更全的杂志信息网

2019年目标检测论文汇总

发布时间:2024-07-06 00:11:22

2019年目标检测论文汇总

小目标问题在物体检测和语义分割等视觉任务中一直是存在的一个难点,小目标的检测精度通常只有大目标的一半。

CVPR2019论文: Augmentation for small object detection 提到了一些应对小目标检测的方法,笔者结合这篇论文以及查阅其它资料,对小目标检测相关技巧在本文进行了部分总结。

小目标的定义: 在MS COCO数据集中,面积小于 32*32 的物体被认为是小物体。

小目标难以检测的原因: 分辨率低,图像模糊,携带的信息少。由此所导致特征表达能力弱,也就是在提取特征的过程中,能提取到的特征非常少,这不利于我们对小目标的检测。

1、由于小目标面积太小,可以放大图片后再做检测,也就是在尺度上做文章,如FPN(Feature Pyramid Networks for Object Detection),SNIP(An Analysis of Scale Invariance in Object Detection – SNIP)。

Feature-Fused SSD: Fast Detection for Small Objects, Detecting Small Objects Using a Channel-Aware Deconvolutional Network 也是在多尺度上做文章的论文。

2、在Anchor上做文章(Faster Rcnn,SSD, FPN都有各自的anchor设计),anchor在设置方面需要考虑三个因素:

anchor的密度: 由检测所用feature map的stride决定,这个值与前景阈值密切相关。

anchor的范围: RetinaNet中是anchor范围是32~512,这里应根据任务检测目标的范围确定,按需调整anchor范围,或目标变化范围太大如MS COCO,这时候应采用多尺度测试。

anchor的形状数量: RetinaNet每个位置预测三尺度三比例共9个形状的anchor,这样可以增加anchor的密度,但stride决定这些形状都是同样的滑窗步进,需考虑步进会不会太大,如RetinaNet框架前景阈值是时,一般anchor大小是stride的4倍左右。

该部分anchor内容参考于:

3、在ROI Pooling上做文章,文章SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection 认为小目标在pooling之后会导致物体结构失真,于是提出了新的Context-Aware RoI Pooling方法。

4、用生成对抗网络(GAN)来做小目标检测:Perceptual Generative Adversarial Networks for Small Object Detection。

1、从COCO上的统计图可以发现,小目标的个数多,占到了,但是含有小目标的图片只有,大目标所占比例为,但是含有大目标的图像却有。这说明有一半的图像是不含小目标的,大部分的小目标都集中在一些少量的图片中。这就导致在训练的过程中,模型有一半的时间是学习不到小目标的特性的。

此外,对于小目标,平均能够匹配的anchor数量为1个,平均最大的IoU为,这说明很多情况下,有些小目标是没有对应的anchor或者对应的anchor非常少的,即使有对应的anchor,他们的IoU也比较小,平均最大的IoU也才。

如上图,左上角是一个anchor示意图,右上角是一个小目标所对应的anchor,一共有只有三个anchor能够与小目标配对,且配对的IoU也不高。左下角是一个大目标对应的anchor,可以发现有非常多的anchor能够与其匹配。匹配的anchor数量越多,则此目标被检出的概率也就越大。

实现方法: 1、Oversampling :我们通过在训练期间对这些图像进行过采样来解决包含小对象的相对较少图像的问题(多用这类图片)。在实验中,我们改变了过采样率和研究不仅对小物体检测而且对检测中大物体的过采样效果

2、Copy-Pasting Strategies:将小物体在图片中复制多分,在保证不影响其他物体的基础上,增加小物体在图片中出现的次数(把小目标扣下来贴到原图中去),提升被anchor包含的概率。

如上图右下角,本来只有一个小目标,对应的anchor数量为3个,现在将其复制三份,则在图中就出现了四个小目标,对应的anchor数量也就变成了12个,大大增加了这个小目标被检出的概率。从而让模型在训练的过程中,也能够有机会得到更多的小目标训练样本。

具体的实现方式如下图:图中网球和飞碟都是小物体,本来图中只有一个网球,一个飞碟,通过人工复制的方式,在图像中复制多份。同时要保证复制后的小物体不能够覆盖该原来存在的目标。

网上有人说可以试一下lucid data dreaming Lucid Data Dreaming for Multiple Object Tracking ,这是一种在视频跟踪/分割里面比较有效的数据增强手段,据说对于小目标物体检测也很有效。

