更全的杂志信息网

矩阵的运算及其实例研究的论文

发布时间:2024-07-07 00:28:58

矩阵的运算及其实例研究的论文

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:(1)矩阵在经济生活中的应用‍可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。(2)在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。(3)矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。(4)矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

矩阵的应用是很多的。尤其是在程序处理方面。在世界上存在的,都是离散的,那些理想的才是连续的~而矩阵可以很好地诠释世界上的各种东西~例如我们经常处理的图片,我们平时的数据等等。

LS那一长篇的,又从哪里COPY的,鄙S

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

矩阵及特殊矩阵的实例毕业论文

好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:(1)矩阵在经济生活中的应用‍可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。(2)在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。(3)矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。(4)矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

矩阵在许多领域都应用广泛。有些时候用到矩阵是因为其表达方式紧凑,例如在博弈论和经济学中,会用收益矩阵来表示两个博弈对象在各种决策方式下的收益。文本挖掘和索引典汇编的时候,比如在TF-IDF方法中,也会用到文件项矩阵来追踪特定词汇在多个文件中的出现频率。早期的密码技术如希尔密码也用到矩阵。然而,矩阵的线性性质使这类密码相对容易破解。计算机图像处理也会用到矩阵来表示处理对象,并且用放射旋转矩阵来计算对象的变换,实现三维对象在特定二维屏幕上的投影。多项式环上的矩阵在控制论中有重要作用。化学中也有矩阵的应用,特别在使用量子理论讨论分子键和光谱的时候。具体例子有解罗特汉方程时用重叠矩阵和福柯矩阵来得到哈特里-福克方法中的分子轨道。

分块矩阵的运算及应用毕业论文

矩阵是代数特别是线性代数中一个极其重要的概念Matrix algebra is a very important concept in linear algebra而矩阵的分块则是在处理级数较高的矩阵时常用的方法While the block matrix is used in the matrix series method when a high常在分块之后,矩阵间的相互关系会看的更清楚Often in the block after the relationship matrix between, will see more clearly像矩阵一样Like matrices分块矩阵具有广泛的应用Block matrix has a wide range of applications矩阵的分块运算是矩阵运算的一种重要方法Block matrix operation is an important method for matrix operations本文就是利用分块矩阵的特殊性质给出了它在求行列式值中的一些应用This paper is the use of block matrix to solve it in the determinant value of application合起来就是Matrix algebra especially in linear algebra is an extremely important concept and block matrix is the matrix series high commonly used method in block, relationship between matrix will see more clearly, like matrices, block matrix has a wide application, block matrix operation is an important method of matrix operations, this paper is to use block matrix to solve it in the determinant value of application

本文把数字矩阵的初等变换推广到分块矩阵中,并且运用分块初等变换求矩阵的逆、矩阵的行列式、矩阵的秩是高等代数中常见的问题。而对于高阶矩阵而言,这些问题的求解过于困难,因此用分块矩阵的初等变换来解决有关分块矩阵的问题比较方便,本文总结如何使用初等变换求矩阵的逆、矩阵的行列式、矩阵的秩。关键词:分块矩阵 初等变换 分块初等变换目 录引言 11矩阵初等变换及矩阵分块的相关概念 矩阵的初等变换 初等变换 分块矩阵 分块初等变换 分块初等矩阵 2 应用分块初等变换求解行列式 3 应用分块初等变换求矩阵的逆 4 应用分块初等变换求矩阵的秩 6结束语 参考文献 致 谢 引言利用分块矩阵处理阶数较高的矩阵,是一种常用的方法,在证明相关问题时能带来很多方便,在矩阵的应用中, 矩阵的初等变换起着关键作用. 关于矩阵初等变换的应用, 本文归纳了初等变换在求分块矩阵的秩, 矩阵的逆, 矩阵的行列式中的方法。

你怎么也做分块矩阵的应用毕业论文??

百度文库有篇很好的,直接搜“毕业论文分块矩阵的应用”就行了。

n阶矩阵的幂运算毕业论文

矩阵的n次方怎么算,从方阵的正整数开始

一般有以下几种方法

1.先计算A²,A³找规律,然后用归纳法证明

2.若r(A)=1,则A=αβ^T,A^n=(β^Tα)^(n-1)A

注:β^Tα =α^Tβ = tr(αβ^T)

3.分拆法:A=B+C,BC=CB,用二项式公式展开

适用于 B^n 易计算,C的低次幂为零:C²或 C³ = 0.

