剂化学性能下降,可通过上述再生方法使其恢复,但如果原有物理结构发生不利变化,则很难再生处理。出于对环境效益和社会效益的考虑,需对废弃SCR催化剂进行处理。钒催化剂经使用后,其中的钒主要以V2O5和VOSO4形式存在,后者所占比例有时可达40%~60%。这主要取决于催化剂在转化器中所处位置和使用时间的长短,废钒催化剂中的VOSO4可溶于水,而V2O5难溶于水,但却易于强酸或强碱。从废钒催化剂中提取V2O5有多种方法,虽然其工艺流程和操作条件不尽相同,但关键的步骤是钒的浸出和从浸出液中沉淀出V2O5来,具有代表性的有以下几种。(1)还原浸出-氧化沉钒法。该法将废钒催化剂加水加热煮沸,并加入二氧化硫或亚硫酸钠还原,使V2O5还原成四价钒呈硫酸钒酰形态进入溶液,然后加入氧化剂氯酸钾氧化沉钒。(2)酸性浸出-氧化沉钒法。用盐酸或硫酸溶液升温浸出,同时加入氧化剂氯酸钾氧化四价钒为五价钒,V2O5的浸出率可达95%~98%,再用碱溶液调节pH值,煮沸溶液得到V2O5沉淀。(3)碱性浸出-沉钒法。由于V2O5为二性氧化物,可采用酸液浸取也可采取碱液加以浸取回收。用NaOH或碳酸钠溶液在90℃下浸出,溶液过滤后调整pH值~,煮沸得到V2O5沉淀。碱浸法V2O5的回收率与酸法相当,但通常碱法回收的V2O5纯度不如酸法。(4)高温活化法。将废钒催化剂直接进行高温活化,焙烧时不加任何添加剂,然后用碳酸氢钠浸出,同时加入少量氯酸钾氧化溶液中四价钒为五价钒,过滤、浓缩浸出液,再加入氯化铵使钒以偏钒酸铵形式沉淀,干燥、煅烧得到五氧化二钒产品[28]。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

金属氧化物催化研究进展论文

不好整,毒性太大,企业不愿意上的,搞研究还行!

众所周知,过渡金属如卟啉中的铁与氧气的结合和反应对许多生物功能和催化氧化至关重要.在这些反应中,过渡金属一般含d价电子,并且金属被氧化往往是其中一个重要的反应步骤.近年来,氧气与d^0过渡金属化合物如Hf(NR2)4(R=烷基)的反应被广泛用来制备金属氧化物薄膜以作为新型微电子器件中的栅(门)绝缘材料.这篇专题文章讨论我们近期对这些反应以及TiO2薄膜形成的研究.在许多氧气与d^0过渡金属化合物的反应中,总是金属被氧化.然而,在d^0过渡金属化合物如Hf(NMe2)4和Ta(NMe2)4(SiR3)与氧气的反应中通常是配体被氧化.如-NMe2和--SIR3配体分别形成了-0NMe2和--OSiR3配体.反应机理和理论方面的研究显示了微电子金属氧化物薄膜形成的途径.

具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性 超导材料和常规导电材料的性能有很大的不同。主要有以下性能。①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量 有以下 3个基本临界参量。①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为。到1987年,临界温度最高值已提高到100K左右。②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=)起,直到1986年以前,人们发现的最高的 Tc才达到(Nb3Ge,1973)。1986年瑞士物理学家.米勒和联邦德国物理学家.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类 超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为。电工中实际应用的主要是铌和铅(Pb,Tc=),已用于制造超导交流电力电缆、高Q值谐振腔等。② 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为,Hc为特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=,Hc=特;Nb-60Ti,Tc=,Hc=12特()。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=,Hc=特();Nb-70Ti-5Ta的性能是,Tc=,Hc=特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=,Hc=特。其他重要的超导化合物还有V3Ga,Tc=,Hc=24特;Nb3Al,Tc=,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。 应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。 1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为,锌为,铝为,铅为。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。 1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。超导科学研究 1.非常规超导体磁通动力学和超导机理 主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T

光催化剂研究进展论文

如下:

【摘要】:综述了分子氧氧化环己烷制取环己酮的催化剂的研究进展,重点介绍了光催化剂、纳米催化剂、仿生催化剂、分子筛催化剂和复合催化剂在环己烷催化氧化方面的应用,其中,负载在分子筛上的纳米金催化剂具有较高的催化活性、选择性及稳定性。