基于无人机拍摄图片的检测目前也是个热门研究点(难点是目标小,密度大)。 相关论文: The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking(数据集) Drone-based Object Counting by Spatially Regularized Regional Proposal Network Simultaneously Detecting and Counting Dense Vehicles from Drone Images Vision Meets Drones: A Challenge(数据集)

1: 2: 3: 4: 5: 6: 7:

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

目标检测论文汇总

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

3d目标检测论文汇总

3d打印技术的发展,给我们的工作生活带来了很大的便利。下文是我整理了3d打印技术论文 总结 范文 ,欢迎大家阅读!3d打印技术论文总结范文篇一:《三维打印快速成形技术及其应用》 摘 要: 文章 对三维打印快速成形技术进行了分析,研究了三维打印快速成形技术的实现方案,并就其系统结构的运行方式做出了说明,最后对三维打印快速成形技术在多个行业领域中应用价值的实现进行了剖析,望能够引起各方人员的关注与重视,促进其进一步发展。 关键词:三维打印;快速成形技术;系统结构;应用 三维打印快速成形技术的核心是:建立在微喷射原理基础之上,通过喷射方式自喷嘴中喷出一定的液态微滴,在此基础之上根据预先设置的路径逐层打印并成形。相对于传统意义上的立体印刷技术或者是叠层实体制造技术而言,三维打印快速成形技术有着非常确切的优势,包括对激光系统要求较低,设备投入资金较少,运行性能可靠,维护工作量少,成本低廉等多个方面。同时,三维打印快速成形技术能够在常温环境下操作,运行安全可靠,可适用的成形材料类型众多,价格均衡,有实践价值。因此,三维打印快速成形技术已成为当前整个快速成形行业中最具综合发展潜力与空间的技术手段之一,有着非常广阔的应用前景。文章即围绕三维打印快速成形技术的实现及其应用要点展开分析,望引起重视。 1.三维打印快速成形技术的实现 从喷射材料上入手,可对三维打印快速成形技术的实现方案进行分类,主要有两种类型:第一是建立在粘结成形基础之上的三维打印快速成形技术,第二是建立在直接成形基础之上的三维打印快速成形技术。具体分析如下: 粘结成形下的三维打印快速成形技术 下图(如图1)为粘结成形下三维打印快速成形技术的基本工作原理。在本技术方案实施下,首先需要在工作台上均匀铺设一层粉末状材料,然后参照零件截面形态,将粘结材料有选择性的打印至粉末层上,使实体区域内的粉末材料完全粘结起来,形成截面对应的轮廓,打印完一层后将工作台向下移动,然后重复以上操作步骤,直至完成整个工件。 直接成形下的三维打印快速成形技术 下图(如图2)为直接成形下三维打印快速成形技术的基本工作原理。在本技术方案实施下,首先需要根据待打印的零件截面形状,控制打印头在截面有实体的区域内打印光固化实体材料,同时需要在可支撑区域内对固化支撑材料进行打印,然后利用紫外灯照射技术,在光固化材料的基础之上同步进行边固化打印工作。逐层进行固化处理直至完成对整个工件的打印工作,最后将支撑材料去除掉,以得到对应的成形工件。 2.三维打印快速成形系统结构 在三维打印快速成形技术实现的过程当中,主要的工作流程为:第一步,采集粉末原料;第二步,将粉末平铺至打印区域当中;第三步,在模型横截面上对打印机喷头进行定位,同时喷涂适当的黏结剂成分;第四步,送粉活塞上升同时实体模型下降,以继续打印;第五步,重复以上操作直至模型打印作业完成;第六步,将多余粉末去除掉,对模型进行固化。建立在该技术基础之上,整个三维打印快速成型系统运行需要完成的动作流程包括:打印喷头沿X轴向以及Y轴向的扫描运动,成型腔活塞沿Z轴向运动,储粉腔活塞沿Z轴向运动,铺粉辊筒转向运动以及平向运动等。其中,喷头X轴向运动采取的是传统喷墨打印机 操作系统 中的字车运动系统,引入光栅技术进行检测,X轴向打印精度可以达到5670dpi单位以上。同时,喷头Y轴向扫描运动能够带动打印机沿与X轴垂直的方向匀速动作,双侧驱动方式为步进电机驱动,光栅检测,闭环控制,三维打印成形中的定位精度可以达到级别。同时,整个三维打印快速成形系统还可以通过应用步进电机的方式为涡轮减速器提供驱动作用力,以驱动丝杆螺母运动,在半闭环条件下实现对铺粉厚度的合理控制(注:铺粉电机运动仅需要控制电机的启停状态,同时配合合理设置转动速度的方式完成工作任务,即应用常规直流电机就能够满足相应的工作要求)。 3.三维打印快速成形技术的实际应用 三维打印快速成形技术在生物工程领域中的应用 生物工程领域研究中对无生物活性支架以及假体的制作一直都是备受关注的工作内容之一,传统技术手段需要对生物活性材料进行激光加热或烧结,对材料的生物活性有不良影响。