1.用对角化 A=P^-1diagP

A^n = P^-1diag^nP

每次用中间变量存运算结果,然后再赋值回去,求b[k][k]的T次方,res初始是单位矩阵,c用来存中间结果 while(T){//快速幂模板if(T&1){//if(A&1) res*=Afor(i=1;i<=k;i++)for(j=1;j<=k;j++){c[i][j]=0;for(h=1;h<=k;h++)if(res[i][h]&&b[h][j])c[i][j]+=res[i][h]*b[h][j];}for(i=1;i<=k;i++)for(j=1;j<=k;j++)res[i][j]=c[i][j]%10000;}for(i=1;i<=k;i++)//A*Afor(j=1;j<=k;j++){c[i][j]=0;for(h=1;h<=k;h++)if(b[i][h]&&b[h][j])c[i][j]+=b[i][h]*b[h][j];}for(i=1;i<=k;i++)for(j=1;j<=k;j++)b[i][j]=c[i][j]%10000;T=T>>1;

把矩阵对角化后,n次方的矩阵就是里面每个元素的n次方

设一线性变换a,在基m下的矩阵为A,在基n下的矩阵为B,m到n的过渡矩阵为X,

那么可以证明:B=X⁻¹AX

那么定义:A,B是2个矩阵。如果存在可逆矩阵X,满足B=X⁻¹AX ,那么说A与B是相似的(是一种等价关系)。

如果存在可逆矩阵X使A与一个对角矩阵B相似,那么说A可对角化。

相应的,如果线性变换a在基m下的矩阵为A,并且A相似于对角矩阵B,那么令X为过渡矩阵即可求出基n,并且在n下线性变换a的矩阵为对角矩阵,从而达到了化简。

由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:

这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。

扩展资料:

两个矩阵的乘法仅当第一个矩阵A的列数和另一个矩阵B的行数相等时才能定义。如A是m×n矩阵和B是n×p矩阵,它们的乘积C是一个m×p矩阵  ,它的一个元素:

并将此乘积记为:  .

例如:

矩阵的乘法满足以下运算律:

结合律:

左分配律:

右分配律:

矩阵乘法不满足交换律。

矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 [15]  ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。

在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P,使得:  或  。

参考资料:百度百科---矩阵

论文答辩矩阵的等级分类及其应用

A类:权威的核心期刊,指的是国际通用的SCIE、EI、ISTP、SSCI、A&HCI收录检索系统的论文(中国科学技术信息研究所检索为准),或同一主题发表在国内中文核心期刊的权威,论文中不包含其他报告总结。

B类:重要核心刊物论文,指在国外核心期刊上刊登的论文(见《国外科技核心期刊手册》)或在国内同一学科的中文核心期刊中具有重要影响的刊物上发表的论文。

C类:一般核心刊物论文,指《全国中文核心期刊要目总览-北大图书馆2004版》刊物上发表的论文。

D类:一般公开刊物论文,指在国内公开发行的刊物上(有期刊号“CN”“ISSN”,有邮发代号)发表的论文。

E类:受限公开刊物论文,指在国内公开发行的但受发行限制的刊物上(仅有期刊号、无邮发代号)发表的论文。

论文种类:

专题型:这是分析前人研究成果的基础上,以直接论述的形式发表见解,从正面提出某学科中某一学术问题的一种论文。

论辩型:这是针对他人在某学科中某一学术问题的见解,凭借充分的论据,着重揭露其不足或错误之处,通过论辩形式来发表见解的一种论文。

综述型:这是在归纳、总结前人或今人对某学科中某一学术问题已有研究成果的基础上,加以介绍或评论,从而发表自己见解的一种论文。

综合型:这是一种将综述型和论辩型两种形式有机结合起来写成的一种论文。

以上内容参考:百度百科——论文

论文分为六个级别,具体解释如下:

1、T类:特种刊物论文,指在《SCIENCE》和《NATURE》两本期刊上发表的论文。

2、A类:权威核心刊物论文,指被国际通用的SCIE、EI、ISTP、SSCI以及A&HCI检索系统所收录的论文。

3、B类:重要核心刊物论文,指在国外核心期刊上刊登的论文。

4、C类:一般核心刊物论文。

5、D类:一般公开刊物论文,指在国内公开发行的刊物上发表的论文。

6、E类:受限公开刊物论文,指在国内公开发行的但受发行限制的刊物上发表的论文。

毕业论文的目的与意义

目的:

1、培养学生的科学研究能力。

2、加强综合运用所学知识、理论和技能解决实际问题的训练。

3、从总体上考查学生大学阶段学习所达到的学业水平。

意义:

1、撰写毕业论文是检验学生在校学习成果的重要措施,也是提高教学质量的重要环节。

2、通过撰写毕业论文,提高写作水平是干部队伍“四化”建设的需要。

3、提高大学生的写作水平是社会主义物质文明和精神文明建设的需要。

代表不同水平和流通范围,参看下面网址楼上别瞎回答

可以说有优良中差四等级 一般都是良好或中等 达到优秀有点难 而且优秀毕业论文还要经过检测和翻译英语摘要什么的 比较麻烦呵呵

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2