【关键词】:环己烷氧化,环己酮,催化剂的认识。

环己酮是重要的有机化工原料和工业溶剂,广泛应用于医药、油漆、涂料、橡胶、农药行业、印刷和塑料回收方面。目前,工业上制取环己醇和环己酮的方法主要为苯酚加氢法、苯部分加氢法和环己烷液相氧化法,环己烷氧化法的应用最为普遍,占90%以上。

由于环己醇和环己酮比环己烷更易于被氧化,为获得适宜的环已醇和环已酮的选择性,工业上环己烷氧化转化率通常控制在,氧化选择性为90%左右。

但环己烷的大量循环造成能耗上的巨大浪费。目前,环己烷氧化工艺研究的热点主要集中在对传统工艺的改造优化、氧化剂的选择及高效催化剂的开发。开发高性能和环境友好的催化剂成为研究热点,近年来开发的一些氧化催化剂在改善环己烷转化率和产物选择性方面表现出较好的性能。

本文主要综述分子氧氧化环己烷制环己酮催化剂的研究进展。

催化剂定义:又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化剂(catalyst)会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂在工业上也称为触媒。初中书上定义:在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。催化剂在化学反应中所起的作用叫催化作用。我们可在波兹曼分布(Boltzmann distribution)与能量关系图(energy profile diagram)中观察到,催化剂可使化学反应物在不改变的情形下,经由只需较少活化能(activation energy)的路径来进行化学反应。而通常在这种能量下,分子不是无法完成化学反应,不然就是需要较长时间来完成化学反应。但在有催化剂的环境下,分子只需较少的能量即可完成化学反应。催化剂有三种类型,它们是:均相催化剂、多相催化剂和生物催化剂。均相催化剂和它们催化的反应物处于同一种物态(固态、液态、或者气态)。例如:如果反应物是气体,那么催化剂也会是一种气体。笑气(一氧化二氮)是一种惰性气体,被用来作为麻醉剂。然而,当它与氯气和日光发生反应时,就会分解成氮气和氧气。这时,氯气就是一种均相催化剂,它把本来很稳定的笑气分解成了组成元素。多相催化剂和它们催化的反应物处于不同的状态。例如:在生产人造黄油时,通过固态镍(催化剂),能够把不饱和的植物油和氢气转变成饱和的脂肪。固态镍是一种多相催化剂,被它催化的反应物则是液态(植物油)和气态(氢气)。酶是生物催化剂。活的生物体利用它们来加速体内的化学反应。如果没有酶,生物体内的许多化学反应就会进行得很慢,难以维持生命。大约在37℃的温度中(人体的温度),酶的工作状态是最佳的。如果温度高于50℃或60℃,酶就会被破坏掉而不能再发生作用。因此,利用酶来分解衣物上的污渍的生物洗涤剂,在低温下使用最有效。催化剂分均相催化剂与非均相催化剂。非均相催化剂呈现在不同相(Phase)的反应中(例如:固态催化剂在液态混合反应),而均相催化剂则是呈现在同一相的反应(例如:液态催化剂在液态混合反应)。一个简易的非均相催化反应包含了反应物(或zh-ch:底物;zh-tw:受质)吸附在催化剂的表面,反应物内的键因十分的脆弱而导致新的键产生,但又因产物与催化剂间的键并不牢固,而使产物出现。目前已知许多表反应发生吸附反应的不同可能性的结构位置。仅仅由于本身的存在就能加快或减慢化学反应速率,而本身的组成和质量并不改变的物质就叫催化剂。催化剂跟反应物同处于均匀的气相或液相时,叫做单相催化作用;催化剂跟反应物属不同相时,叫做多相催化作用。人们利用催化剂,可以提高化学反应的速度,这被称为催化反应。大多数催化剂都只能加速某一种化学反应,或者某一类化学反应,而不能被用来加速所有的化学反应。催化剂并不会在化学反应中被消耗掉。不管是反应前还是反应后,它们都能够从反应物中被分离出来。不过,它们有可能会在反应的某一个阶段中被消耗,然后在整个反应结束之前又重新产生。使化学反应加快的催化剂,叫做正催化剂;使化学反应减慢的催化剂,叫做负催化剂。例如,酯和多糖的水解,常用无机酸作正催化剂;二氧化硫氧化为三氧化硫,常用五氧化二钒作正催化剂,这种催化剂是固体,反应物为气体,形成多相的催化作用,因此,五氧化二钒也叫做触媒或接触剂;食用油脂里加入~没食子酸正丙酯,就可以有效地防止酸败,在这里,没食子酸正丙酯是一种负催化剂(也叫做缓化剂或抑制剂)。