而通过对三维打印快速成形技术的应用,能够将参与生命体代谢行为且可降解的组织工程材料制成内部结构具有多孔疏松特性的人工骨材料,将活性因子填充于疏松孔内,起到代替人工骨骼的目的。 三维打印快速成形技术在制药工程领域中的应用 当前口服药物制剂的制造 方法 主要有粉末压片以及湿法颗粒这两种类型,无论是哪种制药方法,都存在分解速度过快,难以到达血液,或短时间内血液中药物浓度过高的问题,对人体有非常不良的影响。而通过对三维打印快速成形技术的应用,则能够为药物释放可控性功能的实现提供有力的技术性支持,相信随着单药、多药复合释药性口服可控释放药片以及药物梯度控释给药系统等技术的成功研制与应用,三维打印快速成形技术的应用潜力将得到更进一步的扩大与提升。 三维打印快速成形技术在元件制造领域中的应用 通过对三维打印快速成形技术的应用,能够为产品结构设计检查工作的开展提供非常好的支持,同时,依托该技术能够快速制造产品所对应的功能原型件,从而尽早的展开对产品设计性能的检测工作,缩短设计反馈周期,提高开发有效性,降低开发成本。 4.结束语 结合本文以上分析认为:三维打印快速成形技术作为当前快速成形领域中最具发展潜力的技术手段之一,对比其他快速成形技术而言,有着众多的应用优势,其应用空间也是非常广阔的。特别是在当前快速成形领域学科不断发展与优化的背景之下,三维打印快速成形技术也势必会逐步得到更为广泛与深入的应用。且由于此种技术手段可供选择的材料范围广阔,故而在多个行业的应用价值正逐步显现出来,值得引起重视。本文即围绕三维打印快速成形技术及其应用的相关问题进行分析与探讨,希望以上引起各方人员的高度关注与重视。 参考文献: [1]李晓燕,张曙,余灯广等.三维打印成形粉末配方的优化设计[J].机械科学与技术,2006,25(11):1343-1346. [2]晁艳普,白政民.金属微滴三维打印成形数据处理软件的设计开发[J].机械设计与制造,2014,(8):236-239. [3]庄佩,连芩,李涤尘等.仿生多材料复合增强骨软骨支架的制造及性能研究[J].机械工程学报,2014,(21):133-139. [4]刘厚才,莫健华,叶春生等.三维打印快速成形系统中的数据压缩方法[J].华中科技大学学报(自然科学版),2008,36(5):90-92. 3d打印技术论文总结范文篇二:《三维打印技术的应用与启示》 2013年数字南京 教育 装备工作目标:推进科技实践活动室或技能创造室的装备,全面实现每一所学校拥有一个以上主题鲜明、品质优良,与学校科技实践活动相适应、与学校科技艺体特色发展相适应的实验室;全市创新推进并累计装备建成100个高水平、高品质的机器人、三模科技、农业科技 种植 园等特色实验室,成为南京科技教育的核心与引领基地。评选100个优质科技实验室[1]。 为此,江苏省南京市教育装备与勤工俭学办公室主任后有为带队去山东省济南市历城区观摩三维打印技术培训,参观学校创新实验室,从而了解山东在创新实验室建设方面的一些做法,以及在创新大赛上获得佳绩和向高校输送人才的 经验 。 一、社会为什么需要创新设计和技术应用 《中国玩具制造业利润研究 报告 》显示:以玩具加工业为例,一个芭比娃娃在美国市场上的平均价格为美元,而制作这个芭比娃娃的中国企业只能拿到 美元加工费。中国企业所依赖的是相对低廉的劳动力和原材料成本,对外的竞争力也只是低成本带来的价格优势,所以只能依靠大批量生产,以薄利多销来赚取不多的加工费。我国很多行业产品生产的关键技术大部分来自进口,其中:工程机械高技术产品80%;数控机床70%;石油化工装备76%;集成电路芯片制造设备80%;光纤制造装备100%;通讯、半导体、生物、医药和计算机行业60%~90%;彩电、手机和微机的CPU都是掌握在别人手里[1]。 历史上,中国是人类创新和技术进步的摇篮,世界著名科技史学家李约瑟博士曾经列举了中国传入西方的26项技术,世界科技史上的前27项重要发明中18项来自中国。我国古代科技发明灿若星辰,对世界科技发展做出了巨大贡献。美国学者坦普尔在《中国:发明与发现的国度》一书中详细描述了“中国领先于世界”“西方受惠于中国”的中国古代100项技术发明。以史为鉴,古为今用,技术进步源于创新,创新设计源于服务现实,创造未来。大项目是创意,小改进也是创意,高科技是创意,简约明快也是创意。功能原理是创意,美化外观也是创意。灵感来源于生活,创意让世界更美好。 二、创新设计在初高中技术教学中的应用 我国“十二五”规划提出要深入实施科教兴国战略和人才强国战略,加快建设创新型国家,需要创新型人才,创新型人才培养,教育是基础和前提。同志强调:“要注重从青少年入手培养创新意识和实践能力,积极改革教育体制和改进 教学方法 。” 2011年,奥巴马总统推出的新版《美国创新战略》指出,美国未来的经济增长和国际竞争力取决于其创新能力。“创新教育运动”指引着公共和私营部门联合,以加强创新技术教育。 三维打印技术是专家预测的2013年十大技术革命之一,在打印过程中,打印机将根据计算机设计的模型从底部开始逐层堆积塑料、金属、合金等材料。凭借三维打印技术可以依据数字设计文件制造出固体结构,一旦物品能够在家或办公室远程打印出来,新技术将引发一场制造业革命[2]。三维打印技术在初高中技术教学中的应用,将对培养创新型人才产生重要作用。 1.提高教学效率,发展学生的 创新思维 三维设计软件、结构设计软件在三视图学习中针对学生学习时间少、没有基础等问题提供全新的教学手段,辅助三视图及其画法教学,快速识读技术图。学生进行创新设计时,设计软件提供简单易学的设计手段及完整的设计资源库。直观的三维模型系统教学手段,让设计像搭积木一样简单有趣,对立体模型进行平行移动、旋转、放大、多视窗等操作[3]。 2.降低学习坡度,突破教学难点 从三维设计到二维出图,学生在三维设计软件里轻松完成,快速工程图的生成能使学生做到设计与动手能力的完美结合,促进教育教学改革与学生学习方式的变革,是促进师生共同成长的研究与实践过程。 3.动手动脑结合,强调学生的动手创造 三维打印是一种快速成型技术,它以数字模型文件为基础,通过逐层打印的方式来构造物体,让动手与动脑相结合,让信息技术与通用技术相结合,让三维设计与二维设计相结合,让学生的设计和加工相结合。通过三维动画可以让学生更好地理解弹性碰撞,让机械机构运动的分析更加直观清晰。 三、创新设计帮助学生放飞创新的翅膀 创新设计软件平台在教育信息化中的精确定位是和探究实验室、通用技术实验室、综合实践实验室、信息技术实验室、动漫社相结合。创新软件系列产品及三维打印机将掀起一场教育创新运动。通过创新软件的运用,让我们的孩子和美国的孩子同步学习和发展,学有度、思无界、行无疆,创新设计软件平台及三维打印技术在教育中的促进作用有三: 一是可以引导中学生在生活中发现问题,去主动思考如何解决问题,而不是简单地去抱怨问题,培养学生的人文精神和社会责任感。 创意来源: 在高层楼房擦玻璃是很危险的,有没有既安全又方便的擦窗户方案?窗户有调节风、光的作用,如何利用窗户来改善室内的空气循环和光线照明? 设计原理:百叶窗的结构有可调节性,此类窗户也可以使用类似的结构,即将每扇窗分成若干扇小窗,每扇小窗可以绕轴旋转。这样可以实现调节风和光的作用,并且在雨天也可以开窗。尤其是高层楼房窗户玻璃的擦洗变得十分简便了。 二是可以帮助中学生固化自己生活的直接经验和亲身经历中的“小灵感”,并通过自己的设计―制作―评价,达到“创造”的教学效果。 案例2:可升降课桌椅 创意来源:学校普遍存在着课桌椅不符合学生身材的现象,总会让人觉得或高或低,影响学生的身体健康,于是便想到去设计一种可以升降且更具实用性的课桌椅。 设计原理:把思路定格在齿轮的传动上。在桌腿内部各安装两个齿轮和两条齿条,中间有一根传动轴连动,再在其中一个桌腿的一侧开孔,利用一个把手转动齿轮,这样便能使桌面水平升降 。 图6 利用三维打印技术制作出来的齿轮组 三是可以让中学生高度综合各学科、各方面的知识,并立足于实践,实现“做中学”和“学中做”。 案例3:自动上下楼梯的自助轮椅车 创意来源:家里有残疾人,上下楼梯不方便,有没有可以帮助残疾人自动上下楼梯的自助轮椅车呢? 设计原理:市面上有自动上下台阶的拖车,主要是依靠行星轮系的工作原理。如果把这个原理应用到轮椅上,不就是可以帮助残疾人自动上下楼梯的自助轮椅车吗? 案例4:物理学科中的成像原理 创意来源:来源于初中物理实验凸透镜成像实验。这个实验十分重要,但许多学生只知道概念而不清楚其中的原理与演示的过程。创意的意义在于把生活中的现象用自己的方式表现出来。 设计原理:运用新颖的视觉与动画,让大家耳目一新,将传统的枯燥教学转换为全新的模式,从而调动起大家的学习兴趣和热情。 四、创新设计大赛为学生提供创新实践的平台 为了丰富中小学生学习生活,激发创新精神,培养实践能力,全面推进素质教育,培养有国际竞争力的创新人才,2013年第十四届全国中小学电脑制作活动和第二届中国国际学生信息科技创意大赛专门设立了比赛项目(9)创新未来设计[4]。参赛者参考生活中的常见事物,通过计算机三维立体设计平台创作设计作品。要求首先完成设计 说明书 ,根据设计说明书,通过软件进行三维模型的设计、搭建和零件装配,并制作相关功能演示动画。 作品设计的事物尺寸不超过150 mm×200 mm×200 mm,薄厚不小于2 mm。 初中组设计命题为“未来桥梁”,在保证桥结构稳定的前提下,从功能、外观等方面进行创意设计。桥所应用的情境不做约束,可充分结合自己设定的场景进行设计。 高中组设计命题为“智慧汽车”,从外形、功能等方面加以创意设计。车辆的动力源和工作环境不做约束。 提交文件包括:设计作品,ICS或EXB文件;演示动画,SWF,3GP,MPG,AVI或MOV文件;设计说明书。 作品(含设计作品、演示动画、设计说明书)总大小不超过50 MB。 