请留下邮箱,传递论文,文章无法直接罗列

负载型金属催化剂研究论文

日前, 四川大学高分子学院程冲研究员课题组、德国柏林工业大学Arne Thomas教授课题组与马普固体研究所Dr. Yi Wang(王毅)团队 采用金属碳化物作为过渡金属Fe、Ni原子载体,在单原子氧气析出反应(OER)催化剂研究中取得了突破性研究进展,该研究首次实现了非强配位OER金属单原子催化中心的构建。

研究成果以“Oxygen-evolving catalytic atoms on metal carbides”为题,于北京时间2021年5月31日晚23时发表在 上。

将具有催化活性的金属化合物分散到原子水平制备单原子催化剂,可最大限度地提高原子利用率和活性位点间协同效应。近年来研究发现单原子催化剂在各种催化反应,尤其是电催化还原反应中表现出优异的活性。然而却很少在OER中展现出优异的催化活性。目前大多数单原子结构是通过由氧、氮、硫等杂原子强配位负载在载体材料上实现的,而强配位环境极大地影响了金属单原子中心的电子环境,从而影响它们的析氧催化活性。然而开发非氧、氮、硫等杂原子强配位金属单原子结构及其载体材料极具挑战,也是实现高效单原子OER催化剂的关键。

氧、氮、硫等杂原子强配位键合作用,在阻止原子团聚以实现原子级分散催化结构中具有重要作用,近年来研究人员通过此方法实现了大量的单原子催化剂的构建,为不同领域提供了一系列催化性能优异的材料。然而现有体系中,单原子金属中心因其杂原子强配位作用影响了其电子环境和原子的可运动性,从而限制了它们的部分催化活性,特别是在需要高过电位的OER反应中,该限制尤为明显。

该论文的第一作者为 德国 柏林工业大学功能材料团队,李爽博士(DFG project leader) ,她告诉《中国科学报》,单原子OER催化剂的催化性能,不仅依赖于单原子与载体间的相互作用方式,过强的相互作用会导致原子活性降低,而过弱的作用力又很难稳定单原子;催化反应往往依赖于双金属单原子中心的协同作用,乃至催化中心与载体材料之间的相互作用。构筑具有高活性的单原子OER催化剂,不仅要找到适合的载体来实现相对较弱的配位环境,还需要考虑不同金属单原子之间的协同作用,是一项极具挑战的课题。

在前期工作中,课题组研究人员曾利用富氮多级孔道碳材料作为载体,实现了Fe、Co双金属单原子的高效负载及双金属中心的协同催化作用,成功地提升了单原子OER催化剂的活性。但由于受到多孔碳载体材料中氮杂原子的强配位作用限制,相关催化剂的过电位、催化效率等仍不理想。

“在最新的这项研究中,我们首先从结构上设计并制备了新的金属有机杂化前驱体材料,以期得到不同于传统多孔碳单原子载体的新型材料。 在杂化前驱体材料的构建中,一方面我们选用了含有儿茶酚及氨基的有机小分子,其可加强前驱体对金属离子的络合作用;另一方面我们引入了钨氧簇,以实现在碳化过程中原位制备碳化钨作为单原子催化中心的弱配位载体。 ”李爽博士介绍到。

具体而言,研究人员巧妙地选择具有强络合能力的含氮、含氧有机分子作为多种金属盐的键合单元与Fe、Ni、WO离子组装,获得了结构均匀的金属有机配位杂化前驱体材料。通过调控热处理条件,获得了基于碳化钨纳米晶体负载的Fe、Ni、FeNi单原子OER催化剂。

一系列精细结构表征实验证实,研究人员成功构建了非强配位金属单原子活性中心。利用球差校正高分辨透射电镜技术,研究人员精确观测到了碳化钨表面FeNi单原子结构,并通过单个原子位点的EDX精确分析了原子位置,同时还观测到了碳化钨晶体表面的FeNi原子具有高移动能力。高分辨X射线光电子能谱及X射线吸收谱表明,FeNi原子是通过与碳化钨基底的W、C原子相互作用而保持稳定的,这种与W、C原子的相互作用也使得FeNi活性中心处于低价态保持了部分金属特性。

图1:a. 材料结构示意图;b. 球差高分辨电镜下的碳化物晶体颗粒;c.碳化钨晶体中的原子排布和晶面取向;d, e.碳化物表面的FeNi单原子;f.原子级元素分布;号位原子对应的原子级EDX图谱(研究团队供图)

图2:材料的电化学OER性能结果(研究团队供图)

最后,研究人员认为,该工作提出的利用金属有机配位杂化前驱体制备金属碳化物作为载体材料不仅为非强配位金属单原子催化中心的构建提供了开创性的研究思路,同时也为进一步开发高效单原子催化剂开辟了一条很有前途的全新道路。

相关论文信息:

本文来源| 小柯化学

编辑 | 余 荷

排版 | 王大雪

背景和意义将二氧化碳(CO2)转化为可利用的能源可以同时解决能源短缺和全球变暖两大问题。其中,利用电化学的方法将CO2高效催化还原为可存储的化学能,例如一氧化碳(CO)、甲酸(HCOOH)等,可以实现自然界中“碳循环”以减少碳在大气中的积累,同时这还将是一种新型储能方式,因而极具应用潜力。而这一转换过程的可行性主要取决于电极材料的催化性能,因此,设计并构建一种高效催化剂是实现该技术的关键。电催化还原CO2CO2电化学还原反应是一个复杂的多电子转移过程,包括2电子、4电子、6电子和8电子转移,同时伴有不同的反应中间物,整个过程的电子转移数及反应中间物共同决定了反应最终产物。电催化还原CO2—般采用异相催化,即反应发生在电极(催化剂)与电解液(CO2饱和溶液)的界面,其还原过程包括三个主要步骤:(1)CO2在催化剂上发生化学吸附活化CO2;(2)活化了的CO2获得电子或质子(或同时得到),C-O键断裂并(或)形成C-H键,生成反应中间物;(3)继续得电子形成最终产物后从催化剂上脱离,催化位点因而进入下一个反应周期在反应过程中,由于不同种类的催化材料与CO2之间的作用力不同,因而还原机理不同,最终产物一般也不同。由于HER的电势和各CO2还原反应电势十分接近,因此HER成为CO2转换过程中最主要的竞争发应,直接影响着CO2转换效率;同时,CO2转换为各种产物之间的电势差很小,使得反应难以控制,很难提高对某一特定产物的转化效率。电催化还原CO2面临的挑战尽管电催化还原CO2为解决能源和环境问题提供了一套近乎完美的方案,但想要将该技术大规模的在工业上运用依然面临着诸多挑战。其中最主要的问题是CO2转换率低及能耗大。如上文所述,由于竞争反应(如HER)的存在,电能并不能完全的转化为化学能存储起来,低转化率严重影响该技术的进一步发展与应用。从热力学上来看,HER所需要的过电势比大部分CO2还原反应所需要的低,这说明理论上HER更容易发生。同时,CO2相对稳定的结构也决定了其动力学上反应速度慢。在此过程中,HER更有可能成为主要反应从而急剧降低CO2的转化率,使整个过程得不到我们想要的结果。电催化还原CO2研究现状目前大部分的研宄主要集中在金属材料,包括金属及其氧化物、合金、硫化物等。其中研究较多有Cu、Au、Ag、Sn、Bi等金属元素。最近研究发现,一些过度金属的单原子分散材料(单原子催化剂)能有效的将CO2催化还原为CO,该类金属主要包括Ni、Fe和Co。接下来本节将分别介绍单原子催化剂、金属(包括其氧化物、硫化物)及金属合金三大类催化材料,并阐述它们在电催化还原CO2时的性能及研究现状。单原子催化剂单原子催化剂作为一种特殊的负载型金属催化剂,最早由张涛等人提出,指的是载体上的金属达到原子级分散而不发生团聚的一类催化材料。当纳米晶体的尺寸不断缩小到原子簇或者单原子时,其能级结构和电子结构会发生根本性的变化,从而使其表现出与纳米材料不同的催化特性,因而在一些催化反应中,如CO氧化反应、加氢反应、水分解、氧还原反应,CO2还原等,能够表现出与众不同的活性,选择性和稳定性。经研究发现,单原子催化剂中表面金属配位不饱和原子往往是催化的活性位点,因而可以通过调控催化剂表面原子的分布和结构以提高催化性能。金属催化剂在过去的几十年,人们对金属电极用来还原CO2做了大量的研究,例如Cu、Au、Ag、Sn、Bi等,对于大多数金属催化剂,其反应速度控制步骤往往是CO2的活化,形成*CO,因此,形成该活化物是提高转换效率的根本前提。根据CO2在金属表面形成的反应中间物和最终产物不同,可以将它们分为三大类,如图所示:纳米尺寸结构的差异也会对电还原CO2的性能造成一定的影响。研究了不同纳米尺寸的Au纳米颗粒在 M KHCO3溶液中对电还原CO2的影响。不同形貌的Au纳米颗粒表现出不同的电还原CO2催化活性,孔状Au纳米颗粒在较低的过电位下展现了较佳的催化能力,但是柱状的Au纳米颗粒则在较负的电位下展现了较高的CO选择性。金属合金催化剂除了对金属进行形貌改进及掺杂处理外,还可以通过多种金属的合金来控制与CO2还原中间物的相互作用,从而来调控催化剂的选择性。改变催化剂的组成也可以提高电化学还原CO2的催化性能。将第二种金属引入金属单质中形成合金材料可以诱导催化剂的电子结构改变,进而改变活性物 质与其表面的相互作用。此外,第二种金属也可以提供替代的活性位点,其可以作为一个孤立且活跃的位点或者联合的位点促进反应的进行。合金化的材料可以调节中间体在其表面上的结合能,进而提高CO2还原反应动力学。因此,合金材料也是一类重要的催化CO2还原的材料,其可以明显地提高CO2还原的催化活性和选择性。建议本文探究了不同催化剂在电催化还原CO2的性能,包含了单原子、金属合金及纯金属纳米材料等,但因囿于检测技术及认知水平,其更加深刻的催化机理的缺失及某些猜想并没有得到证实,还只停留在假设阶段。因而,在以后的研究中,还需不断的提升自身的认知能力及水平,并学习一些高端检测的知识,利用更先进的手段提升对催化本质的认知,具体可以从以下几个方面展开:(1)学习原位检测技术,进一步探究催化反应机理,进而可以定向设计开发新型高效催化材料。例如,通过理论计算,我们推断CO2在Bi(012)晶面还原为*OCHO,这与*COOH有着很大的区别,但如果能用原位检测技术检测至*OCHO的存在,那就能直接证实我们的猜想;(2)根据己有认知水平及研究前沿,开发新型催化材料,拓宽人们对这一催化领域的认知;结论与展望针对CO2的转化,本论文主要设计了单原子、纳米合金及金属纳米等催化材料,研宄了它们在电催化还原CO2的性能,并对其反应机理进行了深入探究。结果表明,不同类型的催化材料能将CO2转换为不同的产物,但只有特定结构催化材料才表现出极强的选择性。同时,高效的催化剂往往有着许多共同点,例如比表面积大、导电性良好、反应活性位点充足等。在所有研宄中,本论文都采用了极其简化的催化剂合成策略,使其易于规模生产;同时,良好的催化活性、选择性和稳定性也使这些催化材料十分具有应用潜力。