五、我们的思考 从山东省的创新办学标准来看,他们已经在如下方面做了尝试:创新设计软件和探究实验室相结合(初、高中),和通用技术实验室相结合(高中),和技术教室相结合(初中),和综合实践实验室相结合(小学),和信息技术实验室相结合(通用),和动漫室相结合(通用)。 南京市教育装备与勤工俭学办公室主任后有为说过:我们不一味追求最新的、豪华的、最先进的设备设施,而是选择科学的、实用的、适用的和优质的设备设施。这对于建设创新实验室提供了很好的思路,选择科学的、适用的、适度领先的物质技术及其承载信息,并通过恰当的、优化的、科学的形式整合成能促进教育与学校发展的,能促进教育教学改革与学生学习方式变革的,能促进师生共同成长的研究与实践过程。 组织相关人员调研三维打印应用 参考文献 [1] 张武城.创造创新方略[M] .北京:机械工业出版社,2011. [2] 维克托・巴雷拉.专家预测2013年十大技术革命 包括三维打印技术[EB/OL]. 3d打印技术论文总结范文篇三:《试谈3D打印技术在建筑业应用》 从20世纪80年代起,随着计算机技术、新材料技术的快速发展,3D打印技术不断进步,逐渐走向人们的视野。李晓梅(2014)认为自3D打印机发明30余年来,经历了迅猛发展已成为当今最有生命力的先进制造技术之一[1]。 本文采用文献研究的方法,针对3D打印在建筑行业的应用找出优点及不足,为3D技术在建筑行业的应用提供发展方向和理论参考。 一、3D打印技术在建筑业的应用 (一)3D打印技术概念 江洪(2013)认为3D打印技术是一种增加制造技术,采用分层制造,逐层叠加的方式形成三维实体的技术[2]。李小丽(2014)总结道,3D打印是包括CAD建模、测量、材料、数控等学科[3]。 (二)3D打印技术在建筑业应用优点 李福平(2013)认为3D打印建筑技术优势为速度快;不需要使用模板,可以大幅节约成本,并且具有低碳、绿色、环保的特点[4]。杨健江(2015)认为相较于传统建筑模式,3D打印不仅节约资源,利用废弃物进行制造[5]。丁烈云(2015)认为建筑3D打印数字建造技术满足日益增长的非线性、自由曲面等复杂建筑形式的设计建造要求,是全新的设计建造方法论的革新[6]。 本文将建筑3D打印技术的优点整理如下: 1.基于施工层面。根据图纸以及相关数据,就可制造出建筑墙体、楼板等,大大节约了建筑时间;从设计文件里获得各种指令并进行工作,要求操作业者掌握的操作技能水平要求很低,一方面大大降低了人力成本,另一方面将操作者对产品质量带来的影响因素降到了最低;避免了施工现场存在的安全隐患,保障作业人员的人身安全,减少事故和伤亡。 2.基于经济层面。所需要的材料多可以就地取材,极大节省建造的运输成本;零部件生产一体化成型,既缩短了制造时间,节约了人力成本,又减少了采购及运输成本;仅需更换设计文件和打印材料就可生产不同的零件。 3.基于材料层面。采用增材制造方法,材料利用率高;3D打印技术可打印出高成本曲线建筑;遵照计算机程序,比人工的更加准确,产品质量有保证;打印过程中依据精确的几何计算,采用坚固耐用的材料,质量有保证;墙体是空心的相比钢筋混凝土实心墙体,3D 打印建筑的墙体要轻许多。 4.基于环保层面。原材料可以来源于建筑垃圾、工业垃圾,达到了节能环保、资源再生和改善环境的目标;采用干法施工可避免施工粉尘和噪声影响,生产制造过程中产生的废气、液等有害物质低,减少材料浪费和排污;打印过程几乎不产生噪声和大振动。 (三) 目前建筑3D打印技术存在的问题 3D打印技术虽发展迅速,但仍存在弊端。 1.精度问题。3D 打印技术由于工艺问题导致两层材料之间不能光滑过度,且只能形成样式简单且单一的条纹。影响建筑外立面的美观性。而在一定微观尺度下,如果需要制造的对象表面是圆弧形,那么这种具有一定厚度的条纹,就会造成精度上的偏差。 2.行业规范问题。3D打印建筑在行业内还没有任何相关的规范条例。使用年限和房屋产权等一系列问题都没有权威部门的认可。 3.材料性能问题。3D打印建筑多数为低矮建筑,相较于传统方式,在强度、刚度和加工性上均有不足。且其打印是水平逐层打印,缺少纵向钢筋。 4.设备问题。受限于工作原理,目前3D打印机打印速度较慢,且设备和原材料的价格居高不下在一定程度上阻碍了3D打印技术的发展。 5.伦理安全性问题。伴随着3D打印技术的发展和进步,人体器官的3D打印技术面临着伦理上引起大众质疑的困境。3D打印技术引发的安全风险也收到相应的质疑。 二、结论与展望 本文通过对3D打印技术的相关知识及其在建筑业应用的优缺点、发展前景的梳理和归纳,得到如下结论: 首先,缺少关于适应多元材料的打印设备系统和工艺流程系统的研究,缺少交流和互相融合。 其次,国内外学者研究建筑3D打印研究的初步成果较多,但是缺乏系统、完善的方法体系。 最后,3D打印技术近期发展迅猛,但3D打印的相关专业规定及法律条文并没有得到良好的研究。为避免矛盾与事故的发生,解决由3D打印所造成的冲突,建立公平、公正、完善的相关规定必不可少。 猜你喜欢: 1. 3D打印技术学习心得体会 2. 3d打印必读的10本书 3. 3d打印调研报告 4. 3d打印技术调研报告 5. 3d打印技术学习心得