金属催化剂论文题目

化学反应惠泽人类2005年10月5日,今年的诺贝尔化学奖尘埃落定。法国化学家伊夫·肖万、美国化学家罗伯特·格拉布和理查德·施罗克三人分享了这一殊荣。谈及此次获奖成果,中国科学院金属有机化学国家重点实验室主任麻生明研究员说:“化学界对这一研究的重要意义非常认可。我们的一些研究人员总是希望'大而全’,但是看看这次的获奖成果,再看看上次(2001年)有机化学家的获奖成果,就知道化学家一生有这样一个'反应’就很了不起了。”该实验室的丁奎岭研究员告诉记者:“2002年,我和戴立信院士合写《中科院发展报告》中有关烯烃复分解反应的章节时,就曾提到格拉布催化剂的反应活性以及对反应底物的适用性,可与传统的碳-碳键形成方法如Diels-Alder反应和Wittig反应相媲美,而这两项研究都已经获得诺贝尔奖,我们也曾暗示格拉布等人的研究有问鼎诺贝尔奖的实力,现在他们果然获奖了。”指挥烯烃分子“交换舞伴”诺贝尔化学奖评委会主席佩尔·阿尔伯格将烯烃复分解反应描述为“交换舞伴的舞蹈”。授奖当天,在瑞典皇家科学院华丽的议事厅里,阿尔伯格和一位皇家科学院教授以及两位女工作人员一起,用舞蹈向听众诠释烯烃复分解反应的含义。最初两位男士是一对舞伴,两位女士是一对舞伴,在“加催化剂”的喊声中,他们交叉换位,转换为两对男女舞伴。“用互换舞伴来解释这一获奖的化学反应很形象。”麻生明告诉记者。今年诺贝尔化学奖的三位得主,获奖原因就是他们弄清了如何指挥烯烃分子“交换舞伴”,将分子部件重新组合成别的物质。一个碳原子可以通过单键、双键或三键方式与其他原子连接,有着碳-碳双键的链状有机分子被称为烯烃。丁奎岭说,研究碳-碳键的断裂与形成规律是有机化学中需要解决的核心问题之一。为了切断碳-碳键并使其按照人们希望的方式重新结合,需要寻找合适的催化剂,这也是化学家面临的挑战课题。关于金属催化的烯烃分子的切断与重组,即烯烃复分解反应的研究,可以追溯到上世纪50年代中期。但是刚开始时,科学家们所研制的催化剂均为多组分催化剂,“这么做是因为当时的科学家实际上没有认清反应的机理,不知道到底是哪种活性物质发挥了作用,只好使用多种混合物来进行催化。”这些催化体系还受到苛刻的反应条件等因素的限制,更加促使科学家们进一步认识和理解反应进行的机制。20世纪70年代,法国石油研究所的伊夫·肖万实现了理论上的突破。他阐明了烯烃与金属卡宾通过〔2+2〕环加成形成金属杂环丁烷中间体的相互转化过程,这一机制后来被广泛认同。金属卡宾是指一类有机分子,其中有一个碳原子与一个金属原子以双键连接,如果用舞蹈的方式来简单解释,它们可被看作一对拉着双手的舞伴。而在烯烃分子里,两个碳原子也像双人舞的舞伴一样,拉着双手在跳舞。金属卡宾在与烯烃分子相遇后,两对舞伴会暂时组合起来,手拉手跳起四人舞蹈。随后它们“交换舞伴”,组合成两个新分子,其中一个是新的烯烃分子,另一个是金属原子和它的新舞伴。后者会继续寻找下一个烯烃分子,再次“交换舞伴”。寻找更优秀的催化剂有了漂亮的理论,下一步的重点就是确定哪种金属卡宾适合充当促成舞伴交换的“中间人”,理查德·施罗克和罗伯特·格拉布正是寻找优秀催化剂的“伯乐”。1990年,在美国麻省理工学院工作的施罗克和合作者报告说,金属钼的卡宾化合物可以作为非常有效的烯烃复分解催化剂。实践也证明,钼卡宾用于催化烯烃的复分解反应,取得了比以往的催化体系更容易引发的、更高的反应活性,反应条件也更温和,同时为发现性能更优秀的催化剂奠定了基础。1992年,美国加州理工学院的格拉布发现了钌卡宾络合物,并成功应用于降冰片烯的开环聚合反应,该催化剂克服了其他催化剂对功能基团容许范围小的缺点,不但对空气稳定,甚至在水、醇或酸的存在下,仍然可以保持催化活性。在此基础上,1996年格拉布对原催化剂作了改进,使其成为应用最为广泛的烯烃复分解催化剂。1999年,格拉布通过用氮卡宾配体代替膦配体,发展了第二代格拉布催化剂,其催化活性比第一代催化剂提高了两个数量级。丁奎岭说:“这点很重要,因为钌是贵金属。”在开环复分解聚合反应中,催化剂用量可以降低至百万分之一;在关环复分解反应中,催化剂用量也仅为万分之五,同时选择性更高,对底物的适应范围更加广泛,催化剂的成本也更低。麻生明说:“如果没有肖万的理论,就没有施罗克和格拉布的成果;但是如果没有后者的工作,肖万也得不到这个诺贝尔奖。这恰好体现了理论和实践相辅相成的道理。”奖励来得理所应当对于此次诺贝尔化学奖的归属,很多人表示是理所当然、水到渠成的事情,这不仅是因为这一科研成果本身非常重要,更重要的是它在生产生活领域有着极其广泛的实际应用,每天都惠及人类。诺贝尔奖的文告指出:烯烃的复分解反应是基础科学对人类、社会和环境做出重要贡献的例子。该方法现在被广泛应用于化工业,主要用于研发药品和先进塑料材料。通过肖万、格拉布和施罗克等人的工作,复分解法变得更加有效,反应步骤比以前简化,所需要的资源也大大减少;使用起来也更简单,只需要在正常温度和压力下就可以完成;对环境的污染也大大降低,使人们向着“绿色化学”又迈进了一大步,大大减少了有害废物对人们的危害。丁奎岭说,由于格拉布催化剂的诞生,使得过去许多令化学家束手无策的复杂分子的合成变得轻而易举,如亲水性高分子、高分子液晶、抗癌药物、昆虫信息素等的合成,用乙烯和丁烯来制备丙烯等。麻生明还告诉记者:“上次格拉布教授来我们所访问,介绍了他做出的一种高分子材料,用子弹打也无法穿透,很适合做防弹材料。” 不过,麻生明认为,金属卡宾络合物催化的烯烃复分解反应还不是完全的绿色反应。就像做衣服时,如果能把所有的布料,包括边角余料都用上,才算百分百的经济;从原子的经济性来讲,很多烯烃复分解反应还没有达到百分百绿色的程度。丁奎岭认为只能说这种反应比较“符合绿色原则”,废物很少。他还指出,烯烃复分解反应的研究还面临不少挑战,工业的大规模应用还很少,主要还是用在精细化工领域。记者问及我国在该领域的研究水平,两位专家都回答,我国这方面的研究还很薄弱。丁奎岭说,《科学观察》指出,从论文引用次数来看,这一领域在国际上是炙手可热的科学前沿。但中科院文献情报中心的统计表明,我国在该领域几乎没有大的课题和项目。“虽然也有科学家在使用这些催化剂进行天然气产物和复杂分子的合成研究,但是据我所知,国内可能还没有研究人员在致力于改进这种催化剂。”