在达摩院做3d目标检测,简单调研一下。 使用RGB图像、RGB-D深度图像和激光点云,输出物体类别及在三维空间中的长宽高、旋转角等信息的检测称为3D目标检测。 在无人驾驶、机器人、增强现实的应用场景下,普通2D检测并不能提供感知环境所需要的全部信息,2D检测仅能提供目标物体在二维图片中的位置和对应类别的置信度,但是在真实的三维世界中,物体都是有三维形状的,大部分应用都需要有目标物体的长宽高还有偏转角等信息。例如下图中,在自动驾驶场景下,需要从图像中提供目标物体 三维大小 及旋转角度等指标,在鸟瞰投影的信息对于后续自动驾驶场景中的路径规划和控制具有至关重要的作用。3DOP这篇文章是当下使用双目相机进行3D bounding-box效果做好的方法,其是Fast RCNN方法在3D领域之内的拓展。由于原论文发表于NIPS15,出于Fast RCNN的效果并没有Faster RCNN和基于回归的方法好,且远远达不到实时性,因此其处理一张图片的时间达到了。 它使用一个立体图像对作为输入来估计深度,并通过将图像平面上像素级坐标重新投影回三维空间来计算点云。3DOP将候选区生成的问题定义为Markov随机场(MRF)的能量最小化问题,该问题涉及精心设计的势函数(例如,目标尺寸先验、地平面和点云密度等)。 随着获得了一组不同的3D目标的候选框,3DOP利用FastR-CNN[11]方案回归目标位置。 论文主要基于FCOS无锚点2D目标检测做的改进,backbone为带有DCN的ResNet101,并配有FPN架构用于检测不同尺度的目标,网络结构如图1所示: 基于iou 3d,可以定义出TP和FP 通过绘制精确性×召回率曲线(PRC),曲线下的面积往往表示一个检测器的性能。然而,在实际案例中,"之 "字形的PRC给准确计算其面积带来了挑战。KITTI采用AP@SN公制作为替代方案,直接规避了计算方法。 NuScenes consists of multi-modal data collected from 1000 scenes, including RGB images from 6 cameras, points from 5 Radars, and 1 LiDAR. It is split into 700/150/150 scenes for training/validation/testing. There are overall annotated 3D bounding boxes from 10 categories. In addition, nuScenes uses different metrics, distance-based mAP and NDS, which can help evaluate our method from another perspective.