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

浅谈金属催化有机反应中的碱效应论文

碱, 包括有机碱和无机碱, 在许多催化和计量有机反应中扮演极其重要的角色. 碱的存在不仅可以促进化学反应, 而且可以改变反应途径. 但化学家们对碱的作用的认识仍然不够明确, 缺乏系统的理解. 最近, 北京大学席振峰课题组对近年来涉及到碱的许多催化反应进行了系统分析, 概括出了影响碱作用的诸多因素, 其中包括碱性、溶解度、电离度、聚集度、溶剂、金属离子大小、金属离子Lewis 酸性、金属离子的“软硬”度、阴离子的大小、阴离子的配位作用等. 本文将对该文及相关文章中有关金属催化有机反应中碱的效应进行介绍.碱的强度可用不同的标准来衡量, 如夺取质子的能力及亲核性, 亲核性又与底物的性质相关. 目前, 大部分的研究认为碱在化学反应中的主要作用是去质子化和中和体系中的质子或酸.

有机碱的强度与取代基和结构有很大关系, 如常用的有机胺的碱性强度在许多文献中都有报道. 在有机溶剂中有很好溶解度的碱金属和碱土金属胺基化合物、烷氧基化合物以及其它金属有机化合物也常被看作有机碱, 例如叔丁醇钠, LDA 及M[N(SiMe3)2] (M=Li, Na,K). 典型的无机碱由金属离子和具有碱性或亲核性的负离子构成, 许多无机碱在有机溶剂中的溶解度较小, 常常需要使用极性大的有机溶剂来提高其溶解度. 无机碱的强度与很多因素有关, 其中最重要的因素是配对离子之间的静电作用及负离子的化学组成和结构. 在去质子化反应中, 影响反应效率的因素除了碱的去质子能力之外, 底物去质子后形成的碳负离子或其它负离子的稳定性也对反应产物收率有极大影响, 而后者的稳定性与金属离子密切相关, 因此无论是正离子和负离子的性质对反应的效率及其选择性的影响都是非常明显的. 例如,Kobayashi 等在2012 年报道了叔丁醇锂作用下的吲哚3-位羧基化反应该反应最初使用的是钯催化的体系, 反应中选择不同碱会使得反应收率有明显变化.当使用弱碱K2CO3 时能得到痕量的羧基化产物, 而当使用较强的Cs2CO3时, 反应收率有了显著提高. 碱性强弱的影响同样体现在叔丁醇类碱中——使用碱性较弱的叔丁醇锂能得到好的反应收率但碱性相对较强的叔丁醇钠则不能得到预期产物, 这很有可能与形成的碳负离子的稳定性相关. 由此可见, 无机碱中的正负离子的性质是影响反应的核心因素之一.