2019年论文检测软件

之前文章罗列很多查重软件其实包括付费和免费,今天例举部分免费查重软件仅供参考:

学术不端论文查重

大学生版(专/本科毕业论文定稿)、研究生版(硕博毕业论文定稿)、期刊职称版(期刊投稿,职称评审)以上版本均可免费查重不限篇数。

PaperFree

PaperFree是中英文及多语种论文相似度检测系统,特色机器人降重、在线改重功能,可以实现自动降低文章相似比例,并且在同一界面上一边修改一边检测,即时反馈查重结果,使用户体验、查重效率翻倍。PaperFree为用户人性化地完美实现了“首次免费论文检测―高效在线改重―智能机器人降重―全面再次论文检测―顺利通过论文检测“的整个全过程。

PaperPass

PaperPass是全球首个中文文献相似度比对系统,已经发展成为一个中文原创性检查和预防剽窃的在线网站。一直致力于学术论文的检测。

PaperTime

PaperTime是在“教育大数据联盟平台”的基础上,优先获取教育数据资源,采用多级指纹对比技术及深度语义识别技术,实现“实时查重、在线修改、同步降重”一步到位。

每个学校要求的论文查重系统不同,但是我们也需要自己提前进行查重,因为不查重是无法知道自己的论文内容是否有问题的,就算已经修改了,说不定重复率还是很高。目前网上的论文查重系统很多,大家各自的选择都不同,只有对比才知道哪个系统更加适合自己。一、对比网站的专业性一般都是在百度搜索论文查重,然后会出现很多网站,我们不要马上提交自己的论文内容,先对比网站设置如何。因为现在都是在网上提交查重,如果网站不稳定的话,那么查重结果肯定不准确的。所以,大家要谨慎进行选择,不要随意看到一个论文查重网站后马上提交检测。二、看论文查重系统的更新情况论文查重怎么计算重复率主要是看数据库是否广泛,例如学校查后的重复率只有20%,自己查重后的重复率可能有30%或者15%,这也是因为每个系统的数据库不同。所以,我们在选择论文查重系统时,必须特别注意网站的数据库如何。三、网络成功案例的衡量选择论文查重系统,我们可能是导师或者同学推荐的,网上的成功案例还是很重要的。有的论文确实是第一次查重都达到了60%,在论文查重系统的帮助下能降到30%,这类系统若有庞大的文献数据库,并能帮助我们对论文进行修改,这样的系统才是值得选择的。

Paperbye论文查重软件目前有两个版本,标准版(免费版)和旗舰版(收费版),同时还有自建库查重可以查出所有参考内容,这样不易担心任何查重软件。

优秀功能1、自动降重,根据论文重复率情况,自己选择性软件自动降重辅助提高论文修改效率;2、自动排版,根据各校论文要求格式会自动进行格式排版,一键生成,快速便捷;3、同步改重,在查重报告里实现一边修改文章,一边进行查重,及时反馈修改结果。4、自建库,自建上传参考过的文章进行单独比对,可以查出所有抄袭内容。5、自动纠错,AI识别文档中的错别字和标点误用,提示错误位置并提供修改建议。

总结了五种修改论文方法,感觉是降重必备的。

1、变换表达。先理解原句的意思,用自己的话复述一遍。

2、词语替换,在变换表达方式的基础上结合同义词替换,效果更好。

3、变换句式,通过拆分合并语句的方式进行修改,把长句变短句,短句变长句,。

4、图片法,针对专业性太强不好修改的语句或段落(比如计算机代码,法律条款,原理理论等),可以适当把文字写在图片上展现,但是这种方法不宜用的太多。

5、翻译法,用百度翻译或谷歌翻译,中文翻译成英文,英文翻译成日语或其他语种,再从日语翻译成中文,这种看似不错,感觉效果还是不好。

paperbye论文查重软件-论文检测、智能降重。

2019年论文检测内容

我们在撰写毕业论文时,学校会制定标准,目的就是为了统一我们的论文格式和内容质量。除了这些,对于论文重复率也是有一定要求的。今天小编就来详细说说论文查重的相关标准。

一、论文查重范围

1.题目,2.摘要,3.关键词,4.目录,5.毕业论文正文:包括前言、本论、结论三个部分,6.致谢,7.参考文献,8.注释,9.附录。

按格式顺序编排,论文查重系统会自动识别剔除不查重的部分。

二、论文字符数计算方式

字符数+空格来计算,Word文档格式不计算图表格式、代码信息,中文论文按字符数计算,外文论文2个字母算一个字符。

三、判断抄袭的标准

1、与他人论文作品的字句完全一致或基本相似,或者进行了不到位的删减、个别修改和结构上的调整。

2、论文字句与他人作品内容并未完全一致或基本相似,并标注了引用参考文献格式规范,但是已经超过了“适当引用”的限度阀值。

3、论文引用内容虽然没有超过“适当引用”的限度阀值,但论文的核心章节、关键部分、有价值部分或特色部分跟他人作品有重复。

4、论文内容是多篇他人作品的拼凑拼接。

四、论文文献引用规范

论文查重系统会按照文献引用的规范来自动识别出论文中的引用部分,如果论文中的引用部分在检测报告中没有显示,可能是以下原因引起的:

1、没有标注引用符号或者格式标注不正确;

2、不是原文引用,对原文内容进行了调整,系统识别为自己写的原创内容。

论文查重包括数据库的检测、字数检测、论文的段落与格式检测、标注参考文献检测和章节变换检测。在论文中出现的公式、图片等是不会查重的,所以一般不查目录、致谢、参考文献,只查正文,只看正文的重复率,本科的查重率一般在30%以下。

别的文查重检测的内容主要是包括那重复率的问题,也就是在引用别人的文章以后,是否是注明了

一到大学毕业季,本科的同学们都需要经历论文写作与论文查重的阶段。而除了论文写作之外,论文查重也使得很多本科的同学感到为难。因为很多同学是第一次进行论文写作与论文查重,对于论文查重不仅缺乏了解,而且对选择哪一个论文查重系统感到困惑。今天论文大师来为大家分享一下本科论文查重会检测哪些内容。在此之前,我们需要先对论文查重率做一个基本的了解。对于本科毕业论文而言,论文查重率是怎么统计出来的呢?鉴于当前大部分高校会选择知网也就是学术不端系统来进行论文查重工作,因此我们以知网论文查重系统为例说明。在知网论文查重系统中,对于论文中的句子出现连续13个字符的重复现象,就会判定该句子为重复。然后,把毕业论文中所有的重复部分字数除以论文总字数,也就得出了论文的重复率了。对于大部分高校的规定和标准来讲,本科毕业论文的重复率一般是要求在30%以下,有些学校则严格一些,会要求重复率低于20%等。对于学校规定的重复率的标准,同学们可以通过咨询师兄师姐或者老师来确定。现在转到正题,大学本科毕业论文在进行论文查重时通常是检测哪些内容呢?实际上,对本科毕业论文来讲,论文查重的内容基本上是包含论文的摘要、正文与结尾等文字部分。对于论文的目录、参考文献以及图片等这些部分是不会进行论文查重,也并不计入重复率中。不过需要注意的是,在进行论文查重时需要按照规范的标准对引用符合等格式做好标注,否则有可能会造成论文查重系统无法识别导致重复率过高的问题。PS:论文大师小编可以跟大家说一个小技巧,在借鉴或引用别人的的文献资料时,我们可以多多参考课本或书籍等。毕竟网络上可以寻找到的文献资料等一般都是在论文查重的数据库中,这样直接使用必定是会造成重复率过高的问题。以上。

相关百科

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号-2