无机碱中的阴离子种类很多, 在有机合成中常用的阴离子包括碳酸根, 磷酸根, 烷氧基和胺基, 卤素及其他类卤素负离子等. 阴离子对反应的影响不仅体现在对反应速度和产率的影响上, 同时也有可能对反应的选择性产生影响 实验结果表明不同阴离子对反应结果的影响很大, 同时需要维持较低的碱阴离子浓度反应才能正常进行. 在这个特殊的反应中, 阴离子的种类对反应有很大影响, 而阳离子影响很小. Doucet等报道过对于相同的底物, 当使用不同的碱时, 会得到不同的产物.ClCF3[Pd] TBABbase, DMAcF3CNaOAc: 64%; KOAc: 61%; Na2CO3: 61%; Cs2CO3: 25%;CaO: 67%; t-BuONa: 3%; NEt3: 12%+ (2)阴离子也可作为配体与催化剂中的金属配位, 从而影响金属中心的反应性. 在许多Pd 催化的偶联反应中碱的作用很有可能是多方面的, 除了传统的促进转金属化, 其与催化剂作用从而提高活性中心的氧化加成能力也不可忽视, 同时金属中心与无机碱中的阴离子的作用, 也有可能提高阴离子的碱性. Fagnou 等[4]在研究Pd催化偶联反应中提出的.协同的“金属化/去质子化”(concerted metalation/deprotonation, 简称“CMD”)来解释碱的作用: 碱与金属中心Pd 配位, 使碱的去质子化能力提高, 从而可活化C—H 键.

催化剂金属中心和碱的匹配才能产生协同作用, 从而有效促进催化过程. 2014 年Norrby 等报道了碱在Buchwald-Hartwig Amination 反应中的作用. 他们研究了t-BuO-和DBU 在不同溶剂中对反应过程的影响, 并通过Eq. 3 所示反应进一步验证了理论计算结果. 在非极性溶剂中, t-BuO-可以有效地拔除和钯配位的吗啉上胺氢, 进而进行有效的C-N 偶联. 而中性碱DBU 效果不好, 需要在高温和微波下才能促进反应进行. 在极性溶剂中, 尽管计算表明相对非极性溶剂中DBU 参与的反应能垒变小了, 但是和t-BuO-相比效果仍然较差.阳离子在过渡金属催化的反应所起到的作用同样不可忽视. 在偶联反应中, 转金属化的速率与碱中的阳离子种类有很大关系[6]. 阳离子的大小、软硬度以及Lewis 酸性等[6]都有可能对反应结果造成影响. 阳离子也有可能影响反应活性中间体的结构及稳定性. Shibasaki等[8]在2009 年报道了不对称催化合成手性有机硼酯的反应, 叔丁醇锂、钠、钾都能促进这一反应的进行,但反应的收率和ee 值对应的碱都是t-BuOLi>t-BuONa>t-BuOK, 表明锂离子对该反应的特殊效应. 2010 年,Hayashi 等也提及t-BuOM (M=Li, Na, K)中阳离子会影响反应途径, t-BuO-是一个单电子供体, 配对阳离子如是Na 和K 离子时, 反应会涉及单电子转移(singleelectron transfer, 简称SET)过程.

总之, 碱在催化反应中的作用极其复杂, 在催化循环中的任何一步都有可能对反应结果造成影响, 碱的不同甚至会影响基元反应的本质, 这主要体现在碱对催化剂、配体以及底物和基元反应的影响都不可忽视, 从而使其效应更加复杂. 但碱在许多催化反应中的核心功能会逐渐更加清晰. 席振峰教授课题组通过对文献的分析, 提出了碱对反应影响的诸多因素, 使化学家对碱在催化过程中的复杂性有了新的认识, 这是一个极其重要的科学问题, 有待于化学家进行更加系统全面的研究.。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2